

Image-Pro® Plus
Version 7.0 for Windows™

Auto-Pro Reference

Media Cybernetics, Inc.
4340 East West Highway
Bethesda MD 20815
(301) 495-3305, FAX (301) 495-5964

MAN AP 41N70000 20090630

COPYRIGHT NOTICE
Copyright 1994 - 2009 Media Cybernetics, Inc.
All Rights Reserved

TRADEMARK ACKNOWLEDGMENTS

HALO Image File Format Library, HALO, HALO Desktop Imager, AFA, Image-Pro,
Image-Pro Plus, Stage-Pro, and Scope-Pro are registered trademarks of Media
Cybernetics, Inc.

Image-Pro Plus is protected by U.S. patent: #7,489,828. Additional patents are
pending.

All other trademarks in this document are trademarks or registered trademarks of
their respective companies.

IMPORTANT: PLEASE READ CAREFULLY

LICENSE AGREEMENT

THIS LICENSE AGREEMENT ("AGREEMENT") IS BETWEEN YOU, THE END USER, AND MEDIA CYBERNETICS,
INC. ("MEDIA"). IT GOVERNS THE USE OF THE SOFTWARE, PROGRAM MEDIA AND DOCUMENTATION
KNOWN AS Image-Pro® Plus (THE "PRODUCT"). IF YOU USE THE PRODUCT, THEN YOU AGREE TO THE TERMS
OF THIS AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY THE TERMS OF THIS AGREEMENT,
PROMPTLY RETURN THIS PACKAGE TO THE PLACE OF PURCHASE WITH A COPY OF THE RECEIPT, AND
YOUR LICENSE FEE WILL BE REFUNDED.

Media licenses use of the PRODUCT, which may be manufactured and distributed by Media or by a third party (either, the
"Manufacturer").

You, the end-user, assume responsibility for the selection of the PRODUCT to achieve your intended results, and for its
installation and subsequent use.

GRANT OF LICENSE
Media hereby grants you a non-exclusive license to use the PRODUCT in object code form only, upon the terms and conditions
contained in this Agreement.

You may:

Use the PRODUCT on a single workstation that is owned, leased or otherwise controlled by you, whether in a network or other
configuration.

Create a backup copy of the PRODUCT, in any machine-readable or printed form.

Transfer the PRODUCT and your rights under this Agreement to another party if the other party agrees to accept the terms and
conditions of this Agreement. If you transfer the PRODUCT, you must, at the same time, either transfer all copies of
PRODUCT to the same party, or destroy any copies not transferred. You must immediately notify Media of the transfer.

Print out one copy of the PRODUCT documentation from the program media. If you print out any part of the PRODUCT
documentation from the program media, you must reproduce and include all the copyright notices that appear in the
documentation on any such copy of the documentation.

You may not:

Use or copy the PRODUCT, in whole or in part, except as expressly provided in this Agreement.

Use the PRODUCT concurrently on more than one workstation.

Copy, rent, distribute, sell, license or sublicense, or otherwise transfer the PRODUCT or this license, in whole or in part, to
another party, except as specifically set forth above.

Incorporate the PRODUCT or any portion of the PRODUCT into, or use the PRODUCT, or any portion of the PRODUCT to
develop, other software without a license from Media, or otherwise modify or create a derivative work from the PRODUCT
without a license from Media.

Reverse engineer, decompile or disassemble the PRODUCT.

To use the PRODUCT as described in Sections 2 or 4 above, or for any other use not specifically set forth above, additional
licensing from Media is required. For further information, please contact Media at:

 Media Cybernetics, Inc. Phone: (301) 495-3305

 4340 East West Highway Fax: (301) 495-5964

 Bethesda, Maryland 20814 WorldwideWeb:http://www.mediacy.com

 U.S.A. E-Mail: info@mediacy.com

PROPRIETARY RIGHTS

This Agreement gives you ownership only of the physical program media on which the PRODUCT is stored, but not of the
PRODUCT itself. You acknowledge that Media owns all right, title and interest in the PRODUCT, and that you will acquire
no rights in the PRODUCT through your use of it. You agree that you will take no action that interferes with Media's rights in
the PRODUCT.

TERM

This Agreement is effective until terminated. You may terminate it at any time by destroying the PRODUCT together with all
copies and documentation in any form. This Agreement will also terminate automatically and without notice from Media if you
fail to comply with any term or condition of this Agreement. You agree upon such termination to destroy the PRODUCT and
all copies of the PRODUCT.

DISCLAIMER; LIMITED WARRANTY
EXCEPT AS PROVIDED BELOW, THE PRODUCT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PRODUCT IS WITH YOU. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

NEITHER MEDIA NOR MANUFACTURER WARRANT THAT THE FUNCTIONS CONTAINED IN THE PRODUCT
WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE PRODUCT WILL BE UNINTERRUPTED
OR ERROR-FREE. However, where Media is the Manufacturer, Media warrants that the program media on which the
software is furnished will be free from defects in materials and workmanship under normal use for a period of ninety (90) days
from the date of delivery as evidenced by a copy of your receipt.

LIMITATION OF REMEDIES
Where Media is the Manufacturer, Manufacturer’s entire liability and your exclusive remedy shall be:

1. the replacement of the program media not meeting the Limited Warranty, which is returned to Manufacturer with a copy
of your receipt; or

2. if Manufacturer is unable to deliver replacement program media which is free of defects in materials or workmanship,
you may terminate this Agreement by returning the PRODUCT and a copy of your receipt to the place of purchase, and your
money will be refunded.

Where Media is not the Manufacturer, Media shall have no liability to replace or refund, and you agree to look to Manufacturer
to meet the obligations described above.

LIMITATION OF LIABILITY
IN NO EVENT WILL MEDIA OR MANUFACTURER BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT
NOT LIMITED TO, ANY LOST PROFITS, LOST SAVINGS, OR OTHER INDIRECT, SPECIAL, EXEMPLARY,
INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE THIS
PRODUCT, EVEN IF MEDIA OR MANUFACTURER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. FURTHER, IN NO EVENT WILL MEDIA OR MANUFACTURER BE LIABLE FOR ANY CLAIM BY ANY
OTHER PARTY ARISING OUT OF YOUR USE OF THE PRODUCT. SOME JURISDICTIONS DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

TRADEMARKS
Image-Pro® Plus is a registered trademark of Media Cybernetics, Inc. and Media Cybernetics® is a registered trademark of
Media Cybernetics, Inc.

No right, license, or interest in such trademarks is granted hereunder.

U.S. GOVERNMENT RESTRICTED RIGHTS IN DATA
This computer software product and documentation are provided with Restricted Rights. Use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, or subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19,
as applicable. Contractor/Manufacturer is Media Cybernetics, Inc., 8484 Georgia Avenue, Silver Spring, Maryland 20910.

EXPORT CONTROLS
You agree not to export or re-export the PRODUCT, directly or indirectly, to any countries, end-users or for any end uses that
are restricted by U.S. export laws and regulations, without first obtaining permission to do so as required by the U.S.
Department of Commerce's Bureau of Industry and Security, or other appropriate government agency. These restrictions
change from time to time. If you have any questions regarding your obligations under U.S. export regulations, you should
contact the Bureau of Industry and Security, U.S. Department of Commerce, Exporter Counseling Division, Washington D.C.
(202) 482-4811, http://www.bis.doc.gov.

GENERAL

1. You may not sublicense, assign or transfer the license or the PRODUCT, in whole or in part, except as expressly
provided in this Agreement. Any attempt to do so is null and void.

2. This Agreement will be governed by the law of the State of Maryland applicable to agreements made and to be
performed in the State of Maryland, but shall not be governed by the Uniform Computer Information Transactions Act as
adopted in Maryland, or the United Nations Convention on Contracts for the International Sale of Goods.

3. Should any part of this agreement be declared void or unenforceable by a court of competent jurisdiction, the remaining
terms shall remain in full effect.

4. Failure of Media to enforce any of its rights in this agreement shall not be considered a waiver of its rights, including its
rights to respond to subsequent breaches.

5. This Agreement is the complete and exclusive statement of the agreement between you and Media and supersedes any
proposal or prior agreement, oral or written, any other communication between you and Media relating to the subject matter of
this Agreement.

Should you have any questions concerning this Agreement, you may contact Media in writing at the address above.

BY USING THIS SOFTWARE YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND
IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS.

Contents

 i

Contents
Section 1 - Overview...1-1

About Auto-Pro...1-1
This Manual.. 1-2
What’s New in Version 7.0 .. 1-2
Macros .. 1-3
Script Files.. 1-3

Creating An Auto-Pro macro...1-7
Auto-Pro Functions .. 1-8
Auto-Pro Parameters .. 1-8
Auto-Pro Arrays & Defined Types... 1-9
Template Mode... 1-10
Issuing A Message To The User .. 1-11
Obtaining Data From The User .. 1-12
Working With Multiple Image Files .. 1-12
Interactive Processes .. 1-13
Getting Data From An Image ... 1-13

IPBasic...1-14
Statement Structure... 1-14
Using Comments .. 1-15
Subroutines and Functions ... 1-15
Variables, Constants, Data Types... 1-17
Expressions... 1-20
Flow Control... 1-25
For...Next Statements ... 1-27

Errors...1-29
Run-Time Errors... 1-29

Version 4.0 ..1-30

Contents

ii

Compatibility Issues...1-31
Print .. 1-31
RTrim$... 1-31
Str$... 1-32
IpDocGet, IpAppGet .. 1-33
Dim... 1-33
Option Explicit ... 1-34
Image Updates .. 1-34

Using Auto-Pro with Visual Basic ..1-35

Section 2 - Auto-Pro Function Reference ..2-1

Section 3 - IPBasic Commands ...3-1
Appendix A - Function & Command Summary4-1
Appendix B - Auto-Pro Keywords ..5-1
Appendix C - ANSI Characters..6-1
Appendix D - Data Types ...7-1
Appendix E - Shortcut Key Assignments ..8-1
Appendix F – Error Messages...9-1

About Auto-Pro

Page 1-1

Section 1 - Overview
As you become proficient with Image-Pro, you may find that you need to automate
routine procedures or tailor its interface to your specific needs. For example, you
may want to automate a series of steps that are performed daily, or perform certain
steps only when certain conditions exist. You might also want to call Image-Pro
functions from a program of your own creation. These levels of customization can
be achieved with the Auto-Pro scripting facility.

Auto-Pro lets you translate a sequence of actions into a set of written instructions
that can be recalled and “played back” whenever they are needed. The Auto-Pro
scripting facility also lets you add variable definition and flow control statements
(e.g., looping and branching) to these instructions, so that you can specify when and
how often the actions are performed.

About Auto-Pro
The Auto-Pro scripting facility is made up of two basic components:

 The Auto-Pro function set: Auto-Pro functions are used to perform Image-
Pro actions. For example, the IpFltSobel function performs a Sobel filtering
operation, and the IpLutReset function resets the Lookup Table. These
functions are written to a script file when a macro is recorded, and are “called”
when the macro is played back. Auto-Pro functions can also be called from your
own Visual Basic™ programs, allowing you to add the image-processing power of
Image-Pro to programs of your own design.

 Image-Pro BASIC (IPBasic): IPBasic is the language in which Image-Pro
macros are written and interpreted. When an Image-Pro action is recorded, it is
written as an IPBasic call to the appropriate Auto-Pro function. The macro itself is
defined as an IPBasic sub-routine.

 The IPBasic component of Auto-Pro also provides many commands that can be
used to add variable definition, flow control and string manipulation to your macro.
These commands are a subset of the BASIC language, and conform to Visual Basic
syntax.

Image-Pro Plus

Page 1-2

This Manual
This manual describes the Auto-Pro function set scripting facility.

 The first section provides a discussion of the key elements in each component.
It also describes how Auto-Pro is used with a Visual Basic program.

 The second section contains alphabetically arranged descriptions of the
functions and commands in the Auto-Pro function set . IPBasic functions are
described in the IPBasic online help, where you will find complete
descriptions and other important information.

 The appendices list the functions, commands, reserved words, data types and
character codes used by the Auto-Pro scripting facility.

What’s New in Version 7.0
 New macro functions have been added to support Live EDF, Live Tiling, and

Bayer Interpolation. Improvements have been made to the AFA macros.

 The Scope-Pro and Stage-Pro macros have been integrated into this manual.

About Auto-Pro

Page 1-3

Macros
When you record a macro with the Record Macro command, your actions are
translated into a sequence of Auto-Pro function calls written in IPBasic. These
instructions are stored in a script file. When you play the macro back, the commands
are read and executed by Image-Pro's built-in BASIC interpreter, IPBasic.

The tools used to create and play back macros are located on the Macro menu.
These are:

Record Macro - the command used to create a macro by writing Auto-Pro
functions, representing the actions you perform, to a script file.

Macro Management – the command which invokes the Macro Management
dialog. This dialog allows you to load and work with the contents of different
script files, including tasks such as running, editing, deleting, and renaming
macros.

The Macro Menu – The end of the macro menu itself lists the macro
commands that are available from the currently loaded script (use the Macro
Management item to load different scripts). Clicking the name of the macro in
this menu will run that function from the macro script.

These commands are explained in full detail in your Image-Pro Plus Reference
Manual. For the automation of simple routine procedures, these commands may be
all the functionality you will ever need. However, to create powerful routines that
branch on condition or loop when instructed, you will need to edit the macro to add
this capability.

Script Files
A script file is a collection of macros that you have recorded — when you record a
new macro, its instructions are appended to the file. By default, macros are written
to the DEFAULT.IPM script file. You may have as many script files as you choose,
but Image-Pro can record to and play back from only one at a time — the one that is
currently loaded. Script files are loaded using the Change button in the Macro
dialog box. Once a script file is loaded, the macros within it are available for
playback.

You can at any time examine the current script file (which is a simple text file) by
using the Edit button in the Macro dialog box. Furthermore, you can modify the
file according to the rules laid out in this manual. Be sure to reload the script file
after you have saved your changes.

Image-Pro Plus

Page 1-4

Before learning in detail how Auto-Pro works, take a moment to look at an example
script file below, to familiarize yourself with its components.

Sub VIDENH()
'<c>0
'
ret = IpWsLoad("c:\ipwin\images\bankvid.tif","TIF")
ret = IpFltSharpen(5, 10, 2)
ret = IpWsScale(753, 462, 1)
End Sub

__

Macro
VIDENH

Sub DNATEST()
'<c><s>F2
' Save 10 Profiles
dim x1 As integer, x2 As integer
dim i As integer, j As integer
ret = IpProfCreate()
ret = IpProfSetAttr(LINETYPE, THICKVERT)
x1 = 96
x2 = 110
j = 0 ' Save to file the first time; then append
for i = 1 to 9
 ret = IpProfLineMove(x1, 0, x2, 290)
 ret = IpProfSave("C:\IPWIN\PROFILE.HST", j)
 x1 = x1 + 41
 x2 = x2 + 41
 j = 1 'Set Append Flag
next i
ret = IpProfSelect(0)
ret = IpProfDestroy()
End Sub

__

Macro
DNATEST

Sub FPRINT()
' <s>F4
'
ret = IpWsLoad("c:\ipwin\images\fprint.tif","TIF")
ret = IpFltFlatten(0, 20)
ret = IpLutSetAttr(BRIGHTNESS, 60)
ret = IpLutSetAttr(CONTRAST, 60)
ret = IpLutApply()
ret = IpFltHiPass(3, 10, 1)
End Sub

__

Macro
FPRINT

This script file contains three macros: VIDENH, DNATEST, and FPRINT, as denoted
by the name on the Sub command line at the top of each macro. If you are familiar
with a programming language, you will note that the format of a macro is that of a
subroutine — it begins with a Sub command, and ends with an End Sub
command.

The format of a macro is explained in more detail in the following diagram of the
DNATEST macro. This macro is one that has been edited to include some simple
looping and conditional test operations. Don't worry if some of the explanations are
not clear at this time. They should become clearer as you read further in this manual.

About Auto-Pro

Page 1-5

1. __ Sub DNATEST()

2. __ ' <c><s>F2

3. __ ' Save 10 Profiles

 dim x1 As integer, x2 As integer
4. dim i As integer, j As integer

 ret = IpProfCreate()
5. ret = IpProfSetAttr(LINETYPE, THICKVERT)

 x1 = 96
6. x2 = 110
 j = 0 ' Save to file the first time; then append

 for i = 1 to 9
 ret = IpProfLineMove(x1, 0, x2, 290)
 ret = IpProfSave("C:\IPWIN\PROFILE.HST", j)
7. x1 = x1 + 41
 x2 = x2 + 41
 j = 1 ' Set Append
 next i

 ret = IpProfSelect(0)
 ret = IpProfDestroy()
8. __ End Sub

1. The keyword “Sub,” followed by the macro name identifies a macro. A Sub

statement must be the first statement in any macro. The macro can be given any
valid variable name (See Variable, Constants and Data Types later in this section
for variable name rules). This line is automatically written when you record a
macro.

2. This comment line is used to identify the shortcut key assigned to the macro. A
shortcut key does not have to be assigned to a macro, but if it is, its name must be
placed before the first operational statement (i.e., non-comment statement) in the
macro (see Appendix E - Shortcut Key Assignments for valid key names). This
line is automatically placed on the second line when you record a macro that has
been assigned a shortcut key. If you do not assign a shortcut key when you record
your macro, this comment line will not appear.

3. This comment line is used to record the macro's description, which is displayed in
the Macro dialog box. A description does not have to be included with your
macro, but if you choose to include it, it must be placed before the first operational
statement (i.e., non-comment statement) in the macro. It may appear before or
after the shortcut key comment, if one has been included.

 The description line is automatically written when you record a macro that has
been given a description. If you do not assign a description, this line will not

Image-Pro Plus

Page 1-6

appear. You may include multiple lines of descriptive comments, however, only
the first line will be appear in the Macro dialog box.

Note - if you manually add a shortcut key or description line to your macro, be
sure to type the apostrophe in the first position of the comment line.

4. The fourth line of the macro contains its first operational statement. This is a good
place to begin declaring variables that will be used later in your macro. These
types of statements are not written by the macro recorder. They are ones that you
might include to support flow control commands that you add to the macro. In
this example, these statements declare variables that are used as parameter values
and counters by the For...Next loop in this macro (see element 6).

5. These two lines execute Image-Pro commands, in this case the Line Profile and
Thick Vert commands. These lines are automatically written to the macro when
the Line Profile and Thick Vert commands are recorded.

6. These three statements set the initial values of variables used in the For...Next
loop. These types of statements are not written by the macro recorder. They are
ones that must be added manually. In this example, these variables establish
parameter values used by the subsequent IpProfLineMove and IpProfSave
commands.

7. This group of statements comprise a For...Next. In this case the loop performs 9
line profiles and stores each result to a disk file. The IpProfLineMove and
IpProfSave statements in this segment were initially recorded, and the variable
assignment statements and For...Next structure were manually written around
them.

8. The End Sub statement signals the end of the macro. An End Sub statement
must be the last statement in a macro. This line is automatically written when you
record a macro.

Creating An Auto-Pro macro

Page 1-7

Creating An Auto-Pro macro
There are two ways to create an Auto-Pro program:

 Record a macro and, if needed, edit the script file to incorporate the control
structures you want; or...

 Type the commands directly into a script file.

By far the easiest way to create your program is to record a macro, then, if needed, edit
the script file with the macro editor or a text editor of your choice. As you gain
experience with Auto-Pro and learn the function names, you may prefer to type the
statements yourself. There are, however, both obvious and subtle problems with doing
so: besides having to type all function names with no typing errors, there can also be
difficulties in the sequence of commands selected.

When a script file is interpreted (during playback), many Auto-Pro functions are
expected to occur in a prescribed sequence. If they do not, errors may occur. If you
can't resist a challenge, then you may certainly type the program in yourself.
However, most of you will probably want to edit a ready-made macro.

Whether you edit your script file or create it directly, you will want to play it back.
To do so, you may do one of the following:

♦ From the Macro menu, select the Macro Management command, use
the Change button to load the script (if your script is not the current
script file), select the macro name that you wish to run, and click the
Run button.

♦ From the Macro menu, find the name of the macro function that you
wish to run on the bottom of the menu, and click it to invoke the macro.

♦ If you assigned a shortcut key when you named the macro, you may
press the shortcut key without accessing the Macro menu, so long as
the currently loaded script file contains the particular macro that you
want to run.

 Your macro can also be played back from a Visual Basic program. To learn more
about doing this, see the Using Auto-Pro with Visual Basic section in this manual.

Image-Pro Plus

Page 1-8

Auto-Pro Functions
Auto-Pro functions can be readily recognized because all are prefixed with the
characters “Ip” — for example, the IpDocClose function closes the active image,
and the IpFltMedian function applies the Median filter.

In a macro, Auto-Pro functions are called using standard BASIC function syntax,
where the function name, and its parameters, are written as the source element of an
assignment statement, as shown in the example below.

ret = IpWsLoad("c:\ipwin\images\count.tif","TIF")

The destination element (the left half) of the assignment statement is a variable to
which the function writes its return value. This return value is always an integer. By
default, the variable name ret is used to store the return value when a macro is
recorded. However, you may use any variable, as long as it is one that will accept an
integer value.

In general, the return code indicates whether the function completed successfully or
not (a return code of zero indicates that no errors were detected). However, a
handful of functions attribute additional significance to the return code. When this is
the case, the return code's meaning is expressly described in the Auto-Pro Function
Reference later in this manual.

Auto-Pro Parameters
Most Auto-Pro functions require data, which is usually passed to the function via its
parameters. Parameter values are supplied, separated by commas, between parentheses
that follow the function name. In the examples below, two parameters are being given to
the IpWsLoad function: the file name, c:\images\count.tif, and the format
type, “TIF”. Four parameters are being passed to the IpPalSetPaletteColor
function: 55, 100, 0 and 0.

ret = IpWsLoad("c:\images\count.tif","TIF")

ret = IpPalSetPaletteColor(55,100,0,0)

Every function has its own specific parameter requirements in terms of the number
of parameters, the order of the parameters and the data it expects. These
requirements are completely described in the Auto-Pro Function Reference section
of this manual.

In the examples above, the parameters have been filled with actual data — the file
name is specified “literally” by the character string within the first set of double-

Creating An Auto-Pro macro

Page 1-9

quotes, and the numeric values are written right into the
IpPalSetPaletteColor statement. This is the way in which parameters are
written when a macro is recorded. However, parameter values can also be derived
via a variable name or expression, and there are many cases you may want to edit
your macro to do this. The examples below illustrate derived parameters:

Dim Firstfile As String
Dim Formattype As String
Firstfile = "SLIDE25.TIF"
Formattype = "TIF"
ret = IpWsLoad(Firstfile,Formattype)

Dim NINDEX As Integer
Dim NR As Integer
Dim NG As Integer
Dim NB As Integer
NINDEX = 128
NR = 65
NG = 170
NB = 80
ret = IpPalSetPaletteColor(NINDEX+1, NR+1, NG+1, NB+1)

In the first example, the file name and file type data are obtained from the contents of
the Firstfile and Formattype variables, respectively. In the second example the
parameter values are derived by adding 1 to the contents of each variable, NINDEX,
NR, NG and NB.

Note - before a variable can be used to pass parameter information to an Auto-Pro
function, it must be declared and assigned an initial value. Be sure you declare it as
the same data type as the parameter for which it will be used. Parameter data types
are specified in the “Auto-Pro Function Reference.” For more about variables and
expressions, see the “Variable, Constants and Data Types” section in this manual.

Auto-Pro Arrays & Defined Types
Some Auto-Pro functions require data in the form of a user-defined type or array.
For example, when a rectangular AOI is defined, it expects to find the coordinates
for the AOI in a structure passed to the function. In IPBasic, there are a number of
pre-defined variables and structures. Therefore, the values defining the AOI must be
defined before the AOI is created by the IpAoiCreateBox function. The
following macro will demonstrate one of these, an AOI structure called ipRect.

Sub Rect_AOI()
' <c><s>F2
'

Image-Pro Plus

Page 1-10

ipRect.left = 39
ipRect.top = 85
ipRect.right = 95
ipRect.bottom = 147
ret = IpAoiCreateBox(ipRect)
End Sub

If you create your macro via the Record Macro command, the appropriate data
structure/array statements will be written into the macro. If you plan to write a
macro from the bottom up, however, be aware that some functions will require this
kind of data initialization. If you do not use the predefined variables and structures
within IPBasic, you will need to declare those variable using a Dim statement. Be
sure to check the data and syntax requirements identified in the Auto-Pro Function
Reference, and write your macro accordingly.

Important - if you want your macro on playback to operate upon the same image or
AOI as which it was recorded, be sure to record the steps it takes to load the image
or create the AOI. If these steps are not explicitly included in your macro, the
procedure will be played back using whatever image or AOI is active at the time of
execution.

Template Mode
A particularly powerful feature in Auto-Pro is its “template mode.” Template mode lets
you selectively prompt the user for parameter information. Template mode is activated
with the IpTemplateMode function.

When enabled, template mode instructs Image-Pro to ignore the parameter values
supplied by the macro, and get the values from the user instead. The function's standard
dialog box is presented, along with a template mode message box.

In the following example, template mode is enabled (set to 1) to allow the user to select a
file, and is then disabled so that the remainder of the macro runs automatically.

Sub test()
' <c><s>F2
'
ret = IpTemplateMode(1)
ret = IpWsLoad("c:\ipwin\images\count.tif","TIF")
ret = IpTemplateMode(0)
ret = IpFltHiPass(3, 10, 1)
ret = IpWsOrient(OR_ROTATE90)
ret = IpWsScale(178, 162, 1)
End Sub

Creating An Auto-Pro macro

Page 1-11

Playback behavior during template mode is determined by the functions to which it
is applied. If a dialog box is associated with a function, it will be presented.
However, for operations that have no associated dialog (e.g., creating an AOI), only
the template-mode message box will appear.

The IpTemplateMode function statement can be edited into the script file, or it
can be automatically inserted while a macro is being recorded by enabling “Template
Mode” in the Recording message box.

Issuing A Message To The User
You may edit your macro so that it issues a message to the user when the macro is
played back. This is accomplished using the IpMacroStop function. This
function will interrupt the macro, and present a message box containing a message
that you specify. Macro execution will not continue until your user clicks a button in
the message box.

The IpMacroStop function can be used to issue message boxes in one of two
ways: Modal or Modeless. Modal message boxes are ones that “lock-out” Image-
Pro — i.e., the user cannot select an image or perform an Image-Pro operation while
the message box is open. Modal message boxes are useful for notifying the user of
events that do not require any action on their part. For example you might use the
following statement:

ret = IpMacroStop("Last Image Processed; Program Complete", 1)

at the end of a macro to inform the user that all images have been processed. You
might also use modal message boxes to alert your user to errors that force your
macro to terminate.

Note - modal message boxes can be outfitted with a variety of button combinations
such as “Yes”/“No”, “OK”/“Cancel” and so forth. Each button click returns a
different value, which can be tested and used by your program to transfer control to
the appropriate procedure (see IpMacroStop in the Auto-Pro Function Reference).

Modeless message boxes are ones that allow the user to access Image-Pro while the
message is displayed. You might use a Modeless message box to instruct the user to
select certain options, or open certain images. For example, you might issue the
following message

ret = IpMacroStop("Set Bright, Contrast, Gamma; Then Click Resume", 0)

Image-Pro Plus

Page 1-12

to instruct your user to perform a manual procedure, in this case setting the BCG
controls, before continuing with the macro. In many instances IpMacroStop can
be used instead of template mode to obtain input from the user. It has the added
benefit of being able to provide instructive information.

Obtaining Data From The User
Auto-Pro gives you a variety of ways to get input from your user. The
IpStGetFloat, IpStGetInt and IpStGetString functions can be used to
issue a dialog prompting for a floating-point number, an integer or a string of
character data, respectively. These functions pass the data entered by the user to a
variable that you assign in your program. These functions also let your program
know whether the dialog was closed with the OK or Cancel button, so that your
program can process the event appropriately. See the IpStGetFloat,
IpStGetInt and IpStGetString descriptions in the Auto-Pro Function
Reference for examples of this.

Working With Multiple Image Files
Quite often you may find that you need to apply a process to many files
automatically. Auto-Pro gives you several ways to do this using the following
special functions:

The IpStAutoName function lets you create file names by automatically assigning
to them, unique numeric digits. For example, you might automatically capture and
save 10 images, and use the IpStAutoName function to create names such as
IMG001, IMG002, IMG003...IMG010. This function is usually used in conjunction
with a loop, where the numeric digits are derived from the loop's counter. See the
IpStAutoName function description in the Auto-Pro Function Reference for an
example of how this is accomplished.

The IpStSearchDir function lets you automatically apply a process to all or
some of the files in a specified directory. It does this by letting you refer to a file by
its position within a directory, rather than by its file name. Written into a looping
procedure, it can be used to automatically process the contents of an entire directory.
The IpStSearchDir function description in the Auto-Pro Function Reference
shows you how this can be accomplished.

The IpStGetName function lets you prompt your user for a file name. This allows
you to build a loop that continues until your user chooses to end it. See
IpStGetName in the Auto-Pro Function Reference to see how this is done.

Creating An Auto-Pro macro

Page 1-13

These three functions are ones that must be edited into your macro manually — they
will not be generated by the macro recorder. And, to use them to full potential, they
must be implemented into some type of IPBasic looping structure. See the next
section for more about IPBasic and the looping mechanisms it provides.

Interactive Processes
Virtually all of the commands contained in Image-Pro can be automated in a macro.
The only exceptions involve functions that are, by their nature, interactive. The
following actions will not be recorded in a macro:

 Measurement actions taken with the Measurement command

 Selecting or acquiring images with the Scan command

 Manually splitting or combining counted objects

Although these interactive actions themselves cannot be programmed, many useful
supporting steps, such as opening dialog boxes and setting certain options, can be.
For example, the disposition of the Measurements window and the setting of
measurement options can be automated, as can the commands that load and save
measurement data. This lets you automate the front- and back-ends of an interactive
process.

Getting Data From An Image
Auto-Pro offers numerous ways to get data from an image. For example, the
IpProfGet function can be used to get information about a line profile, including
the number of points in the profile, it statistics (e.g., mean, minimum and maximum)
and the intensity values on the line. Most commands that create data (e.g.,
"Count/Size", "Histogram") have a similar "get" function that can be used to pass its
data to your program (e.g., IpBlbGet, IpHstGet). You can even use the
IpDocGet and IpDocGetArea functions to get information about an image (e.g.,
size and class) and its pixel values.

Functions that get data require that you create a variable into which the data can be
written. In the following example, the IpProfGet function is used to get the
number of points in a profile. Note that before the function is called, a variable
called profpts is declared. This variable is specified in the last parameter of the
IpProfGet statement.

Dim profpts As Integer
ret = IpProfGet(GETNUMPTS, 0, profpts)

Image-Pro Plus

Page 1-14

When using this type of function, it is very important that you carefully consult the
function description in your Auto-Pro Function Reference and define a variable of
the type it specifies — in some cases the variable will even be an array of a required
length (for more information about declaring and using variables, refer to Variables,
Constants and Data Types in the next section).

Data obtained with the “get data” functions can be printed to the Macro Output
Window using the IpOutput function . This lets you format the data in any
manner you choose, and then save it to the Clipboard or an ASCII file.

IPBasic
The Image-Pro BASIC (IPBasic) statements, can be used to set variables, evaluate
expressions and control the execution of the Auto-Pro functions. This set of
commands is styled after BASIC, a programming language familiar to many
programmers. If you are already conversant with BASIC, you will find the IPBasic
statements very easy to work with.

The syntax for the IPBasic statements is identical to the syntax for the comparable
statements in Visual Basic. Therefore, Auto-Pro macros can be ported, without
modification, directly into a Visual Basic program (see Using Auto-Pro with Visual
Basic for more information about integrating the two).

Statement Structure
An IPBasic statement is made up of variables, expressions, operators, and reserved
words. These elements are identified as those characters and symbols that occur
between blank spaces. That is, a space or a sequence of spaces is a delimiter for
these “word” elements (certain operators, such as Less Than (<), serve as a delimiter
even when not surrounded by spaces). The end of line also delimits these elements.

Note - key words in IPBasic are not case sensitive — for example, the keyword Dim,
could be entered as Dim, DIM or dim.

In general, IPBasic statements appear one per line; the end of the line terminates a
statement. You may choose, however, to put several short, related statements on the
same line. When you do, separate the statements with a colon (:).

Sometimes a statement that might appear on one line may also occur as a block
placed on multiple lines. Consider, for example, the statement

If A > B Then C = A Else C = B

IPBasic

Page 1-15

If the variable names were longer, the statement might overflow to the next line. In
that event, the multi-line If...Then...Else...End If statements would be
appropriate:

If X > Beta_Male Then
 Charlie = Alpha_Male
Else
 Charlie = Beta_Male
End If

A line may begin with a statement, such as If; an assignment variable, such as
CHARLIE; or a comment.

Using Comments
It is important to provide remarks, or comments, to explain your code. This helps
you recall at a later time what your code is expected to do. It also helps anyone else
reading the code to understand the steps involved. Auto-Pro offers two ways of
inserting comments into your code: the Rem statement and the apostrophe ('). These
are some examples of their use:

Rem This is a comment. The interpreter ignores the whole line.

Rem Dim A As String 'You can use a Rem statement to disable code

Dim A As String : Rem A Rem on the same line as code needs a colon

' An apostrophe can also introduce a comment on a line by itself.

Dim A As String 'A comment after an apostrophe does not need a colon

Subroutines and Functions
Other than variable declaration statements, which should appear at the top of your
script file, and comments, which may appear anywhere, all other code in your script
file must be contained within a subroutine or function procedure. Most of your
procedures will be macros you have recorded, which will appear as IPBasic
subroutines in your script file. However, your file may also include subroutines and
functions that you have defined.

Note - a procedure defined as a subroutine can either be invoked as a macro or
called from another Auto-Pro procedure. A function, however, can only be called
from within an Auto-Pro procedure.

The following script file contains two subroutines and one macro function.

Image-Pro Plus

Page 1-16

Sub VIDENH()
'F3
'
ret = IpWsLoad("c:\ipwin\images\bankvid.tif","TIF")
ret = IpFltSharpen(5, 10, 2)
ret = IpWsScale(753, 462, 1)
End Sub

__

Macro
VIDENH

Sub DNATEST()
'<c><s>F6
'
dim x1 As Integer, x2 As Integer
dim i As Integer, j As Integer
ret = IpProfCreate()
ret = IpProfSetAttr(LINETYPE, THICKVERT)
x1 = 96
x2 = 110
j = 0 ' Save to file the first time; then append
for i = 1 to 9
 ret = IpProfLineMove(x1, 0, x2, 290)
 ret = IpProfSave("C:\IPWIN\PROFILE.HST", j)
 x1 = x1 + 41
 x2 = x2 + 41
 j = 1
next i
ret = IpProfSelect(0)
ret = IpProfDestroy()
End Sub

__

Macro
DNATEST

Function Power (BaseA as integer, Exponent as
Integer)As Long

'calculate base to the exponent power
dim X as Integer
Power = 1
For X = 0 to exponent
Power = Power X Base
Next X
End Function

__

Function
Power

The body of a subroutine is encompassed by the Sub...End Sub statements; the
body of a function is encompassed by a set of Function...End Function
statements. The main difference between a subroutine and a function procedure is
that a function returns a value. This difference affects the way in which they are
called by other procedures.

A subroutine is called by another procedure using the Call statement. For example:
Call DNATEST () 'From previous example page

A function is called using an assignment statement, or by including its name in an
expression. For example:
Result = Power (3,5) 'Calculates 3 in Result, from previous page

IPBasic

Page 1-17

Variables, Constants, Data Types
Variables and constants are used to provide data to a macro. A variable is a
symbolic construct that contains a value. Variables are identified by name. When a
macro references a variable name, the current value of the variable is used by the
macro. The value in a variable typically changes during the course of the macro,
hence its name.

Variable Names
Each variable must have a name. Like all programming languages, IPBasic has
certain naming conventions. These are as follows:

 The first character of the variable name must be a letter (A through Z or a through
z).

 The remaining character(s) may be any combination of letters (A through Z or a
through z), numbers (0 through 9), or underscores (_).

 The variable name must not be an Auto-Pro or IPBasic reserved word. Reserved
words include Auto-Pro function names and IPBasic keywords. A list of reserved
words appears in Appendix B - Auto-Pro Keywords.

 Variable names in IPBasic are not case-sensitive (for example, a variable name of
“VName” and a variable name of “vname” will be treated as the same variable).

Variable Types
Because variables represent many different kinds of information (numbers and
names, for example), a macro needs to know what kind of data to expect in order to
allocate sufficient storage and use the right routines to manipulate it. Please refer to
the data type descriptions in the on-line Help (language reference) for more
information.

Scope Of A Variable
Variables declared within a subroutine or function are local to that procedure. That
is, any variable declared within Sub VIDENH, although it may have the same name
as a variable in Sub FPRINT, will be treated as a different variable. If you want
both procedures to share a variable, it must be declared at the beginning of the script
file, preceding any Sub statements, i.e. in Global scope.

Image-Pro Plus

Page 1-18

All variables, regardless of how they are declared, are local to a script file. That is,
when a new script file is loaded, the variables associated with the previous script file
are released.

Note that variables declared in subroutines and functions “hide” variables with the
same names in the global scope.

Declaring Variables
Before a variable can be referenced in a macro, it must be explicitly declared, within
the script file in which it is referenced, using the Dim, Static,Redim, or
Global statements.

Variable declaration is done to inform IPBasic of the variable's name, type, size, and
number of dimensions. A variable must be declared before it is used. For that
reason, and for ready reference to the variables in a procedure, variable declaration
statements should be the first thing to appear in a subroutine or function procedure.
Declaration statements for variables that are global, should be the first thing to
appear in the script file.

To declare a variable, you may use either the Dim,ReDim, or Static statement.
For example:

Dim A As String 'Declare a string variable named A

Dim A25 As String *25 'Declare a 25-character string

ReDim B(100) As Single 'Declare a static, array variable

The Dim statement causes the allocation of storage for the variable each time the
procedure is entered; it is de-allocated upon exiting the procedure. The value of the
variable is not available outside the procedure, nor is it preserved for successive calls
to the procedure (including recursive calls).

The Static statement causes the allocation of storage for the variable once; it is
de-allocated upon termination of the program. The value of the variable is not
available outside the procedure but retains its value during successive calls to the
procedure.

To declare a global variable for the script file, use the Global statement, or place
the Dim or Static statements at the top of the file, before any subroutine or
function definitions.

IPBasic

Page 1-19

Every variable declaration statement must define the type of data for which it will be
used, where the type must be String, Integer, Long, or Single (see type definitions
under Variable Types). For example:

Global Xnum As Integer 'Declares Global integer

Dim ImgName As String 'Declares a string variable

Static ImLg As Long 'Declares a long static variable

Passing An Array To Auto-Pro
When you record an Auto-Pro macro, functions that take an array are recorded with
both the name of the array and the subscript of its first element. Referencing the first
element of the array ensures that the array header, which Basic automatically
attaches to every array it generates, is not passed as data to the Auto-Pro function.
Auto-Pro functions use "C" arrays that do not have that header.

If you should choose to type Auto-Pro functions into your Basic program, rather than
recording them in and copying them from Image-Pro, be sure that you reference all
arrays that you pass to Auto-Pro, in this way. The following example shows how an
array called myPts must be passed to the IpAoiCreateIrregular function:

 ret = IpAoiCreateIrregular(myPts(0), Numpoints%)

By specifying myPts's first element (0), you force Visual Basic to skip its header,
and pass the address of the first piece of data to Auto-Pro.

Constants
A constant is a particular kind of variable, whose value is assigned only once during
the program and not changed thereafter. The advantage to using a constant is that
IPBasic will not allow a change to its value; hence, any attempt to modify the
variable will be flagged as an error.

The name of a constant follows the same rules as any variable; by convention, a
constant is usually typed in uppercase characters, to mark it as a constant. To
declare a constant, use the Const statement:

Image-Pro Plus

Page 1-20

Const TRUE = -1 'Assigns constant value of -1 to TRUE

Const FALSE = 0 'Assigns constant value of 0 to FALSE

Const PI = 3.14159265 'Declares constant to save typing

Const EMPLOYEES = 10 'Sets employee population

User-defined Types
IPBasic allows you to define a data type, comprised of one or more variables, which
are often of different types. This structure is often used to hold and operate upon
record-like data that contains several fields of information. The Type statement
introduces the definition of your record structure, and the End Type statement
concludes it.

Type RECT
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
End Type

A variable of this type can then be declared:

Dim ipRect As RECT

and its elements individually referenced by using variable.elementname notation,
as shown below:

ipRect.left = 53
ipRect.right = 102
ipRect.top = 111
ipRect.bottom = 162

The type that you define is global. The variables that you declare using the type may
be global or local.

Expressions
An expression is some valid combination of operators and operands. An operator is
a symbol that tells IPBasic what action you want performed on the operand(s), such
as adding two numbers or testing two expressions for equality.

In IPBasic, operators fall into four classes:

 Assignment,

 Arithmetic,

IPBasic

Page 1-21

 Relational, and

 Logical.

The Assignment Operator
The Assignment Operator is used to change an operand's value. It can be used to
change the value of a variable. The IPBasic Assignment Operator is the Equal Sign
(=). In the statement X= 7, the value of X is to be assigned (set to) the value of 7
(you cannot say 7 = X however). If X has the value 214 before this statement is
executed, the value 214 will be lost, or overwritten, with the value 7.

The Arithmetic Operators
An Arithmetic Operator tells IPBasic to perform a mathematical function on numeric
operand(s). The following Arithmetic Operators are supported. In the examples,
assume that A is type Integer, B is type Single, S is type String, and that the
examples are executed sequentially.

ARITHMETIC OPERATORS

USE THIS TO PERFORM THIS EXAMPLE RESULT

^ (Caret) Exponentiation A = 3^4 81

- (Minus) Negation A = -A -81

* (Asterisk) Multiplication A = 3 * A -243

/ (Slash) Division B = 9. / 2. 4.5

\ (Backslash) Integer Division A = 9\2 4

Mod Modulo Arithmetic A = 9 Mod 2 1

+ (Plus) Addition A = A + 3 4

- (Minus) Subtraction A = A - 6 -2

& (Ampersand) String Concatenation S = "C" & "D" "CD"

Note - the table is ordered from the highest precedence (Exponentiation) to the
lowest (Addition and Subtraction). Operators on the same level are separated by a
thin line; a thicker line separates operators on different levels

Image-Pro Plus

Page 1-22

The minus sign (-) is used for both Negation and Subtraction. When it immediately
precedes a single operand, it signals Negation and will change the sign of that
number. When it separates two operands, it implies Subtraction.

The Division Operator (/) produces a floating-point result. Use the Integer Division
Operator (\) for an integer result. For example, 5.0 / 2.0 (division) yields 2.5, while
5 \ 2 (integer division) yields 2. Before integer division, operands are rounded to
Integer or Long expressions. Any fractional portion of the result of an integer
division is truncated.

Modulo Arithmetic is used to obtain the remainder from a division operation. For
example, when 5 is divided by 2, there is a remainder of 1. The operation, 5 Mod 2,
will produce that remainder.

Most Common Relational Operators
A Relational Operator causes two expressions to be compared, to determine their
relationship to each other. A true relational operation has a resulting value of -1.
False relational operations have a value of zero. IPBasic defines the true and false
constants for use in relational operations.

The following relational operators are supported by IPBasic. In the table below,
assume that A = 3, B = 4, and C = 4.

RELATIONAL OPERATORS

USE THIS TO TEST FOR THIS EXAMPLE RESULT

= Equality A = B 0

<> Nonequality A <> B -1

> Greater than A > B 0

< Less than A < B -1

>= Greater than or equal to B >= C -1

<= Less than or equal to A <= C -1

Note - all Relational Operators have the same precedence (i.e., they are evaluated as
they occur from left to right).

The relational operators can be used upon string values as well as numeric values. The
relationship of a string is determined by it ANSI character value. Therefore, the string
"J" is not equal to the string "j". Refer to Appendix C - ANSI Characters.

IPBasic

Page 1-23

Most Common Logical Operators
A Logical Operator tells IPBasic to operate on each bit in the operand(s) in a prescribed
way. For this reason, it is sometimes called a Bitwise Operator.

 Not (Logical Negation) changes every bit in its one operand to the opposite
value (0 to 1, 1 to 0). All the other Logical Operators require two operands.

 And returns a 1 bit where both operands have a 1 bit, and a 0 otherwise.

 Or (Inclusive Or) returns a 0 bit where both operands have a 0 bit, and a 1
otherwise.

 Xor (Exclusive Or) returns a 0 bit where both operands have the same bit
(both 0s or both 1s), and a 1 bit otherwise.

 Eqv (Logical Equivalence) returns a 1 bit where both operands have the
same bit (both 0s or both 1s), and a 0 bit otherwise.

 Imp (Implication) first examines the first operand: where that operand has a
0 bit, it returns a 1; where that operand has a 1 bit, it returns whatever bit the
second operand contains.

The following table illustrates bitwise operations. It assumes the following values
for each variable:

ByteA = 00001111

ByteB = 00111100

Image-Pro Plus

Page 1-24

LOGICAL OPERATORS

USE THIS FOR THIS EXAMPLE RESULT

Not Logical negation Not ByteA 11110000

And Logical and ByteA And ByteB 00001100

Or Inclusive or ByteA Or ByteB 00111111

Xor Exclusive or ByteA Xor ByteB 00110011

Eqv Logical equivalence ByteA Eqv ByteB 11001100

Imp Implication ByteA Imp ByteB 11111100

Note - the table is ordered from highest precedence (Not) to lowest precedence
(Imp).

The Not, And, Or, and Xor operators can be used for getting resutls from multiple
Boolean relational operations. For example:
(A=B) AND (A<>B) is False
(A>B) or (A<=B) is True.

Precedence Of Operators
The order in which values appear in an expression (i.e. from left to right) determines
one way in which IPBasic orders evaluation of operators. For example, in the
expression “A + B - C,” IPBasic begins at the left, adds B to A, then subtracts C
from the result.

There is another factor, however, in determining the order in which IPBasic
performs operations. In the expression “A + B * C,” IPBasic first multiplies B and
C, then adds the result to A. This is because Multiplication and Division have a
higher precedence than Addition and Subtraction.

To change this natural order of precedence, you use parentheses to group the items
you want acted upon first. If, in the example above, you wanted A and B added,
before multiplication by C, your expression would be “(A + B) * C.”

In the table of Arithmetic Operators given earlier in this document, the order shown
is from the highest precedence (Exponentiation) to the lowest (Addition and
Subtraction). Operators on the same level are separated by a thin line; a thicker line
separates operators on different levels.

IPBasic

Page 1-25

All Relational Operators have the same precedence (i.e., they are evaluated as they
occur from left to right), and are at a lower precedence than Arithmetic Operators.

The Logical Operator's order of precedence is that shown in the table of logical
operators earlier in this section. Logical operations are lower in precedence than
Relational operations.

Flow Control
When a macro is recorded, your actions are written as a long series of instructions.
Unaltered, this series of instructions must always follow the same sequence. If you
want to change the sequence, to branch to another location, for instance, if a certain
condition is met, or to loop through the same steps a certain number of times, you
need to modify the flow of control. IPBasic provides several statements that let you
do this.

Loops
A loop is a portion of program code (a sequence of instructions) that is repeated a
certain number of times or while a specified condition is true or false. It usually
implies that some condition or counter is tested, either before or after the command
sequence is executed.

If the loop is tested before executing the command sequence, then the command
sequence may not be executed at all. If the loop is tested after executing the
command sequence, then the command sequence will be executed at least once.

Counting Iterations vs. Testing A Condition
When a loop is iterated for a set number of times, you specify a counter, the start
amount for the counter, the stop amount for the counter, and the amount to increment
(or decrement) the counter. All of these arguments are numeric.

When a terminal condition is used to determine when to stop execution of the loop,
that condition is an expression that evaluates to either zero (False) or nonzero (True).
This is known as a Boolean expression.

Image-Pro Plus

Page 1-26

Most Common IPBasic Loop Structures
IPBasic provides the following types of loop structures:

 For...Next, which allows you to repeat a sequence of commands a
predetermined number of times

 Do...Loop Until and Do Until...Loop, which allow you to repeat the
code until a specified condition is reached,

 Do...Loop While, Do While...Loop, and While...Wend, which allow
you to repeat the code while a specified condition holds

Most of these statements allow you to exit prematurely from the loop and return
control back to the calling program (on an error condition, for example).

The structures that IPBasic provides for looping each have their own features. To
determine which one is most appropriate for the task at hand, consider the following
table:

LOOP
STRUCTURE

END OF LOOP
DETERMINED
BY...

TESTED PERFORMED IF
CONDITION IS

EARLY EXIT
AVAILABLE?

For...Next Counter After loop In bounds Yes
Do...Loop — — — Yes
Do Until...-
Loop

Boolean
expression

Before loop False Yes

Do...Loop
Until

Boolean
expression

After loop False Yes

Do...Loop
While

Boolean
expression

After loop True Yes

Do
While...Loop

Boolean
expression

Before loop True Yes

While...Wend Boolean
expression

Before loop True No

IPBasic

Page 1-27

For...Next Statements
Use the For and Next statements to repeat a command sequence a given number of
times. The following example shows how a For...Next loop could be used to
obtain and save data from 9 line profiles in an image. The following sequence
would accomplish this:

for i = 1 to 9
 ret = IpProfLineMove(x1, 0, x2, 290)
 ret = IpProfSave("C:\IPWIN\PROFILE.HST", 0)
 x1 = x1 + 40
 x2 = x2 + 40
next i

Do...Loop Statements
Use the Do...Loop statements when you want a command sequence to repeat
while or until a certain condition is met. If you wanted to open the four images listed
at the bottom of the File menu, you might use the following sequence:

A = 1
Do
 Call IpWsLoadNumber (A)
 A = A + 1
Loop While A < 5

Typically, you want to avoid an infinite loop (a loop in which the code is repeated
endlessly, with no condition ever succeeding in terminating the loop). There are a
few instances, however, when it is desirable to set up the outer loop structure as an
endless loop, with an exit condition that is met while executing the body of the loop.
For this instance, you may use the Do...Loop statements with no While or
Until clause.

While...Wend Statements
You may use the While and Wend statements when you want a command sequence
to repeat as long as a condition is met. These statements are equivalent to the
Do While...Loop statements, which we recommend that you use. The
While...Wend statements do not allow you to exit the loop prematurely. The
following example of a While…Wend loop rewrites the previous example:

A = 1
While A < 5
 Call IpWsLoadNumber(A)
 A = A + 1
Wend

Image-Pro Plus

Page 1-28

Nested Loops
Loops may be nested (one loop placed totally inside another loop) to any level, in
order to achieve the command sequence you want. You need to be sure that each
inner loop is completely contained within its surrounding loop(s). A visual aid in
doing this, and in making the code more readable, is to indent the body of an inner
loop and correlate the counter of the Next statement with that of the For statement,
as the following example shows:

Dim I As Integer
Dim J As Integer
For I = 1 To 10
 For J = 1 To 10
 ...
 Next J
Next I

Note that it would be incorrect in this example for Next I to precede Next J. It
is possible, however, to use the Next statement without the J or I. It is also
permitted to use a single Next statement for both counters, as follows:

Dim I As Integer
Dim J As Integer
For I = 1 To 10
 For J = 1 To 10
 ...
Next J, I

Note that whether you use one Next statement or several, the order in which you
place the counter names must be inverse to the order in which they were introduced
by the For statements.

Branching
When you want to change the order in which commands are executed, use one of the
branching statements that IPBasic provides. These include the following:

 If...Then...Else

 If...Then...ElseIf...End If

 On…Error…GoTo

 GoTo

Errors

Page 1-29

Decision Structures
When the value of some condition determines whether or not you want to branch to
another location, use a decision structure. In IPBasic, these include:

 If...Then...Else

 If...Then...ElseIf...End If

 On...Error…GoTo

Use either If...Then...Else or If...Then...ElseIf...End If to
test a condition or sequence of conditions, with differing responses according to the
value of the conditional expression.

The If...Then...Else statement is a one-line construct: if the statement
cannot be completed on a single line, use If...Then...ElseIf...End If.
The latter is a multi-line construct that allows you to embed any number of Else
conditions. The Else and ElseIf conditions are optional. The End If
statement is required to mark the end of the multi-line statement; it must not be used
with the single-line statement.

Unconditional Branching
When you want to transfer control to another location regardless of the condition,
use the GoTo statement.

Errors
When a statement contains an error in syntax, IPBasic will tell you that an error has
occurred, the line number nearest where the problem was identified, and an error
message describing the general type of error.

Run-Time Errors
Many operations macy cause errors that can only be detected when the macro runs,
such as an attempt to open a non-existant file, or writing to a file on a full disk. The
following statements ca be used to specify how to handle run-time errors:

 On…Error…GoTo
 On…Error…Resume…Next

Image-Pro Plus

Page 1-30

On…Error…Resume…Next can be used to specify a line label indicating where to
continue after an error occurs. On…Error…GoTo restores the default handling
(which terminates the macro if an error is encountered). n…Error…Resume…Next
can also be used to cause any error to be ignored.

Version 4.0
IPBASIC 4.0 comes with a new and improved editor/debugger. A few of the
improvements are listed below. For more details, please refer to the to the IPBasic
online help.

♦ You can keep the editor open at all time. There is no need to close it after
editing. You can run a macro with the editor open or closed.

♦ As in Visual Basic, the editor has a Run button which loads and parses the
script file. Any Basic error will be reported at that time. If parsing is successful,
the Run button will gray out and the Stop button will be active. You have to
press the Stop button in order to edit the script file or close the editor. If you
start editing the script file before you press Stop, the program will ask you
whether you want to stop and edit. Macros must still be run from the Macro
menu in Image-Pro however.

♦ You can set break points for debugging purposes, or as in the previous version,
you can execute the macro step by step.

♦ IPBASIC 4.0 looks for all the Auto-Pro functions and constants declarations in
IPC32.BAS (That same file can be included in any Visual Basic project in order
to run macros from that environment). More generally, any function declaration
or implementation found in any .BAS file located in the BAS sub-directory, will
be read-in by IPBASIC at start-up, and available during script execution. You
could for instance reduce the size and complexity of your script files by moving
commonly used functions to one or more .BAS files. These functions would
then be available from any active script file. IPUTIL32.BAS, which is installed
by the program, is an example of such file.

♦ The new editor features a References dialog which lists all the OLE
Automation Servers available in the system (See Edit:References in the Image-
Pro Plus Reference Guide). These servers can be used to communicate, send or
query data, to an from other applications. Excel, Word, Access can all be
controlled via their OLE Automation Server. For more information, see the
section on GetObject/CreateObject in the IPBASIC Language online help
file.

Compatibility Issues

Page 1-31

Compatibility Issues
In order to make IPBASIC 4.0 fully compatible with Visual Basic, a few non-
standard IPBASIC formats had to be abandoned:

♦ No function, subroutine, or variable name starting with an underscore (_) is
allowed.

Print
The print statement is now used to print text or numerical values to file. In order
to print to the Output window, you must now call Debug.print or IpOutput.
Debug.print will print text both on the Output window and on the Immediate
window of the macro editor. You can also replace print with iprint.
iprint eventually calls IpOutput and is found in IPUTIL32.BAS.

Note that Debug.Print and iprint do not support the comma character used to
insert a tab between string expressions:

print "hello", "world"

Must be written as:

Debug.print "hello" + chr$(9) + "world"

RTrim$
This functions takes out all trailing spaces. This is useful when concatenating several
fixed length strings into one. For example:

' This worked in IPP 3.0 but not in IPP 4.0 and/or VB.
Sub BuildFileName()
 dim mypath as string * 256
 dim myname as string * 32

 ret = IpStGetString("Enter path(ex:c:\IPWIN\)",
 mypath, 255)
 ret = IpStGetString("Enter filename", myname, 31)
 ret = IpWsLoad(RTrim$(mypath) + RTrim$(myname), "TIF")
End Sub

Image-Pro Plus

Page 1-32

Auto-Pro functions such as IpStGetString take fixed length strings and fill them
with characters ending with a zero (so that C calling programs will work). In IPP 3.0,
RTrim used to remove trailing spaces AND zeros. The new version removes spaces
only, leaving a zero at the end which causes the concatenation to fail. Now you can
use IpTrim instead of RTrim$:

ret = IpWsLoad(IpTrim(mypath) + IpTrim(myname), "TIF")

IpTrim is defined in IPUTILS.BAS as:

Function IpTrim(ByVal mystring As String) As String
 iptrim = RTrim$(Replace(mystring, Chr$(0), " "))
End Function

Str$
This is another concatenation issue. Str$ returns the string representation of a value
(e.g. Str$(123) returns "123"). In VB and in IPP 4.0, positive values result in
strings starting with a space character (where the minus sign would be if it were a
negative value). In IPP 3.0, the space was removed. This example demonstrates the
problem:

' This worked in IPP 3.0 but not in IPP 4.0 or VB
Sub BuildFileName2()
 dim mysuffix as integer

 ret = IpStGetInt("Enter a number", mysuffix, 0, 0, 999)
 ret = IpWsLoad("images\file" + Str$(mysuffix) +
 ".tif", "TIF")
End Sub

In IPP 5.0 or VB you can use instead Format$() or LTrim$(Str$(...)).
Format$, which was not available in IPP 3.0, offers a wide array of date and
number formatting capabilities.

 ret = IpWsLoad("images\file" + Format(mysuffix) +
 ".tif", "TIF")

Compatibility Issues

Page 1-33

IpDocGet, IpAppGet

IPBASIC 3.0 was more forgiving when it came to variable type checking. It allowed
in particular passing strings and arrays to Image-Pro via a same argument defined
As Any in the function declaration. For instance IpDocGet is defined as
IpDocGet...(ByVal sCmd%, ByVal sParam%, lpParam as Any)...
and could be called to get numeric data or text, both types being returned in
lpParam. With IPBasic 4.0, text information must be queried via IpDocGetStr,
which is an “alias” of IpDocGet, and defined as ..(ByVal sCmd%, ByVal
sParam%, ByVal sText$)... While numerical data is still queried via
IpDocGet. Other affected functions are listed below:

IpDocGet IpDocGetStr
IpAppGet IpAppGetStr
IpBlbGet IpBlbGetStr
IpMeasGet IpMeasGetStr
IpIniFile IpIniFileStr

Dim
IPBasic 4.0 conforms to VB when it come to dimensioning variables. The following
statement may generate incorrect results if a and b must be integers:

Dim a, b, c as integer

Where in fact it simply says that c is an integer while a and b are variants. To declare
a and b as integer as well, the statement should read:

Dim a as integer, b as integer, c as integer

Or in a more compact way:

Dim a%, b%, c%

Use ReDim to dimension an array:

ReDim a(10) as integer
Will dimension an array of 11 integers starting at index number 0.

Image-Pro Plus

Page 1-34

Note that:

Dim a$ as string

is redundant, and will generate an error message. Correct declarations are:

Dim a$
or

Dim a as string

Option Explicit
This line is added automatically at the beginning of every script file. It tells IPBasic
to display an error message when undeclared variables are encountered. Without
Option explicit, IPBasic and Visual Basic will assign a type automatically to
such variables. That type will depend on the context under which they are
encountered. This may however hide mistyped variable names, which can in turn
cause the macro not to behave correctly. Therefore it is much safer to force variable
declaration.

Image Updates
Versions 3.0 and 4.0/4.5 of IPBasic differ in the way they refresh image display
during the execution of a macro. In version 3.0, image display was refreshed when
the macro stopped for a message, or when it ended. In version 4.0/4.5, image display
is refreshed after any instruction that changes the image contents. In this respect,
macros run from IPBasic 4.04.5 behave in the way that those run from Visual Basic.
Albeit marginal, some speed improvements can be gained by not refreshing image
display too often, new instructions were added to prevent image display during
macro execution. These instructions can be inserted at any time during macro
recording (See Macro:Insert in the Image-Pro Plus Reference Guide. Also see
IpAppUpdate(DOCSEL_NONE) and IpAppUpdate(DOCSEL_ALL) later in
this manual).

Using Auto-Pro with Visual Basic

Page 1-35

Using Auto-Pro with Visual Basic
You can also include Auto-Pro functions in a Visual Basic™ program. Visual Basic is a
complete software development environment from Microsoft™ that lets you create
Windows™ applications quickly and easily. The ability to include Auto-Pro commands
in a Visual Basic program allows you to create customized versions of Image-Pro — you
can create a tailored user-interface, provide support for a unique external device, or add
custom operations, for example. You might also decide to use Visual Basic if your
macro application requires custom dialog boxes, or requires a function that is not
provided by Image-Pro's IPBasic statements.

Calling an Auto-Pro function from your Visual Basic program involves the following
basic steps:

1. If you will be making API calls to an online database, serial port connection, or
similar feature, you must include the WIN32API.TXT file, which is supplied with
Visual Basic. This file is usually found in the VB subdirectory called WINAPI.

If you include the file WIN32API.TXT, it will need to be modified because it is
too large to include in a VB executable program. Only the declarations necessary
to perform the specific API calls need to be added (copy and pasted from
WIN32API.TXT) and the new module will need to be renamed (not
WIN32API.TXT).

2. The IPC32.BAS file must be included in your project. This file is located in
the BAS subdirectory of the folder where Image-Pro Plus is installed. This file
must be copied to your hard drive and added to the file list in your program's
project window (use the Add File command on the Visual Basic Project menu).

3. The IPUTIL32.BAS file in the BAS subdirectory must be included in
your project for backward compatiblity. It allows you to run some fuctions from
earlier versions of Auto-Pro.

 4. An Auto-Pro function must be invoked as a function in your program,
just like an Auto-Pro script file. As such, it must be formatted as the source
element (right half) of an assignment statement. The destination element (left
half) of this statement must be a variable to which the Auto-Pro command can
write its return value. The following statement would cause your Visual Basic
program to perform an exponential histogram equalization on the active image:

 ret = IpHstEqualize(EQ_EXPONENTIAL)

Image-Pro Plus

Page 1-36

The variable name ret has been used above, and is the name used when a macro
is recorded in Image-Pro. However, the name of this variable is really up to you,
as long as it is a type that will accommodate an integer value (for concise code you
might want to assign it a name that includes the “%” integer-type declaration
character rather than defining it as a Variant data type, or explicitly declare it as an
Integer).

Note - most Auto-Pro functions return a zero when the function executes
successfully. However, some functions returning other meaningful values such as
Document or Button IDs. You will need to consult the “AutoPro Function
Reference” for the specific values returned by each function (if there is no return
value listed for a function, it is one that returns a 0 upon success).

You may type the Auto-Pro functions into your program yourself, or you may cut-
and-paste the commands directly from a macro that you have already recorded
(you can use the Copy to Clipboard button in the Macro command to accomplish
this). As discussed earlier in this manual, recording, rather than typing, is the
recommended way to generate a stream of Auto-Pro functions to insure they are
typed without error and are properly sequenced.

The following example illustrates a Visual Basic procedure that includes several
Auto-Pro functions (bolded). This procedure 1) loads an image file, 2) performs a
histogram equalization, 3) applies the results to the image bitmap, then 4) sharpens
and 5) enlarges the image.

Using Auto-Pro with Visual Basic

Page 1-37

Sub Command3 Click()

If check1.Value = 0 Then

Msgbox "Load the Image Now"

End If

If check1.Value = 0 Then

Msgbox "Histogram Equalization"

End If

If check1.Value = 0 Then

Msgbox "Apply LUT"

End If

If check1.Value = 0 Then

Msgbox "Sharpen the Image"

End If

If check1.Value = 0 Then

Msgbox "Resize the Image"

End If

If check1.Value = 0 Then

Msgbox "How About That?"

End If

WinRet% = IpWsLoad("c:\ipwin\images\bankvid.tif", "T

WinRet% = IpHstEqualize(EQ_EXPONENTIAL)

WinRet% = IpLutApply()

WinRet% = IpFltSharpen(3, 10, 2)

WinRet% = IpWsScale(753, 462, 1)

End Sub

1.

2.

3.

4.

5.

 If you intend from the outset to create a Visual Basic program, you will probably
want to import just the Auto-Pro functions from your macro, and write the rest of
your program in Visual Basic. However, if you have already created a macro with
Auto-Pro, that includes IPBasic statements, the entire macro can be ported directly
into Visual Basic.

Image-Pro Plus

Page 1-38

 5. Image-Pro must be running when the Auto-Pro commands in the
Visual Basic program are executed. You can include steps in your program
to load Image-Pro. The following sample code shows you how to use the
Windows API WinExec function to do this. This procedure could be assigned to
a control button in your application.

Sub Command1_Click ()
 WinRet% = WinExec("c:\IPWIN\IPWIN2.exe", SW_SHOWNORMAL)
 MsgBox "Ready to go."
End Sub

 This particular example loads Image-Pro in its “normal” window size
(SW_SHOWNORMAL is set). However, you could also load Image-Pro in a
minimized state (set SW_SHOWMINIMIZED) if you wanted only your custom user-
interface to show. Bear in mind that if Image-Pro is minimized, the image upon
which it is operating will not be visible to the user.
Also, consider using the Windows API function SetWindowPos to keep your
application's window on top, even when it is not the active window. Otherwise,
Image-Pro's window will be activated, and may obscure your window, when its
Auto-Pro functions are called. The example below shows how this is done. This
procedure might be the first one called in your program.

Sub Form_Activate ()
' Call the WINAPI subroutine to set window to topmost on
desktop.
' This is a Windows feature.
Call
SetWindowPos(Form1.hWnd,HWND_TOPMOST,0,0,0,0,SWP_NOMOVE+SWP_NO
SIZE)
End Sub

You can also use this routine to keep the window visible. This code should be run at
least once during the VB.exe startup:

Sub Form_Activate ()
 ...
 ' Call the WINAPI routine to set the VB exe window
topmost,
 ' preventing it from going behind IPP. This is an old
Win3.1 feature
 Call SetWindowPos(Form1.hWnd, HWND_TOPMOST, 0, 0, 0, 0,
SWP_NOMOVE+SWP_NOSIZE)
 ...
End Sub

 Image-Pro can also be run from his executable, such as this button handler:
 Sub Command1_Click ()
 WinRet% = WinExec("c:\ipwin\ipwin32.exe", SW_SHOWNORMAL)
End Sub

 Function Syntax

Page 2-1

Section 2 - Auto-Pro Function Reference

Function Syntax
The diagram below describes the notation used in this reference.

IpCalSetOptDens
 Syntax IpICalSetOptDens(BlackLevel, IncidentLevel)

Description This function establishes the Black level and Incident level to be applied to the optical density
curve. Equivalent to completing the Optical Density Calibration dialog box.

Parameters BlackLevel Single A number (of IPBasic type, Single) specifying the value
representing the pixel intensity of totally opaque
material.

 IncidentLevel Single A number (of IPBasic type, Single) specifying the value
representing the pixel intensity of totally transparent
material.

Example ret = IpICalSetOptDens(23.0, 179.5)
This statement will set the Black level to 23.0 and the Incident level to 179.5.

Comments
Call IpICalShowFormat to set the calibration curve to OD.

See Also IpICalShowFormat

 This line identifies the function name. Functions are listed in alphabetic order by this

name.

 This line contains the function syntax consisting of the following two components:

COMPONENT EXAMPLE EXPLANATION

FunctionName IpICalSetOptDens The name of the function as it
must appear in the statement.

Parameters BlackLevel Data that must be given to the
function.

(IpCalSetOptDens

Page 2-2

 This block describes the function's use. This block will also document the equivalent
Image-Pro command. This lets you know the action that is required to record the
described function. This also informs you of the command/dialog box to which you can
refer in your Image-Pro Reference Manual for additional information about it.

 Note - Auto-Pro functions for which there are no Image-Pro equivalent actions, will be
so noted.

 This block explains the parameters, as follows:

COMPONENT EXAMPLE DESCRIPTION

Parameter Name BlackLevel This is the parameter name, as
given in the function syntax.

Parameter Type Integer This block documents the data
type of the parameter. as it is
defined in IPBasic.

Description The value used to
represent the
transmission of no
light.

This block describes the
parameter's purpose and its
possible values.

 This block provides an example of the function as it would be written in an Auto-Pro
macro.

 This block provides additional information about the function.

 This block suggests other functions that are relevant to the one described.

Note - many Auto-Pro functions take an “enumerated integer” as a parameter value. An
enumerated integer is an integer that is represented by a symbolic name. For example, the
measurement names, BLBM_AREA, BLBM_ASPECT, and BLBM_BOX_AREA, actually represent
the integer values, 0, 1 and 2, respectively. You generally do not need to concern yourself
with these values except in the rare instance where you want to operate upon it logically or
arithmetically..

 IpAcqAverage

Page 2-3

IpAcqAverage
Syntax IpAcqAverage(Frames, Divider)

Description This function captures and averages (or accumulates) the specified number of frames from the
frame-grabber and displays the result in a new image window. Equivalent to the Video
Average command.

Parameters Frames Integer An integer specifying the number of consecutive
frames to accumulate.

 Divider Integer An integer from 1 - 255 specifying the value to be used
as the divisor for the accumulated total in each pixel.
Specify a value equal to Frames to obtain the mean;
specify 1 to obtain the sum.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

Example ret = IpAcqAverage(16,16)

This statement will average 16 frames acquired from the frame-grabber.

Comments The capture will be performed using the Acquire options that are currently in effect on the
system.

See Also IpAcqSnap, IpAcqTimed

IpAcqControl
Syntax IpAcqControl(Cmd, Param, lpParam)

Description This function is used to set various options assocated with particular frame-grabbers. It is
equivalent to setting the options button in the Video Capture menu.

Parameters Cmd Integer Specifies the type of option that will be set on the video
capture board.

 Param Integer A value that specifies data required by the option.

 lpParam Integer A value that specifies the data required by the option.
The data type of this value will vary depending on the
value in the Cmd.

 Cmd wParam lpParam

 48 (Capture Area) 0 = preview
1 = acquire

Address or pointer to a rectangular
structure.

Example Dim captarea as RECT
captarea.left = 10
captarea.top = 20
captarea.right = 300
captarea.bottom = 400
ret = IpAcqControl(48, 1, captarea)

 49 (Exposure Time) 0 = preview
1 = acquire

Address or pointer to a long containing the
exposure time in milliseconds.

IpAcqControl

Page 2-4

Example Dim exposure as long
exposure = 1000
ret = IpAcqControl(49, 1, exposure)

 52 (binning) 0 = preview
1 = acquire

Array of two short values containing the x
and y binning

Example Dim binning(2) as integer
binning(0) = 2
binning(1) = 2
ret = IpAcqControl(52, 0, binning (0))

 53 (gain) 0 = preview
1 = acquire

Pointer or address to a short containing the
gain index

 Dim gain as integer
gain = 1
ret = IpAcqControl(53, 0, gain)

 84 (exposure time) 0 = preview
1 = acquire

Pointer or address to a single containing
the exposure values (for cameras using
microsecond exposure).

Example Dim exposure as single
exposure = 42.123
ret = IpAcqControl(84, 1, exposure)

Comments Because of the extensive number of frame-grabber combinations, it is not practical to describe all
of the possible parameter values allowed by this function here. If you need to obtain the specific
values used to set an option on your particular device, use the Record Macro command to record
the Option setting steps on your system. Then use the macro editor to view the recorded
statement. A list of constants appears below:

 Global Const ACQCMD_VIDEOSTD = 6 ‘ Set video standard

Global Const ACQCMD_CAMERA = 7 ' Set camera type

Global Const ACQCMD_CHANNEL = 8 ' Set channel value

Global Const ACQCMD_GENLOCK = 11 ' Turn on/off genlock

Global Const ACQCMD_CONTRAST = 9 ' Set contrast value

Global Const ACQCMD_BRIGHTNESS = 10 ' Set brightness value

Global Const ACQCMD_EXTRIG = 12 ' Turn on/off external trigger

Global Const ACQCMD_GREYACQUIRE = 13 ' Turn on/off 8-bit grey acquire

Global Const ACQCMD_HUE = 15 ' Set hue value

Global Const ACQCMD_SAT = 16 ' Set saturation value

Global Const ACQCMD_CAMERARGB = 17 ' Set camera RGB values

Global Const ACQCMD_VOLTAGE = 18 ' Set voltage values

Global Const ACQCMD_2MONLIVE = 26 ' Turn on/off external monitor preview

Global Const ACQCMD_ZOOM = 45 ' Change preview zoom factors

 IpAcqControl

Page 2-5

 Global Const ACQCMD_PANSCROLL = 46

Global Const ACQCMD_CAPTRECT = 48 ' Set capture area

Global Const ACQCMD_EXPOSURE = 49 ' Set exposure value

Global Const ACQCMD_BINNING = 52 ' Set binning values

Global Const ACQCMD_DIGITALGAIN = 53 ' Set digital gain value

Global Const ACQCMD_CAPTRECT_LIMITS = 55 ' Gets the current camera area
limits.

Global Const ACQCMD_EXPOSURE_LIMITS = 65 ' Gets the exposure limits for the
current camera.

Global Const ACQCMD_BINNING_LIMITS = 66 ' Gets the current driver binning
limits.

Global Const ACQCMD_DIGITALGAIN_LIMITS = 67 ' Gets the currentdriver digital gain
limits.

Global Const ACQCMD_BINNING_SUPPORT = 72 ' Gets the sparse matrix of the
supported binning modes.

Global Const ACQCMD_DIGITALGAIN_SUPPORT = 73 ' Gets the sparse matrix of the
supported gain values. Only avaiable for digital gain, not for digital gain 2

Global Const ACQCMD_MULTI_DEVICE = 82 ' Select multiple device number

Global Const ACQCMD_EXPOSURE2 = 84 ' Sets or gets the exposure as a
double value. The driver needs to support this feature in order to use it.

Global Const ACQCMD_EXPOSURE2_LIMITS = 85 ' Gets the exposure limits of the
current camera in doubles.

Global Const ACQCMD_AUTOEXPOSURE = 88 ' Calculates an exposure
automatically, this feature is available only for driver that supports it.

Global Const ACQCMD_WHITEBALANCE = 89 ' Calculates an automatic white
balance

IpAcqControl

Page 2-6

 Global Const ACQCMD_RESOLUTION_ACQ = 91 ' Sets or gets the index for
the current acquire resolution (only if the driver supports it).

Global Const ACQCMD_RESOLUTION_PVW = 92 ' Sets or gets the index for
the current preview resolution (only if the driver supports it).

Global Const ACQCMD_BITDEPTH = 93 ' Sets the bitdepth for acquire (only if
the driver supports it).

Global Const ACQCMD_DIGITALOFFSET = 95 ' Sets or gets the digital offset value.

Global Const ACQCMD_GAMMA = 97 ' Sets or gets the gamma value.

Global Const ACQCMD_GAMMA_LIMITS = 98 ' Gets the gamma limits supported by
the current driver.

Global Const ACQCMD_FRAMEOFFSET = 99 ' Sets or gets the frame offset for
analog cameras.

Global Const ACQCMD_RESET2DEFAULT = 102 ' Resets to defaults the setting for the
current camera (only if the driver supports it).

Global Const ACQCMD_DFS = 103 ' Sets or gets the status of the Dark
frame subtraction (only if the driver supports it).

Global Const ACQCMD_BGC = 104 ' Sets or gets the status of the
Background image (only if the driver supports it).

Global Const ACQCMD_HISTOGRAM = 105 ' Starts and positions the histogram
window (only if the driver supports it)..

Global Const ACQCMD_DIGITALGAIN_2 = 106 ' Sets or gets the digital gain as a
double value.

Global Const ACQCMD_DIGITALGAIN_LIMITS_2 = 107 ' Gets the current limits of
the digital gain as a double.

Global Const ACQCMD_DYNAMIC_AE = 108 ' Starts/stops the dynamic auto
exposure.

Global Const ACQCMD_DYNAMIC_AC = 111 ' Starts/stops the dynamic auto
contrast.

 IpAcqControl

Page 2-7

 Global Const ACQCMD_WSPREVW = 800 ' Turn on/off workspacepreview

Global Const ACQCMD_KEEPWSIMG = 801 ' Turn on/off keepworkspace image

Global Const ACQCMD_BESTFIT = 802 ' Turn on/off best fit

Global Const ACQCMD_AVERAGE = 803 ' Turn on/off frame averaging

Global Const ACQCMD_AVERACC = 804 ' Set frame averaging accumulate
number of frames

Global Const ACQCMD_AVERDIV = 805 ' Set frame averaging divide by
constant

Global Const ACQCMD_SEQDISP = 806 ' Turn on/off sequencedisplay option

Global Const ACQCMD_FILEBASE = 807 ' Set file name basenumber

Global Const ACQCMD_FILEPREFIX = 808 ' Set file name prefix

Global Const ACQCMD_FILEPATH = 809 ' Set file name path

Global Const ACQCMD_LIVEMOUSE = 810 ' Turn on/off the livepreview mouse
control

Global Const ACQCMD_ONCHIP_PREF = 811 ' Set the on-chipintegration
preference

Global Const ACQCMD_LOCKEXPOSURE = 812 ' Turn on/off the lock exposure times
feature

Global Const ACQCMD_PROMPTFILESAVE = 813 ' Turn on/off the prompt file save
feature

Global Const ACQCMD_MULTIIMAGE = 814 ' Turn on/off the multi-image capture
feature

Global Const ACQCMD_FILEDIGITS = 815 ' Set the file name base number of
digits

Global Const ACQCMD_AUTOADJBIN = 816 ' Turn on/off auto-adjust for binning

Global Const ACQCMD_AUTOAPPLY = 817 ' Turn on/off auto-apply changes for
preview

Global Const ACQCMD_IMAGEDEST = 818 ' Set image destination selection

Global Const ACQCMD_DYNINT = 820 ' Enable/disable dynamic integration
auto-exposure

Global Const ACQCMD_DYNSATWARN = 822 ' Enable/disable dynamic integration
saturation warning

Global Const ACQCMD_DYNBLACKLVL = 823 ' Set the dynamic integration black
level

Global Const ACQCMD_DYNBLACKAUTO = 824 ' Start the dynamic black level auto
set process

Global Const ACQCMD_PROGSEQ = 825 ' Turn on/off progressive sequence
dynamic integration

IpAcqControl

Page 2-8

 Global Const ACQCMD_DYNSEQ = 826 ' Turn on/off dynamic integration to

sequence

Global Const ACQCMD_PRGSEQINT = 827 ' Set progressive

sequence interval mode

Global Const ACQCMD_PRGSEQREGNUM = 828 ' Set progressive sequence regular
interval number of images

Global Const ACQCMD_PRGSEQREGTME = 829 ' Set progressive sequence regular
interval total time

Global Const ACQCMD_DYNSEQNUM = 830 ' Set dynamic sequence number of
images

Global Const ACQCMD_DYNSEQTIME = 831 ' Set dynamic sequence total time

Global Const ACQCMD_ONCHIPINT = 832 ' Turn on/off on-chip integration

Global Const ACQCMD_STOPDYNINT = 833 ' Stop performing dynamic integration

 Global Const ACQCMD_PRGSEQIRGSEL = 834 ' Set progressive sequence irregular
interval selection

Global Const ACQCMD_LOCKDIGTALOFFSET = 835 ' Locks digital offset

Global Const ACQCMD_LOCKGAIN = 836 ' Locks gain values

Global Const ACQCMD_LOCKGAMMA = 837 ' Locks gamma values

Global Const ACQCMD_LOCKAOI = 838 ' Locks AOI settings

Global Const ACQCMD_WBRESET = 839 ' Resets the white balance

Global Const ACQCMD_WB_SET = 840 ' Sets the whitebalance per channel.
wParam indicates the channel and lParam a pointer to a double to set it.

Global Const ACQCMD_CC_BUTTON = 841 ' Custom control button

Global Const ACQCMD_CC_SLIDER = 842 ' Custom control slider

Global Const ACQCMD_CC_CHECKBOX = 843 ' Custom control check box

Global Const ACQCMD_CC_COMBO = 844 ' Custom control combo box.

Global Const ACQCMD_AUTOSET = 846 ' Resets to defaults, calculates an
auto exposure and auto white balance (if available).

 IpAcqDynIntSnap

Page 2-9

IpAcqDynIntSnap
Syntax IpAcqDynIntSnap (bTotTimeExp, NumImages, TotalTime)

Description This function captures a dynamic integration sequence of images using the specified dynamic
integration options.

Parameters bTotTimeExp Integer An integer value of 0 or 1 specifying whether to
perform a total time exposure dynamic integration
capture.

0 - perform normal dynamic integration
1 - perform total time exposure dynamic integration

 NumImages Long A long integer specifying the number of images to be
captured in a total time exposure dynamic integration
capture. This parameter is not used for normal
dynamic integration captures and should be set to -1.

 TotalTime Long An integer specifying the total exposure time, in
milliseconds that will be used to calculate the interval
exposure time for total time exposure dynamic
integration captures. This parameter is not used for
normal dynamic integration captures and should be
set to -1.

Example ret = IpAcqDynIntSnap(0, -1, -1)

This statement will acquire a normal dynamic integration.

ret = IpAcqDynIntSnap(1, 100, 30000)
This statement will acquire a total time exposure dynamic integration of 100 frames and 30
seconds of total exposure time.

Comments Note that any of the parameters in this function may be set to -1 to be ignored and use the current
setting of that parameter.

Return Value Document ID of the last image created.

See Also IpAcqSnap, IpAcqAverage, IpAcqSeqIntSnap, IpAcqMultiSnap, IpAcqTimed

IpAcqMultiSnap

Page 2-10

IpAcqMultiSnap
Syntax IpAcqMultiSnap(Startframe, Numframe, destVri)

Description This function captures multiple image from the frame-grabber.

Parameters destVri Integer An enumerated integer specifying the window into
which the image will be captured. Must be one of the
following:

 ACQ_CURRENT
 ACQ_NEW
 ACQ_SEQUENCE

 ACQ_FILE
 ACQ_SEQUENCE_APPEND
where, ACQ_NEW saves the captured image to a new
image window, and ACQ_CURRENT saves it to the
active image window. ACQ_SEQUENCE saves it to a
sequencer file. ACQ_SEQUENCE_APPEND appends
captured images as frames to the active image
window.

 Startframe Integer The number of the first frame in the range to be
captured.

 Numframe Integer The total number of frames to be captured

Example To capture 4 new images: IpAcqMultiSnap (0, 4, ACQ_NEW)
To capture a 5-frame sequence: IpAcqMultiSnap (0,5,ACQ_SEQUENCE)

Comments The capture will be performed using the Acquire options currently in effect on the system. Note
that in previous versions of this program, the last parameter, destVri, was used to indicate whether
to capture the frames to the frame grabber's memory, or to store them in this program as new
images. Therefore, acquiring a series of frames was a two-step process, and was only possible if
your hardware supported multiple frames in memory. In the current version of this program,
IpAcquMultiSnap will automatically use the frame grabber's multiple frame support if possible, or
will simulate this capability if necessary. For this reason, the start frame parameter should be set
to zero, and the old true/false parameter (toVri) has been replaced by destVri.

Return Value Document ID of the last image created.

See Also IpAcqSnap

 IpAcqSelectDriver

Page 2-11

IpAcqSelectDriver
Syntax IpAcqSelectDriver (DriverName, Command)

Description This function selects a capture driver, or inquires about the capture drivers.

Parameters DriverName String Name of the driver you want to use.

 Command Integer Must be one of the following:
0 = Select the driver contained in DriverName
1 = Return the current driver contained in
DriverName
2 = Returns total number of available drivers
3 = Resets the driver list index position to 0
4 = Returns the name of the driver in the list at the
specified index position in DriverName
5 = increment the index position

Return Value For most commands, the IpAcqSelectDriver returns 0 if successful, and a negative failure if an
error occurs. For command 2, the return value is the number of drivers installed, and a negative
value indicates an error.

Example The following example selects the Analog Simulation driver as the active capture driver:
ret = IpAcqSelectDriver("Analog Simulation", 0)

The following example gets the name of the currently selected capture driver:
Dim szDriver As String * 255
ret = IpAcqSelectDriver(szDriver, 1)

The following example gets the number of capture drivers installed and gets the name of each
one:
Dim i, iNumDrivers As Long
Dim szDriver As String * 255
iNumDrivers = IpAcqSelectDriver("", 2)
ret = IpAcqSelectDriver("", 3) ' reset the index
For i = 1 To iNumDrivers
 ' get the driver for this index
 ret = IpAcqSelectDriver(szDriver, 4)
 ' and increment the index
 ret = IpAcqSelectDriver("", 5)
 MsgBox "Driver #" + CStr(i) + " is '" + IpTrim(szDriver) +
"'"
Next i

Comments The string contained in DriverName is the driver name shown in the Setup tab of the Capture
dialog.

IpAcqSettings

Page 2-12

IpAcqSettings
Syntax IpAcqSettings (File, bSave)

Description This function loads or saves a settings file.

Parameters File String String containing the full path to the settings file that
you want to load or save.

 bSave Integer 0 = Read settings to the settings file specified in File
1 = Save settings from the settings file specified in File.
2 = Return current settings file pathname.

Example IpAcqSettings("newvpf", 0)

Comments This function can be used to save and reload complicated capture settings. These settings are
recorded when you use the Load, Save, or Default buttons on the Setup page.

IpAcqShow
Syntax IpAcqShow(Dialog, bShow)

Description This function displays or hides the video acquisition dialogs, and selects the active page.

Parameters Dialog Integer An enumerated integer that specifies the dialog to be
displayed or hidden. Must be one of the following:

ACQ_AVG
ACQ_ISLIVE
ACQ_ISSHOWN
ACQ_LIVE
ACQ_MULTI
ACQ_SETTINGS
ACQ_SETUP
ACQ_SNAP
ACQ_TIMED
ACQ_ISINITIALIZED

ACQ_MACROS

See definitions under Comments, below

 bShow Integer A value of 0, 1, or 3 specifying whether the dialog is
to be displayed or suppressed. Where:

0 - hides the dialog
1 - shows the dialog
2 - not used
3 - show the basic dialog
 (ACQ_SNAP only)

Return Value For ACQ_ISLIVE and ACQ_ISSHOWN, 1 if the dialog is visible, 0 if not shown. For
ACQ_ISINITIALIZED, 1 if capture is initialized, 0 if not initialized.
For all others, 0 if successful, a negative value indicates an error.

 IpAcqShow

Page 2-13

Example ret = IpAcqShow(ACQ_SNAP, 1)
ret = IpAcqShow(ACQ_LIVE, 1)

These statements will display the Acquire dialog and the live video window.

Comments The live video window is considered an element of an acquisition dialog. As such, it can only be
shown while one of the other acquisition dialogs is displayed.
Dialog options are as follows:

VALUE DESCRIPTION

ACQ_AVG Specifies the Integration tab on the Acquire dialog box.

ACQ_ISLIVE Indicates if live preview is active or not. Uses the following
commands:

 0 = Hide the live preview window
 1= Show the live preview window
 2 = Suspend live preview
 3 = Resume live preview

ACQ_ISSHOWN Indicates if the Acquire dialog is active or not.

ACQ_LIVE Specifies the live video window.

ACQ_MULTI Specifies the Image page on the Acquire tabbed dialog.

ACQ_SETTINGS Specifies the Signal page on the Acquire tabbed dialog (for
analog drivers)

ACQ_SETUP Specifies the Setup page on the Acquire tabbed dialog.

ACQ_SNAP Specifies the Preview page on the Acquire dialog box (for
analog drivers).

ACQ_TIMED Specifies the Image tab on the Acquire dialog box.

ACQ_ISINITIALIZED Indicates if capture has been initialized or not.

ACQ_IMAGE Specifies the Image page on the Acquire tabbed dialog.

ACQ_PREVIEW Specifies the Preview page on the Acquire tabbed dialog for
digital drivers

ACQ_ACQUIRE Specifies the Acquire page on the Acquire tabbed dialog for
digital drivers

ACQ_MACROS Specifies the Macros page on the Acquire tabbed dialog.

See Also IpAcqSnap

IpAcqSnap

Page 2-14

IpAcqSnap
Syntax IpAcqSnap(destVri)

Description This function captures a single image from the frame-grabber. Equivalent to clicking the
Acquire command's Snap button.

Parameters destVri Integer An enumerated integer specifying the window into
which the image will be captured. Must be one of the
following:
These five commands capture an image to the chosen
destination and set the image destination for all future
user acquisitions (by clicking the Snap button) to the
same destination.
ACQ_NEW
ACQ_CURRENT
ACQ_FILE
ACQ_SEQUENCE
ACQ_SEQUENCE_APPEND
These five commands capture an image to the chosen
destination, but leave the destination for all future user
acquisitions (by clicking the Snap button) as last set by
the user or by calling
ret = IpAcqControl(ACQCMD_IMAGEDEST,
...):
ACQ_NEWEX
ACQ_CURRENTEX
ACQ_FILEEX
ACQ_SEQUENCEEX ACQ_SEQUENCE_APPENDEX

Return Value This function returns the Document ID of the new image, which will be an integer greater than
or equal to 0. A negative return value indicates an error.

Example IpAcqSnap(ACQ_NEW)

IpAcqSnap(ACQ_CURRENT)

IpAcqSnap(ACQ_FILE)

Comments The capture will be performed using the Acquire options currently in effect on the system. The
destination file for ACQ_FILE will be the last file indicated by the SetFile button.

See Also IpAcqAverage, IpAcqTimed, IpAcqShow, IpAcqMultiSnap

 IpAcqTimed

Page 2-15

IpAcqTimed
Syntax IpAcqTimed(Dir, Prefix, StartNumber, Frames, Interval)

Description This function captures a sequence of images at the specified rate, and saves them to disk.
Equivalent to the Timed Acquire command.

Parameters Dir String A string specifying the directory to which the captured
images will be saved.

 Prefix String A string specifying the “prefix” to be used to compose
the file names for the saved images.
Note - acquired images are automatically stored in
TIFF format, and are assigned the .TIF file extension.

 StartNumber Integer An integer specifying the sequence number to be
appended to the prefix of the first image. This number
is automatically incremented as successive images are
stored.

 Frames Integer An integer specifying the total number of images to be
acquired during the timed-acquire session.

 Interval Long An integer specifying the interval, in seconds, at which
the images are to be acquired.

Example ret = IpAcqTimed("c:\images", "img", 1, 10, 45)

This statement will acquire and store an image every 45 seconds until 10 images have been
obtained. The captured images will be stored to the “C:\IMAGES” directory under the file
names IMG1.TIF, IMG2.TIF, IMG3.TIF. . .IMG10.TIF.
You can also save frames to a new Sequencer image workspace by setting both strings to:
ret = IpAcqTimed("", "", 0, 3, 5)

Similarly, frames can be saved to a new image workspace or the active image workspace by
setting the first string to " " and the second string to either "\\New\\" or \\Current\\ as shown
below:
ret = IpAcqTimed("", "\\New\\", 0,3,5) New Image

ret = IpAcqTimed("", "\\Current\\", 0,3,5) Active Image

Comments Note that IpAcqTimed (Path, Prefix, 1,0,1) is equivalent to IpAcqSnap(Acq_FILE) except that the
file name is specified.

Return Value Document ID of the last image created.

See Also IpAcqSnap, IpAcqAverage, IpAcqShow, IpAcqMultiSnap

IpAcqTimedEx

Page 2-16

IpAcqTimedEx
Syntax IpAcqTimedEx(Dir, Prefix, StartNumber, Frames, Interval)

Description This function captures a sequence of images at the specified rate, and saves them to disk.
Equivalent to the Timed Acquire command.

Parameters Dir String A string specifying the directory to which the
captured images will be saved.

 Prefix String A string specifying the “prefix” to be used to compose
the file names for the saved images.
Note - acquired images are automatically stored in
TIFF format, and are assigned the .TIF file extension.

 StartNumber Integer An integer specifying the sequence number to be
appended to the prefix of the first image. This
number is automatically incremented as successive
images are stored.

 Frames Integer An integer specifying the total number of images to
be acquired during the timed-acquire session.

 Interval Long An integer specifying the interval, in milliseconds, at
which the images are to be acquired.

Example ret = IpAcqTimedEx("c:\images", "img", 1, 10, 200)

This statement will acquire and store an image every 200 milliseconds until 10 images have
been obtained. The captured images will be stored to the “C:\IMAGES” directory under the
file names IMG1.TIF, IMG2.TIF, IMG3.TIF. . .IMG10.TIF.
You can also save frames to a new Sequencer image workspace by setting both strings to:
ret = IpAcqTimedEx("", "", 0, 3, 50)

Similarly, frames can be saved to a new image workspace or the active image workspace by
setting the first string to " " and the second string to either "\\New\\" or \\Current\\ as shown
below:
ret = IpAcqTimedEx("", "\\New\\", 0,3,50) New Image

ret = IpAcqTimedEx("", "\\Current\\", 0,3,50) Active Image

Comments Note that IpAcqTimedEx (Path, Prefix, 1,0,1) is equivalent to IpAcqSnap(Acq_FILE) except that
the file name is specified.

Return Value Document ID of the last image created.

See Also IpAcqSnap, IpAcqAverage, IpAcqShow, IpAcqMultiSnap, IpAcqTimed

 IpAcqSeqIntSnap

Page 2-17

IpAcqSeqIntSnap
Syntax IpAcqSeqIntSnap(bRegularSeq, IndexOrNumImg, TotalTime)

Description This function captures a sequential integration sequence of images using the specified
sequential integration options.

Parameters bRegularSeq Integer An integer value of 0 or 1 specifying whether to
perform a regular interval or irregular interval
sequential integration capture.

0 - perform irregular interval
1 - perform regular interval

 IndexOrNumI
mg

Long A long integer specifying the zero-based selection
index for irregular interval sequential integration
captures or the number of images to be snapped in a
regular interval sequential integration capture.
Note – The selection index chooses one of the
predefined irregular interval sequences as shown in the
sequential integration dialog.

 TotalTime Long An integer specifying the total exposure time, in
milliseconds that will be used to calculate the interval
exposure time for regular interval sequential
integration captures. This parameter is not used for
irregular sequential integration capture and should be
set to -1.

Example ret = IpAcqSeqIntSnap(0, 1, -1)

This statement will acquire a sequential integration with irregular interval selection 1

ret = IpAcqSeqIntSnap(1, 100, 30000)
This statement will acquire a sequential integration with iregular intervals of 100 frames and 30
seconds of total exposure time.

Comments Note that any of the parameters in this function may be set to -1 to be ignored and use the current
setting of that parameter.

Return Value Document ID of the last image created.

See Also IpAcqSnap, IpAcqAverage, IpAcqDynIntSnap, IpAcqMultiSnap, IpAcqTimed

IpAFAAddChan

Page 2-18

IpAFAAddChan
Syntax IpAFAAddChan (lpChanName)

Description This function adds a channel using the current name

Parameters lpChan Name String Indicates the set to examine.

Return Value 0 if successful, a negative error code if failed.

Comments Acquisition of multiple channels must be selected, using
IpAFASetInst(AFA_MCHAN,0,1)

The new channel is added to the end of the list of channels. You can use IpAFAGet to
inquire the number of channels before calling IpAFAAddChan – this number can then be
used as the index to the new channel when using IpAFASetInt, IpAFASetSingle and
IpAFASetEx to set the channel’s properties.

Example Dim NewChan as Integer
‘ Get the current number of channels
ret = IpAFAGet(AFA_NUMCHANNELS, 0, NewChan)
‘ Add a new channel called “New Channel”
ret = IpAFAAddChan(“New Channel”)
‘ Set the wavelength of the new channel to 400nM
ret = IpAFASetSingle(AFA_WAVELENGTH, NewChan, 400)

See Also IpAFAGet, IpAFASetEx, IpAFASetInt, IpAFASetSingle

Page 2-19

IpAFADelChan
Syntax IpAFADelChan (nChannel)

Description This function deletes a channel by number.

Parameters nChannel Integer The index of the channel to delete.

Return Value 0 if successful, a negative error code if failed.

Comments The number may be obtained by using AFA_NUMCHANNELS to find the channel count and
iterating through to find the channel with the required name or values.

See Also IpAFADelChanStr

 IpAFADelChanStr
Syntax IpAFADelChanStr (ChanName)

Description This function deletes a channel by name rather than by number

Parameters ChanName String Name of the channel to delete

Return Value 0 if successful, a negative error code if failed.

See Also IpAFADelChan

IpAFAGet

Page 2-20

IpAFAGet
Syntax IpAFAGet (sAttribute, sParam, sValue)

Description This function gets the current value of an AFA attribute.

Parameters sAttribute Integer The setting to inquire. See Comments.

 sParam Integer Optional parameter, usually not used (set to zero), or
may specify the index of the channel of interest or
other required parameter. See the sParam column in
the Comments table.

 sValue (varies) Variable to receive the setting’s current value. See
the Type column in the Comments table for the type
of variable required for each attribute.

Return
Value

0 if successful, a negative error code if failed.

Comments This function is used for all attributes returning numeric values. For several attributes taking a
dimension identifier in sParam, the following constants are used:

AFA_CHAN – Channel
AFA_Z – Z Position
AFA_SCAN – X/Y Scan position
AFA_SAMPLE – Sampling position (well, slide, or user-defined position)
AFA_TIMEPOINT – Time point.

If the value is listed as a ‘Stage’, it is a boolean value with 0 for off or 1 for on.

sAttribute sValue sParam Type

AFA_ACQUISITION_TONE Indicates if program
should beep at the end
of each acquisiton

N/A Integer

AFA_AUTOEXPOSE State of autoexposure N/A Integer

AFA_BACKGROUNDSET Set number associated
with background
images

N/A Integer

AFA_BOTTOM_UP Capture Z planes from
the bottom up of the
stack upwards

N/A Integer

AFA_CAPTCHANNEL Is channel
active/inactive for this
capture

Channel
index

Integer

 IpAFAGet

Page 2-21

sAttribute sValue sParam Type

AFA_CAPTUREORDER Enumerated integer
describing capture
order, values of
AFA_ORDER_FOCUSFI
RST,
AFA_ORDER_CHANNE
LFIRST

N/A Integer

AFA_CAPTURESUBSET State of All/Selected
channels

N/A Integer

AFA_CAPTURETO Destination type, values
AFA_DEST_MEM,
AFA_DEST_DISK

N/A Integer

AFA_CHANGEPHASE Change current time
phase, return change
state

N/A Integer

 Defines for AFA_CHANGEPHASE, only valid during
acquisition.
Phase numbers of 0 to (AFA_NUMTIMEPHASES-1)
will move directly to that portion of the time lapse
acquisition.
AFA_SET_PHASENEXT -1 // Go to next phase
AFA_SET_PHASEPREV -2 // Go to previous phase

AFA_COMPOSITEMATCH Does composite doc
match? Boolean result.

N/A Integer

AFA_DELCHANNEL Delete channel by
number

Channel
index

Integer

AFA_CHAN_NAME AFA_CHAN_NAME is obsolete, and is replaced by
AFA_DYE. Both commands do the same thing, which
is for IpAFAGet is to return the channel/dye name.

AFA_DELTIMEPHASE Delete time phase
specified by sParam
(write only)

N/A Integer

AFA_DELTAZ Microns distance
between planes

N/A Single

AFA_DIVISION Division of channel or
time phase

Channel or
time phase

Integer

IpAFAGet

Page 2-22

sAttribute sValue sParam Type

AFA_EDOFSTYPE Type of software focus,
values
AFA_EDOF_LOCAL,
AFA_EDOF_MAX,
AFA_EDOF_MIN,
AFA_EDOF_DEPTH

N/A Integer

AFA_EXPOSURE Exposure time of
channel

Channel Single

AFA_EXWAVELENGTH Sets the excitation
wavelength for the
channel specified by the
sParam parameter.
Setting the excitation
wavelength by using
AFA_WAVELENGTH
with IpAFASetSingle
modifies the dye file for
the channel

Channel Integer

AFA_FOCUS State of multiple focus
acquisition

N/A Integer

AFA_FOCUSCHANNEL This command gets the
channel used as the
Focus Channel. The
focus offset for the
Focus Channel is also
set to 0.0

N/A Integer

AFA_FOCUSOFFSET Gets the focus offset for
the channel specified by
the sParam parameter.
The focus offset for a
channel is applied to the
Z focus position
determined for the focus
channel when
determining the Z focus
position for the channel
of interest. The focus
offset for the current
focus channel should
not be set – trying to do
so will return an
IPCERR_INVARG error
code

Channel Integer

 IpAFAGet

Page 2-23

sAttribute sValue sParam Type

AFA_GENCOMPOSITE State of color composite
enabling

N/A Integer

AFA_GENCOMPOSITE_ACQ Generate composite
while acquiring.
0 or 1

N/A Integer

AFA_HOLDTIME Seconds time refocus
hold

N/A Single

AFA_INTEGRATION Integration of channel or
time phase

Channel
index or
time phase

Integer

AFA_ISMODIFIED State of document
modification

N/A Integer

AFA_LAPSETIME Seconds time lapse N/A Single

AFA_LAST_IMAGE_SET Get the set manager ID of the set most recently
acquired using IpAFASnap or the Acquire button on the
AFA user interface. Bested us immediately after an
acquisition.

AFA_MCHAN State of multiple
channel acquisition

N/A Integer

AFA_MINTIME State of minimum time
lapse

N/A Integer

AFA_MOVEMENT Return the current
position along the
specified dimension

AFA_CHAN,
AFA_Z,
AFA_SCAN,
AFA_SAMPL
E,
AFA_TIMEP
OINT

Integer

AFA_NA NA of specific channel Channel Single

AFA_NUMALLTIMEPOINTS Total number of time
points for all phases
(read-only)

Time phase Integer

AFA_NUMCHANNELS Number of channels
defined (one-based)

N/A Integer

AFA_NUMFOCUS Number of focal planes N/A Integer

AFA_NUMSAMPLES Number of samples N/A Integer

AFA_NUMSCAN Number of scan
images

N/A Integer

IpAFAGet

Page 2-24

sAttribute sValue sParam Type

AFA_NUMTIMEPOINTS Number of time points Time phase Integer

AFA_NUMTIMEPHASES Number of time phases N/A Integer

AFA_PREVIEW Is AFA currently
previewing?

N/A Integer

AFA_PREVIEWHOLD Will the specified
dimension be held
steady when viewing
all in Preview

AFA_CHAN,
AFA_Z,
AFA_SCAN,
AFA_
SAMPLE,
AFA_
TIMEPOINT

Integer

AFA_PREVIEWSET Will the specified
dimension be
previewed?

AFA_CHAN,
AFA_Z,
AFA_SCAN,
AFA_
SAMPLE,
AFA_
TIMEPOINT

Integer

AFA_PREVIEWTIME Time of preview hold,
in seconds

N/A Single

AFA_RECORDLAYOUT (write only)
1 = record layout from
current set
0 = clear layout
parameters

Not used, set
to 0

Integer

AFA_REFINDEX RI of immersion of
specific channel

Channel Single

AFA_REFOCUS State of refocus during
acquisition

N/A Integer

AFA_REFOCUSFREQ Frequency of
refocusing

N/A Integer

AFA_REFOCUSTYPE Type of refocus during
acquisition

N/A Integer

 IpAFAGet

Page 2-25

sAttribute sValue sParam Type

AFA_RETAIN Type of image retained from focus: Integer

 AFA_RETAIN_STACK = Keep all planes of focus
AFA_RETAIN_BESTFOCUS = Keep only the best
focused image from the Z planes
AFA_RETAIN_COMPOSITE = Create a composite
image using the EDOF functions with every pixel
individually focused.
AFA_RETAIN_SINGLE = Keep a single plane at the
focus point.

AFA_RESTART_AFTER_
PAUSE

Set the current experiment’s default resume option,
which should be one of the following:
AFA_RESTART_IMMEDIATELY – start the next
acquisition immediately
AFA_RESTART_ON SCHEDULE – start the next
acquisition at the next regularly scheduled time point

AFA_SAMPLECOORD XYZ coordinates of a
sample position

Sample
number

Array of 3
singles

AFA_SCANAREA State of scanned
acquisition

N/A Integer

AFA_SETMATCH Does set number
match AFA set?
Returns a state.

set number Integer

AFA_SINGLEOBJECTIVE Gets whether all channels should use
the same objective information. When
the single objective option is set to
TRUE (any non-zero value), the lens
information (AFA_NA, AFA_REFINDEX
and AFA_LENS) will be set for all
existing channels.

Integer

 Setting the single objective option to
TRUE makes it unnecessary to specify
the objective when adding new
channels.

IpAFAGet

Page 2-26

sAttribute sValue sParam Type

AFA_STAGE State of multiple
position acquisition

N/A Integer

AFA_STAGETYPE Type of stage
movement, values of
AFA_STAGE_
WELLS, AFA_STAGE_
RANDOM

N/A Integer

AFA_TIME State of multiple time
acquisition

N/A Integer

AFA_TIMEPHASE Current time phase

AFA_TIMEPHASEDESCR Phase number Starting from
0

String

AFA_TIMEPREVIEW State of preview during
time lapse

N/A Integer

AFA_TINT Gets the tine used to
represent the channel
specified by sParam.
Modifying the tint will
update the underlying
dye file for the channel.

Channel Integer

AFA_TILEANGLE Angle of tiling in radians Double Integer

AFA_TILEBLEND Tiling blend method for
scans

N/A

String

AFA_TILEDIRPOS Stage movement
positive

0 = X
1 = Y

Integer

AFA_TILEIMAGES State of tiled acquisition N/A

AFA_TILEOFFSET POINTAPI of specificed
offset

0 = X
1 = Y

Integer

AFA_TILESIZE Size of tile (array of 2
hsort/interger) for
mosaic

N/A Integer

AFA_TILESTAGESCALE Stage movement Calibrated
pixel
distance

Integer

AFA_TILETYPE Tiling method for scans N/A String

AFA_Z_SCAN_NOMINAL Z nominal position for a
scan location

scan
location

Single

AFA_Z_STG_NOMINAL Z nominal position for a
stage location

stage
location

Single

 IpAFAGetInt

Page 2-27

Example Dim nScan as Integer
ret = IpAFAGet(AFA_NUMSCAN, 0, nScan)

‘ Index to the 3rd scan point in the 5th stage position
Dim fPosition As Single
ret = IpAFAGet(AFA_Z_SCAN_NOMINAL, 4*nScan + 2, fPosition)

Debug.Print “Stage 5, Scan 3”; fPosition

See Also IpAFAGetStr

IpAFAGetInt
Syntax IpAFAGetInt (sAttribute, sParam, lpData)

Description This function gets AFA attributes taking an integer value to a new value.

Parameters sAttribute Integer Attribute to modify. See Comments.

 sParam Integer Optional parameter, usually not used (set to zero), or
may specify the index of the channel of interest or
other required parameter. See the sParam column in
the Comments table.

 shData Integer New value for the attribute.

Return Value 0 if successful, a negative error code if failed.

Comments This function is used for all attributes taking integer values. For several attributes taking a
dimension identifier in sParam, the following constants are used:
AFA_CHAN – Channel
AFA_Z – Z Position
AFA_SCAN – X/Y Scan position
AFA_SAMPLE – Sampling position (well, slide, or user-defined position)
AFA_TIMEPOINT – Time point.

sAttribute shData sParam

AFA_ACQUISITION_TONE Indicates if program should
beep at the end of each
acquisiton

N/A

AFA_ARCHIVE_SET Archives the set and all set
images to the Image Database

N/A

AFA_AUTOEXPOSE Stage of autoexposure N/A

AFA_BACKGROUNDSET Set number associated with
background

N/A

AFA_BOTTOM_UP Acquire set from the bottom of
the stack upwards

N/A

IpAFAGetInt

Page 2-28

sAttribute shData sParam

AFA_CAPTCHANNEL Set channel active or inactive
for this capture

Channel index

AFA_CAPTUREORDER Enum describing capture order:
AFA_ORDER_FOCUSFIRST –
Iterate through focus, then
change channels; useful only if
manual filter changers are
available for highest Z accuracy.
AFA_ORDER_CHANNELFIRST
– Iterate through channels, then
change focus; ensures focal
registration between channels.

N/A

AFA_CAPTURESUBSET State of All/Selected channels.
AFA_CAPT_ALL – Capture all
defined channels.
AFA_CAPT_SELECTED –
Capture selected channels. See
AFA_CAPTCHANNEL to set/get
this state.

N/A

AFA_CAPTURETO Destination type
AFA_DEST_MEM – Keeps sets
in memory.
AFA_DEST_DISK – Writes
directly to disk.

N/A

AFA_COMPOSITEMATCH Does composite doc match? N/A

AFA_COMPOSITEUPDATE N/A
The AFA settings for color
composite are updated from the
specified color composite
document.

The document ID
of the color
composite
document.

AFA_COPY_TO_
CLIPBOARD

Copies the experiment
information to the clipboard,
where it can be pasted into any
text or document editor.

N/A

 IpAFAGetInt

Page 2-29

sAttribute

shData sParam
AFA_CHAN_NAME Select the dye for the channel,

which sets the channel name
(AFA_CHAN_NAME), tint (the
new AFA_TINT command),
emissions wavelength
(AFA_WAVELENGTH), and
excitation wavelength (the new
AFA_EXWAVELENGTH
command).

N/A

AFA_CHANGEPHASE Change current time phase,
return change state

N/A

 Defines for AFA_CHANGEPHASE, only valid during
acquisition.
Phase numbers of 0 to (AFA_NUMTIMEPHASES-1)
will move directly to that portion of the time lapse
acquisition.
AFA_SET_PHASENEXT -1 // Go to next phase
AFA_SET_PHASEPREV -2 // Go to previous
phase

AFA_DELCHANNEL Delete channel by number Channel index

AFA_DELTIMEPHASE Delete time phase specified by
sParam (write only)

N/A

AFA_DELSAMPLE N/A
The specified sampling position
is deleted from the list of
sampling positions.

Sampling position
index

AFA_DIVISION Division of channel Channel index or
time phase

AFA_EDOFSTYPE Type of software focus N/A

AFA_GENCOMPOSITE State of color composite
enabling

N/A

AFA_GENCOMPOSITE_
ACQ

Generate composite while
acquiring

Set to 0

AFA_FOCUS State of multiple focus (Z
position) acquisition

N/A

IpAFAGetInt

Page 2-30

sAttribute

shData sParam
AFA_FOCUSCHANNEL This command sets the channel

used as the Focus Channel.
The focus offset for the Focus
Channel is also set to 0.0

N/A

AFA_HUE Hue of specific channel.
AFA_HUE is obsolete, and is
supported for IpAFASetInt only
for backward compatibility. The
channel characteristics are set
by selection of a dye (see the
new command AFA_DYE) and
the RGB tint of the dye can be
adjusted by the new command
AFA_TINT. Setting the
channel’s tint by either
AFA_HUE or AFA_TINT
modifies the dye file for the
channel. When used with AFA
4.5 settings that do not refer to
an existing dye file, a dye file
will be created automatically

Channel index

AFA_INTEGRATION Integration of channel Channel index or
time phase

AFA_ISMODIFIED State of document modification N/A

AFA_LAST_IMAGE_SET Get the set manager ID of the
set most recently acquired using
IpAFASnap or the Acquire
button on the AFA user
interface. Bested us
immediately after an acquisition.

N/A

AFA_MARKSAMPLE If –1, add a user-defined sample
to the set of stage positions. If 0
to n-1, stage position is updated
to the current stage location.

N/A

AFA_MCHAN State of multiple channel
acquisition

N/A

AFA_MINTIME State of minimum time lapse N/A

AFA_MOVEMENT Move microscope components AFA_CHAN,
AFA_Z,
AFA_SCAN,
AFA_SAMPLE,
AFA_TIMEPOINT

AFA_NUMALLTIMEPOINTS Number of time points for all
phases (read-only)

N/A

 IpAFAGetInt

Page 2-31

sAttribute shData sParam

AFA_NUMTIMEPOINTS Number of time points N/A

AFA_NUMTIMEPHASES Number of time phases Time phase

AFA_NUMFOCUS Number of focal planes N/A

AFA_PREVIEW Start/stop preview N/A

AFA_PREVIEWHOLD Hold the dimension specified by
sParam steady when viewing all
in Preview

AFA_CHAN,
AFA_Z,
AFA_SCAN,
AFA_SAMPLE,
AFA_TIMEPOINT

AFA_PREVIEWSET Set the preview position for the
dimension specified by sParam

AFA_CHAN,
AFA_Z,
AFA_SCAN,
AFA_SAMPLE,
AFA_TIMEPOINT

AFA_RECORDLAYOUT (write only)
1 = record layout from current
set
0 = clear layout parameters

Not used, set to 0

AFA_RESTART_AFTER_
PAUSE

Set the current experiment’s default resume option,
which should be one of the following:
AFA_RESTART_IMMEDIATELY = start the next
acquisition immediately
AFA_RESTART_ON SCHEDULE = start the next
acquisition at the next regularly scheduled time point

AFA_REFOCUS State of refocus during
acquisition. Equivalent to the
state of the Focus while
acquiring checkbox on the
Focus tab of the AFA interface.

N/A

IpAFAGetInt

Page 2-32

sAttribute shData sParam

AFA_REFOCUSFREQ Frequency of refocusing
AFA_REFOC_FRAME =
Refocus every time the XY
location changes
AFA_REFOC_SCAN =
Refocus before each scan, that
is once per sample.
AFA_REFOC_CHANNEL =
Refocus every time the channel
changes.
AFA_REFOC-EACHTIME =
Refocus on the first sample of
each timepoint.

N/A

AFA_REFOCUSTYPE Type of refocus during
acquisition
AFA_FOCUS_MANUAL = User
will be prompted to manually
refocus stage
AFA_FOCUS_SOFTWARE =
Software evaluation of focus will
be performed
AFA_FOCUS_HARDWARE =
Requires hardware autofocus
capability.

N/A

AFA_RETAIN Type of image retained from
focus
AFA_RETAIN_STACK = Keep
all planes of focus
AFA_RETAIN_BESTFOCUS =
Keep only the best focused
image from the Z planes
AFA_RETAIN_COMPOSITE =
Create a composite image using
the EDOF functions with every
pixel individually focused.
AFA_RETAIN_SINGLE = Keep
a single plane at the focus point.
See AFA_EDOFSTYPE to
specify how the focus is
determined.

N/A

 IpAFAGetInt

Page 2-33

sAttribute shData sParam

AFA_SAMPLESORT N/A
The user-defined sampling
positions will be sorted for
minimum travel during capture.

N/A

AFA_SCANAREA State of scanned acquisition N/A

AFA_SEND_TO_EXCEL Sends the experiment
information to an Excel
spreadsheeet

N/A

AFA_SEND_TO_OUTPUT Copies the experiment
information to the Output
Window

N/A

AFA_SETCOMPOSITE Set number to composite N/A

AFA_SETMATCH Does set number match AFA
set?

Set ID to compare

AFA_STAGE State of multiple position
acquisition

N/A

AFA_STAGETYPE Type of stage movement
AFA_STAGE_WELLS – Stage-
Pro sample pattern of wells or
slides
AFA_STAGE_RANDOM – User
defined positions.

N/A

AFA_SINGLEOBJECTIVE Sets whether all channels
should use the same objective
information. When the single
objective option is set to TRUE
(any non-zero value), the lens
information (AFA_NA,
AFA_REFINDEX and
AFA_LENS) will be set for all
existing channels. Setting the
single objective option to TRUE
makes it unnecessary to specify
the objective when adding new
channels.

N/A

IpAFAGetInt

Page 2-34

sAttribute shData sParam

AFA_TILEBLEND Tiling blend method for scans N/A

AFA_TILEDIRPOS Stage movement positive 0 = X
1 = Y

AFA_TILEIMAGES State of tiled acquisition N/A

AFA_TILETYPE Tiling method for scans N/A

AFA_TIME State of multiple time acquisition N/A

AFA_TIMEPREVIEW State of preview during time
lapse

N/A

AFA_TIMEPHASE Current time phase N/A

AFA_USESHUTTER Gets shutter behavior See notes below

AFA_WRITEREVIEW The Review of the current
capture settings will be sent to
the Output Window.

N/A

 SParam for AFA_USESHUTTER. Must be one of the following:
Enumeration values:
AFA_SHUTTER_NONE 0 // Don’t control the shutter at all
AFA_SHUTTER_ALL 1 // Close for any transition
AFA_SHUTTER_CHANNELS 2 // Leave open until all channels
 acquired
AFA_SHUTTER_ZSTACK 3 // Leave open for entire Z stack
AFA_SHUTTER_STAGE 4 // Open for entire stage position
AFA_SHUTTER_TIMEPOINT 5 // Open for entire time point
AFA_SHUTTER_EXPERIMENT 6 // Open and close once for the
 experiment

See Also IpAFASetEx, IpAFASetSingle, IpAFASetStr, IpAFASetInt

 IpAFAGetStr

Page 2-35

IpAFAGetStr
Syntax IpAFAGetStr (sCommand,, sParam, Value)

Description This function gets the current value of an AFA string attribute.

Parameters sAttribute Integer The setting to inquire. See Comments.

 sParam Integer Optional parameter, usually not used (set to zero), or
may specify the index of the channel of interest or
other required parameter. See the sParam column in
the Comments table.

 Value String A fixed-length string to receive the attribute’s current
value.

Return Value 0 if successful, a negative error code if failed.

Comments This function is used for all attributes returning strings.

Attribute Value sParam

AFA_CAPTUREFILE Capture file of specific channel Channel

AFA_CAPTUREPATH Get path of Capture file Channel

AFA_CHAN_NAME Name of specific channel Channel

AFA_DEFDIRNAME Directory for saving .AFA files N/A

AFA_DELCHANNELSTR Delete channel by name (see also
IpAFADelChanStr)

N/A

AFA_DESTDIR Name of captured file destination
directory

N/A

AFA_DESTEXT Extension/file type for captured
files. i.e. .jpg, .tif, etc.

N/A

IpAFAGetStr

Page 2-36

Attribute Value sParam

AFA_DESCRIPTION A description of the AFA
experiment and image set.

N/A

AFA_DRIVERNAME Name of capture driver/ camera N/A

AFA_DYE This command replaces
AFA_CHAN_NAME and is used in
a similar fashion. In addition to
specifying the name for the
channel specified by sParam, the
AFA_DYE command also sets the
channel tint (AFA_TINT),
emissions wavelength
(AFA_WAVELENGTH), and
excitation wavelength
(AFA_EXWAVELENGTH) from the
characteristics of the specified dye

Channel

AFA_EXP_TITLE The title of the experiement and
the image set that goes with it.
Also used as the default
Set_Filename.

N/A

AFA_EXPERIMENTER The experimenter or technician. N/A

AFA_FILENAME Name of settings N/A

AFA_OBJECTIVE Gets the objective. If sParam is -1
or the AFA_SINGLEOBJECTIVE
option is set, the information for all
channels will be updated –
otherwise sParam should specify
the channel to update. Setting the
objective for one or more channels
updates the numeric aperture
(AFA_NA) and refractive index
(AFA_REFINDEX) in addition to
the objective name.

Channel to
update

AFA_SAMPLEPATTERN Name of the Stage-Pro sample
pattern

N/A

AFA_SCANPATTERN Name of the Stage-Pro scan area
pattern

N/A

AFA_SCOPEFILE Scope file of specific channel Channel

AFA_SCOPEPATH Get path of Scope file Channel

AFA_SETFILENAME Target IPS file for saves during
acquisition

N/A

See Also IpAFAGet

Page 2-37

IpAFALoad
Syntax IpAFALoad (fName)

Description This function loads an AFA settings file.

Parameters fName String Specifies the settings file to load

Return Value 0 if successful, a negative error code if failed.

IpAFAMacroGet
Syntax IpAFAMacroGet (nCallpoint, lpScriptFile, lpMacroName)

Description This function gets the name and call point for an AFA macro.

Parameters nCallPoint Short An expression of the location where the macro is to
be invoked. See Comments.

 lpScriptFile LPSTR A string specifiying the name of the script file

 lpMacroName LPSTR A string specifiying the name of the macro

Return Value IpAFAMacroGet will return IPCERR_INVARG if nCallPoint is not in range, and -1 if
there is no macro defined for that calling point.

Comments These are the values for the Call Point parameter:

AFA_M_STRTACQ 0 // Before acquiring, setup
AFA_M_STRTTIME 1 // Time loop start
AFA_M_STRTSTAGE 2 // Stage loop start
AFA_M_STRTSCAN 3 // Scan loop start
AFA_M_STRTFOC 4 // Focus loop start
AFA_M_STRTCHAN 5 // Channel loop start
AFA_M_STRTSNAP 6 // Just before snap
AFA_M_ENDSNAP 7 // Just after snap
AFA_M_ENDCHAN 8 // Channel loop end
AFA_M_ENDFOC 9 // Focus loop end
AFA_M_ENDSCAN 10 // Scan loop end
AFA_M_ENDSTAGE 11 // Stage loop end
AFA_M_ENDTIME 12 // Time loop end
AFA_M_ENDACQ 13 // After acquiring, cleanup

See Also IpAFAMacroSet

IpAFAMacroSet

Page 2-38

IpAFAMacroSet
Syntax IpAFAMacroSet (nCallpoint, lpScriptFile, lpMacroName)

Description This function sets the name and call point for an AFA macro.

Parameters nCallPoint Short An expression of the location where the macro is to
be invoked. See Comments.

 lpScriptFile LPSTR A string specifiying the name of the script file

 lpMacroName LPSTR A string specifiying the name of the macro

Return Value IpAFAMacroSet will return IPCERR_INVARG if nCallPoint is not in range.

Comments These are the values for the Call Point parameter:

AFA_M_STRTACQ 0 // Before acquiring, setup
AFA_M_STRTTIME 1 // Time loop start
AFA_M_STRTSTAGE 2 // Stage loop start
AFA_M_STRTSCAN 3 // Scan loop start
AFA_M_STRTFOC 4 // Focus loop start
AFA_M_STRTCHAN 5 // Channel loop start
AFA_M_STRTSNAP 6 // Just before snap
AFA_M_ENDSNAP 7 // Just after snap
AFA_M_ENDCHAN 8 // Channel loop end
AFA_M_ENDFOC 9 // Focus loop end
AFA_M_ENDSCAN 10 // Scan loop end
AFA_M_ENDSTAGE 11 // Stage loop end
AFA_M_ENDTIME 12 // Time loop end
AFA_M_ENDACQ 13 // After acquiring, cleanup

See Also IpAFAMacroGet

IpAFANew
Syntax IpAFANew ()

Description This function creates a new AFA settings file

Return Value 0 if successful, a negative error code if failed.

Comments Create a new settings file with default values, the settings file name is reset so the original
settings will not be overwritten. You must use IpAFASaveAs to save the settings since they
will not have a default file name.

See Also IpAFASaveAs

 IpAFASave

Page 2-39

IpAFASave
Syntax IpAFASave ()

Description This function saves the current AFA settings file under its existing file name

Return Value 0 if successful, a negative error code if failed.

Comments You must have loaded a settings file, or saved one using IpAFASaveAs, to have set the
settings file name.

See Also IpAFASaveAs

IpAFASaveAs
Syntax IpAFASaveAs (fName)

Description This function saves current settings under a new name.

Parameters fName String Full path name of AFA file

Return Value 0 if successful, a negative error code if failed.

See Also IpAFASave

IpAFASetEx

Page 2-40

IpAFASetEx
Syntax IpAFASetEx (sAttribute, sParam, lpData)

Description This function sets attribute values for AFA

Parameters SAttribute Integer AFA attribute to set, from the following:
AFA_SAMPLECOORD - XYZ coordinates of a
sample position.

 SParam Integer For AFA_SAMPLECOORD, the index of the sample
position to modify. For AFA_TINT, sets the tint used
to represent the channel specified. Modifying the tint
will update the underlying dye file for that channel.

 LpData Single An array of 3 singles for the XYZ coordinates (in that
order).

Return Value 0 if successful, a negative error code if failed.

Comments This is the base form for setting values in AFA – the calls to IpAFASetInt, IpAFASetSingle,
and IPAFASetStr all resolve to this call eventually.

 sAttribute shData sParam

 AFA_TILEOFFSET POINTAPI of specificed
offset

0 = X
1 = Y

 AFA_TILESIZE Size of tile (array of 2
hsort/interger) for
mosaic

N/A

See Also IpAFASetInt, IpAFASetSingle, IpAFASetStr

 IpAFASetInt

Page 2-41

IpAFASetInt
Syntax IpAFASetInt (sAttribute, sParam, lpData)

Description This function sets AFA attributes taking an integer value to a new value.

Parameters sAttribute Integer Attribute to modify. See Comments.

 sParam Integer Optional parameter, usually not used (set to zero), or
may specify the index of the channel of interest or
other required parameter. See the sParam column in
the Comments table.

 shData Integer New value for the attribute.

Return Value 0 if successful, a negative error code if failed.

Comments This function is used for all attributes taking integer values. For several attributes taking a
dimension identifier in sParam, the following constants are used:
AFA_CHAN – Channel
AFA_Z – Z Position
AFA_SCAN – X/Y Scan position
AFA_SAMPLE – Sampling position (well, slide, or user-defined position)
AFA_TIMEPOINT – Time point.

sAttribute shData sParam

AFA_ACQUISITION_TONE Indicates if program should
beep at the end of each
acquisiton

N/A

AFA_ARCHIVE_SET Archives the set and all set
images to the Image Database

N/A

AFA_AUTOEXPOSE Stage of autoexposure N/A

AFA_BACKGROUNDSET Set number associated with
background

N/A

AFA_BOTTOM_UP Acquire set from the bottom of
the stack upwards

N/A

IpAFASetInt

Page 2-42

sAttribute shData sParam

AFA_CAPTCHANNEL Set channel active or inactive
for this capture

Channel index

AFA_CAPTUREORDER Enum describing capture order:
AFA_ORDER_FOCUSFIRST –
Iterate through focus, then
change channels; useful only if
manual filter changers are
available for highest Z accuracy.
AFA_ORDER_CHANNELFIRST
– Iterate through channels, then
change focus; ensures focal
registration between channels.

N/A

AFA_CAPTURESUBSET State of All/Selected channels.
AFA_CAPT_ALL – Capture all
defined channels.
AFA_CAPT_SELECTED –
Capture selected channels. See
AFA_CAPTCHANNEL to set/get
this state.

N/A

AFA_CAPTURETO Destination type
AFA_DEST_MEM – Keeps sets
in memory.
AFA_DEST_DISK – Writes
directly to disk.

N/A

AFA_COMPOSITEMATCH Does composite doc match? N/A

AFA_COMPOSITEUPDATE N/A
The AFA settings for color
composite are updated from the
specified color composite
document.

The document ID
of the color
composite
document.

AFA_COPY_TO_
CLIPBOARD

Copies the experiment
information to the clipboard,
where it can be pasted into any
text or document editor.

N/A

 IpAFASetInt

Page 2-43

sAttribute

shData sParam
AFA_CHAN_NAME Select the dye for the channel,

which sets the channel name
(AFA_CHAN_NAME), tint (the
new AFA_TINT command),
emissions wavelength
(AFA_WAVELENGTH), and
excitation wavelength (the new
AFA_EXWAVELENGTH
command).

N/A

AFA_CHANGEPHASE Change current time phase,
return change state

N/A

 Defines for AFA_CHANGEPHASE, only valid during
acquisition.
Phase numbers of 0 to (AFA_NUMTIMEPHASES-1)
will move directly to that portion of the time lapse
acquisition.
AFA_SET_PHASENEXT -1 // Go to next phase
AFA_SET_PHASEPREV -2 // Go to previous
phase

AFA_DELCHANNEL Delete channel by number Channel index

AFA_DELTIMEPHASE Delete time phase specified by
sParam (write only)

N/A

AFA_DELSAMPLE N/A
The specified sampling position
is deleted from the list of
sampling positions.

Sampling position
index

AFA_DIVISION Division of channel Channel index or
time phase

AFA_EDOFSTYPE Type of software focus N/A

AFA_GENCOMPOSITE State of color composite
enabling

N/A

AFA_GENCOMPOSITE_AC
Q

Generate composite while
acquiring

Set to 0

AFA_FOCUS State of multiple focus (Z
position) acquisition

N/A

IpAFASetInt

Page 2-44

sAttribute

shData sParam
AFA_FOCUSCHANNEL This command sets the channel

used as the Focus Channel.
The focus offset for the Focus
Channel is also set to 0.0

N/A

AFA_HUE Hue of specific channel.
AFA_HUE is obsolete, and is
supported for IpAFASetInt only
for backward compatibility. The
channel characteristics are set
by selection of a dye (see the
new command AFA_DYE) and
the RGB tint of the dye can be
adjusted by the new command
AFA_TINT. Setting the
channel’s tint by either
AFA_HUE or AFA_TINT
modifies the dye file for the
channel. When used with AFA
4.5 settings that do not refer to
an existing dye file, a dye file
will be created automatically

Channel index

AFA_INTEGRATION Integration of channel Channel index or
time phase

AFA_ISMODIFIED State of document modification N/A

AFA_LAST_IMAGE_SET Get the set manager ID of the
set most recently acquired using
IpAFASnap or the Acquire
button on the AFA user
interface. Bested us
immediately after an acquisition.

N/A

AFA_MARKSAMPLE If –1, add a user-defined sample
to the set of stage positions. If 0
to n-1, stage position is updated
to the current stage location.

N/A

AFA_MCHAN State of multiple channel
acquisition

N/A

AFA_MINTIME State of minimum time lapse N/A

AFA_MOVEMENT Move microscope components AFA_CHAN,
AFA_Z,
AFA_SCAN,
AFA_SAMPLE,
AFA_TIMEPOINT

AFA_NUMALLTIMEPOINTS Number of time points for all
phases (read-only)

N/A

 IpAFASetInt

Page 2-45

sAttribute shData sParam

AFA_NUMTIMEPOINTS Number of time points N/A

AFA_NUMTIMEPHASES Number of time phases Time phase

AFA_NUMFOCUS Number of focal planes N/A

AFA_PREVIEW Start/stop preview N/A

AFA_PREVIEWHOLD Hold the dimension specified by
sParam steady when viewing all
in Preview

AFA_CHAN,
AFA_Z,
AFA_SCAN,
AFA_SAMPLE,
AFA_TIMEPOINT

AFA_PREVIEWSET Set the preview position for the
dimension specified by sParam

AFA_CHAN,
AFA_Z,
AFA_SCAN,
AFA_SAMPLE,
AFA_TIMEPOINT

AFA_RECORDLAYOUT (write only)
1 = record layout from current
set
0 = clear layout parameters

Not used, set to 0

AFA_RESTART_AFTER_
PAUSE

Set the current experiment’s default resume option,
which should be one of the following:
AFA_RESTART_IMMEDIATELY = start the next
acquisition immediately
AFA_RESTART_ON SCHEDULE = start the next
acquisition at the next regularly scheduled time point

AFA_REFOCUS State of refocus during
acquisition. Equivalent to the
state of the Focus while
acquiring checkbox on the
Focus tab of the AFA interface.

N/A

IpAFASetInt

Page 2-46

sAttribute shData sParam

AFA_REFOCUSFREQ Frequency of refocusing
AFA_REFOC_FRAME =
Refocus every time the XY
location changes
AFA_REFOC_SCAN =
Refocus before each scan, that
is once per sample.
AFA_REFOC_CHANNEL =
Refocus every time the channel
changes.
AFA_REFOC-EACHTIME =
Refocus on the first sample of
each timepoint.

N/A

AFA_REFOCUSTYPE Type of refocus during
acquisition
AFA_FOCUS_MANUAL = User
will be prompted to manually
refocus stage
AFA_FOCUS_SOFTWARE =
Software evaluation of focus will
be performed
AFA_FOCUS_HARDWARE =
Requires hardware autofocus
capability.

N/A

AFA_RETAIN Type of image retained from
focus
AFA_RETAIN_STACK = Keep
all planes of focus
AFA_RETAIN_BESTFOCUS =
Keep only the best focused
image from the Z planes
AFA_RETAIN_COMPOSITE =
Create a composite image using
the EDOF functions with every
pixel individually focused.
AFA_RETAIN_SINGLE = Keep
a single plane at the focus point.
See AFA_EDOFSTYPE to
specify how the focus is
determined.

N/A

 IpAFASetInt

Page 2-47

sAttribute shData sParam

AFA_SAMPLESORT N/A
The user-defined sampling
positions will be sorted for
minimum travel during capture.

N/A

AFA_SCANAREA State of scanned acquisition N/A

AFA_SEND_TO_EXCEL Sends the experiment
information to an Excel
spreadsheeet

N/A

AFA_SEND_TO_OUTPUT Copies the experiment
information to the Output
Window

N/A

AFA_SETCOMPOSITE Set number to composite N/A

AFA_SETMATCH Does set number match AFA
set?

Set ID to compare

AFA_STAGE State of multiple position
acquisition

N/A

AFA_STAGETYPE Type of stage movement
AFA_STAGE_WELLS – Stage-
Pro sample pattern of wells or
slides
AFA_STAGE_RANDOM – User
defined positions.

N/A

AFA_SINGLEOBJECTIVE Sets whether all channels
should use the same objective
information. When the single
objective option is set to TRUE
(any non-zero value), the lens
information (AFA_NA,
AFA_REFINDEX and
AFA_LENS) will be set for all
existing channels. Setting the
single objective option to TRUE
makes it unnecessary to specify
the objective when adding new
channels.

N/A

IpAFASetInt

Page 2-48

sAttribute shData sParam

AFA_TILEBLEND Tiling blend method for scans N/A

AFA_TILEDIRPOS Stage movement positive 0 = X
1 = Y

AFA_TILEIMAGES State of tiled acquisition N/A

AFA_TILETYPE Tiling method for scans N/A

AFA_TIME State of multiple time acquisition N/A

AFA_TIMEPREVIEW State of preview during time
lapse

N/A

AFA_TIMEPHASE Current time phase N/A

AFA_USESHUTTER Sets shutter behavior Must be one of
the following:

AFA_SHUTTER_NONE 0 // Don’t control the shutter at all
AFA_SHUTTER_ALL 1 // Close for any transition
AFA_SHUTTER_CHANNELS 2 // Leave open until all
 channels acquired
AFA_SHUTTER_ZSTACK 3 // Leave open for entire Z
 stack
AFA_SHUTTER_STAGE 4 // Open for entire stage
 position
AFA_SHUTTER_TIMEPOINT 5 // Open for entire time point
AFA_SHUTTER_EXPERIMENT 6 // Open and close once for
 the experiment

AFA_WRITEREVIEW N/A

The Review of the current
capture settings will be sent to
the Output Window.

N/A

See Also IpAFASetEx, IpAFAGetInt, IpAFASetStr

 IpAFASetSingle

Page 2-49

IpAFASetSingle
Syntax IpAFASetSingle (sAttribute, sParam, fData)

Description This function sets AFA attributes taking a floating-point value to a new value.

Parameters sAttribute Integer The attribute to modify. See Comments.

 sParam Integer Optional parameter, usually not used (set to zero), or
may specify the index of the channel of interest or
other required parameter. See the sParam column in
the Comments table. (The sParam is 0-based.)

 fData Float New value for the attribute.

Return Value 0 if successful, a negative error code if failed.

Comments This function is used for all attributes taking floating-point values.

sAttribute fData sParam

AFA_EXPOSURE Exposure time of channel Channel

AFA_NA Numeric aperture (NA) of specific
channel.
Modifies the lens file for the objective
specified for the channel. When used
with AFA 4.5 settings that do not refer to
an existing lens file, a lens file will be
created automatically if the objective is
known (see AFA_OBJECTIVE).

Channel

AFA_LAPSETIME Seconds time lapse N/A

AFA_HOLDTIME Seconds time refocus hold N/A

AFA_DELTAZ Microns distance between planes N/A

AFA_EXWAVELENGTH Sets the excitation wavelength for the
channel specified by the sParam
parameter. Setting the excitation
wavelength by using
AFA_WAVELENGTH with
IpAFASetSingle modifies the dye file for
the channel

Channel

IpAFASetSingle

Page 2-50

sAttribute fData sParam

AFA_FOCUSOFFSET Sets the focus offset for the channel
specified by the sParam parameter. The
focus offset for a channel is applied to
the Z focus position determined for the
focus channel when determining the Z
focus position for the channel of
interest. The focus offset for the current
focus channel should not be set – trying
to do so will return an
IPCERR_INVARG error code

Channel

AFA_REFINDEX Refractive Index (RI) of immersion of
specific channel. Modifies the lens file
for the objective specified for the
channel. When used with AFA 4.5
settings that do not refer to an existing
lens file, a lens file will be created
automatically if the objective is known
(see AFA_OBJECTIVE).

Channel

AFA_PREVIEWTIME Seconds time preview hold N/A

AFA_TILEANGLE Angle of tiling in radians Double

AFA_TILESTAGESCALE Stage movement Calibrated
pixel
distance

AFA_WAVELENGTH Modifies the dye file for the channel.
When used with AFA 4.5 settings that
do not refer to an existing dye file, a dye
file will be created automatically.

Channel

AFA_Z_SCAN_NOMINAL Z nominal position for a scan location scan location

AFA_Z_STG_NOMINAL Z nominal position for a stage location stage
location

Example ' Set stage position 4 to the current focus position.
 ' Start by getting the absolute (not relative) stage
 ' position in X, Y, Z:
 Dim posArr(0 to 2) As Single
 ret = IpStageGetAbsPosition(posArr(0))

 ' Set the 4th position to this Z value:
 ret = IpAFASetSingle(AFA_Z_STG_NOMINAL, 3, posArr(2))

See Also IpAFASetEx, IpAFASetInt, IpAFASetStr

 IpAFASetStr

Page 2-51

IpAFASetStr
Syntax IpAFASetStr (sAttribute, sParam,Value)

Description This function sets string values for AFA in IpBasic

Parameters sAttribute Integer The attribute to modify. See Comments.

 sParam Integer Optional parameter, usually not used (set to zero), or
may specify the index of the channel of interest or
other required parameter. See the sParam column in
the Comments table.

 sValue String New value for the attribute

Return Value 0 if successful, a negative error code if failed.

Comments This function is used for all attributes taking string values.

sAttribute sValue sParam

AFA_CAPTUREFILE Capture file of specific channel Channel
index

AFA_CAPTUREPATH Get path of Capture file Channel
index

AFA_CHAN_NAME Name of specific channel Channel
index

AFA_DEFDIRNAME Directory for saving .AFA files N/A

AFA_DELCHANNELSTR Delete channel by name N/A

AFA_DESTDIR Name of captured file destination
directory

N/A

AFA_DESTEXT Extension/file type for captured files:
.jpg, .tif, etc.

N/A

AFA_DRIVERNAME Name of capture driver/camera N/A

IpAFASetStr

Page 2-52

sAttribute sValue sParam

AFA_DYE This command replaces
AFA_CHAN_NAME and is used in a
similar fashion. In addition to specifying
the name for the channel specified by
sParam, the AFA_DYE command also
sets the channel tint (AFA_TINT),
emissions wavelength
(AFA_WAVELENGTH), and excitation
wavelength (AFA_EXWAVELENGTH)
from the characteristics of the specified
dye

Channel

AFA_DESCRIPTION A description of the AFA experiment
and image set.

N/A

AFA_EXP_TITLE The title of the experiement and the
image set that goes with it. Also used
as the default Set_Filename.

N/A

AFA_EXPERIMENTER The experimenter or technician. N/A

AFA_FILENAME Name of settings N/A

AFA_OBJECTIVE Sets the objective. If sParam is -1 or the
AFA_SINGLEOBJECTIVE option is set,
the information for all channels will be
updated – otherwise sParam should
specify the channel to update. Setting
the objective for one or more channels
updates the numeric aperture
(AFA_NA) and refractive index
(AFA_REFINDEX) in addition to the
objective name.

Channel to
update

AFA_SAVE_AS_TEXT Saves the experiment information to the
text file specified by the Value
parameter

N/A

AFA_SAMPLEPATTERN Name of the Stage-Pro sample pattern
(wells or slides)

N/A

AFA_SCANPATTERN Name of the Stage-Pro scan pattern
(well) pattern

N/A

AFA_SCOPEFILE Scope-Pro settings file of specific
channel

Channel
index

AFA_SETFILENAME Target IPS file for saves during
acquisition

N/A

sAttribute sValue sParam

AFA_TIMEPHASEDESCR Phase number starting from 0 N/A

See Also IpAFASetEx, IpAFASetInt, IpAFASetSingle

 IpAFAShow

Page 2-53

IpAFAShow
Syntax IpAFAShow (Show)

Description This function shows dialog or dialog tab

Parameters Show Integer AFA_HIDE – Hide AFA dialog
AFA_SHOW – Shows with last tab used
The remaining constants can be used to display the
specified tab of the AFA dialog:
AFA_TAB_EXPERIMENT –Experiment tab
AFA_TAB_CHANNEL – Channel tab
AFA_TAB_FOCUS – Focus tab
AFA_TAB_STAGE – Stage tab
AFA_TAB_TIMELAPSE – Time lapse tab
AFA_TAB_PREVIEW – Preview tab
AFA_TAB_MINIMAL – Minimal dialog

Return Value 0 if successful, a negative error code if failed.

Comments Some of tabs may only be shown if the corresponding dimension is selected on the Acquisition
tab.

IpAFASnap
Syntax IpAFASnap (nType)

Description This function snaps one or more images from the current AFA set.

Parameters nType Integer AFA_ACQ_SNAP – Acquire with current settings
AFA_ACQ_AUTOEXPOSE – Acquire at current
position with exposure adjustments
AFA_ACQ_BACKGROUND – Acquire all channels
at current X, Y, Z positions for use as background
images.
AFA_ACQ_TILE – Synonym for
AFA_ACQ_BACKGROUND

Return Value 0 if successful, a negative error code if failed.

IpAffine

Page 2-54

IpAffine
Syntax IpAffine (Rotate, Scale, XShift, YShift)

Description Use this function to Rotate, scale, and shift an image using rigid affine transformations. Images
are bilinearly resampled for the new output, which is an image of the same size as the original

Parameters fRotate Integer Radians rotation. Positive numbers rotate counter-
clockwise. Rotation by pi is 180 degrees

 fScale Integer Scaling factor for the new image

 XShift Integer Horizontal shift for the center of the
rotated/scaled image in pixels

 YShift Integer Vertical shift for the center of the rotated/scaled
image in pixels

Return Value ID of the new image if successful, an error message if failed

Example Sub AffineTransform()

 Dim fRotate As Single

 Dim fScale As Single

 Dim xShift As Integer, yShift As Integer

 ret = IpStGetFloat("Enter the rotation angle (CCW in
radians)", fRotate, 0.0, -10.0, 10.0, 0.1)

 ret = IpStGetFloat("Enter the scaling factor", fScale,
1.0, 0.01, 100.0, 0.01)

 ret = IpStGetInt("Enter the X shift for the image
center", xShift, 0, -1000, 1000)

 ret = IpStGetInt("Enter the Y shift for the image
center", yShift, 0, -1000, 1000)

 ret = IpAffine(fRotate, fScale, xShift, yShift)

End Sub

 IpAlignAdd

Page 2-55

IpAlignAdd
Syntax IpAlignAdd (docId, Frame)

Description This function adds a new image or workspace to list of images to align

Parameters docID Short ID of the workspace to add to the document list

 Frame Short Workspace frame to be added, -1 to all all
frames/workspaces/images

Return Value 0 if successful, -1 if failed, IPCERR_INVARG if document is not present.

IpAlignApply
Syntax IpAlignApply()

Description This function applies the alignment using the currently specified options, and the values either
calculated or supplied by macro calls to IpAlignSetEx().

Return Value The doc ID of the new workspace if successful, -1 if failed, IPCERR_EMPTY if there are no
images specified.

IpAlignCalculate
Syntax IpAlignCalculate()

Description This function calculates the alignment using the currently specified options.

Return Value 0 if successful, -1 if failed, IPCERR_EMPTY if there are no images specified.

IpAlignFindPattern
Syntax IpAlignFindPattern (TargetImageVri, TargetFrame, TargetRect, DoRotate, DoScale,

DotTranslate, Phase, OutParam, NumExpectedObjects)

Description Use this function to find the pattern on the target image and return the coordinates of the found
objects.

Parameters TargetImageVRI Integer VRI of the target image

 TargetFrame Integer Frame number of the target image

 TargetRect RECT Rectangle within which the search will be performed

 DoRotate Integer Turns rotation on or off during pattern-finding:
0 = rotation off
1 = rotation on

 DoScale Integer Turns scaling on or off during pattern-finding:
0 = scaling off
1 = scaling on

 DoTranslate Integer Turns translation on or off during pattern-finding:
0 = translation off
1 = translation on

IpAlignFindPattern

Page 2-56

 Phase Integer Defines the type of cross-correlation used during
pattern finding:
 0 = full correlation
1 = phase correlation only

 NumExpectedObjects Long Indicates the number of expected objects

 OutParam Any Array of doubles that receives values. The array has
to be big enough to accommodate values for all
found objects. Total array size must be not
less than ALGN_PM_OUT_SIZE*
sNumExpectedObjects.

The array has the following structure per object:

OutParam DESCRIPTION

ALGN_PM_OUT_X X pixel coordinate position on the target image

ALGN_PM_OUT_Y Y pixel coordinate position on the target image

ALGN_PM_OUT_ANGLE Angle in radians (valid only for the first object)

ALGN_PM_OUT_SCALE Scale (valid only for the first object)

ALGN_PM_OUT_RANK Rank value showing the degree of cross-correlation

Example Dim aoirect1 As RECT,actFrame As Long, NFoundPoints As Long,
Dim i As Long
'get AOI bounds
ret = IpAoiGet(GETBOUNDS, 0, aoirect1)
If ret<0 Then
 'no AOI, use whole image
 Dim dInfo1 As IPDOCINFO
 ret = IpDocGet(GETDOCINFO, DOCSEL_ACTIVE, dInfo1)
 aoirect1=dInfo1.Extent
End If

'get active frame

ret=IpSeqGet(SEQ_ACTIVEFRAME,actFrame)
Dim hVri1%
ret = IpDocGet(GETDOCVRI, DOCSEL_ACTIVE, hVri1)

Dim MaxNumberOfObjects as long
‘we expect 10 objects
MaxNumberOfObjects = 10
Dim OutParam() As Double
'allocate enough memory for all expected objects
ReDim OutParam(ALGN_PM_OUT_SIZE*MaxNumberOfObjects) As Double

ret = IpTagShow(1)
ret = IpTagAttr(TAG_VIEW_POINTS, 1)
'delete old tags

 ret = IpTagDelete(-1)

 IpAlignFindPattern

Page 2-57

Example Dim NumFoundObjects As Long
NumFoundObjects=0
'find pattern using translation only and Full correlation
NFoundPoints=IpAlignFindPattern(hVri1, actFrame, aoirect1, _
0, 0, 1, 0, OutParam(0),MaxNumberOfObjects)

Dim AcceptanceThreshold as double
‘set acceptance threshold to ignore false objects
AcceptanceThreshold=0.5
Debug.Print "Number of found points = " & NFoundPoints
For i=0 To NFoundPoints-1
 'check rank with acceptance threshold
 If OutParam(4 + ALGN_PM_OUT_SIZE*i)>= _
AcceptanceThreshold Then
 'print data
 Debug.Print "Point Index = " & i
 Debug.Print "Position X=" & _
OutParam(ALGN_PM_OUT_X + ALGN_PM_OUT_SIZE*i)
 Debug.Print "Position Y=" & _
OutParam(ALGN_PM_OUT_Y + ALGN_PM_OUT_SIZE*i)
 ‘angle and scale values are valid only
 ‘for the first object
 If i=0 Then
 Debug.Print "Angle =" & _
OutParam(ALGN_PM_OUT_ANGLE + ALGN_PM_OUT_SIZE*i)*180/3.1415
 Debug.Print "Scale =" & _
OutParam(ALGN_PM_OUT_SCALE + ALGN_PM_OUT_SIZE*i)
 End If
 Debug.Print "Rank =" & _
OutParam(ALGN_PM_OUT_RANK + ALGN_PM_OUT_SIZE*i)

 'mark the position with a tag

 ret = IpTagPt(OutParam(ALGN_PM_OUT_X + _
 ALGN_PM_OUT_SIZE*i), _
OutParam(ALGN_PM_OUT_Y + _
ALGN_PM_OUT_SIZE*i), 0)
 End If
Next i

Return Value Number of found objects if successful, an error code if failed.

IpAlignGet

Page 2-58

IpAlignGet
Syntax IpAlignGet(sAttribute, sParam, lpData)

Description This function gets data about the images to be aligned.

Parameters sAttribute Short Attribute to get, see list and comments below

 sParam Short Number of items for the list to get, see list and
comments below

 lpData LPVOID Pointer to appropriate data array or value, see list
and comments below

Integer Argument Description

ALGN_ALGORITHM Get the method for alignment calculations
ALGN_ANGLE_NUM Get the number of angles – must be a power of two
ALGN_SCALE_NUM Get the number of scales – must be a power of two
ALGN_OPTIONS Get Options: scale, rotate, or translate
ALGN_CAL_ORDER Gets the order of the images as per calibrated

positions
ALGN_REF_FRAME Gets the reference frame in the list
ALGN_ALG_OPTION Gets the algorithm specific option
ALGN_GETNUMFRAMES Gets the number of frames in the list
ALGN_GETFRAMELIST Gets the list of frames
ALGN_TRIMBORDERS Trim image borders down to fully-overlapping farmes
GETNUMDOC Gets the number of images in the list
GETDOCLST Get the list of doc IDs, maximum = sParam
ALGN_UPDATEUI Determine if the user interface has been updated.
ALGN_INTERATE Interate, setting the results to be the next input.

Single Point Argument Description
ALGN_X_PERIMAGE X pixel shift per image (stacks)
ALGN_Y_PERIMAGE Y pixel shift per image (stacks)
ALGN_X_CAL_ANGLE Calibrated X angle shift (stacks)
ALGN_Y_CAL_ANGLE Calibrated Y angle shift (stacks)
These arguments are used to adjust shift and angle. Note that these are valid only after
IpAlignCalculate is called or these values are set by a macro call. The second parameter is the
index (see ALGN_GETNUMFRAMES)

 IpAlignGet

Page 2-59

IpAlignGet only, for each frame, expressing how it is manipulated compared to the previous
frame

Argument Description
ALGN_OFFSET_COUNT Number of matching offsets (short)
ALGN_ANGLE_COUNT Number of matching angles (short)
ALGN_SCALE_COUNT Number of matching scales (short)

Second parameter is the index (see ALGN_GETNUMFRAMES)

Argument Description

ALGN_ALWAYSRECALC Always recalcuate.
ALGN_ANGLE_VAL List of single matching angles
ALGN_SCALE_VAL List of single matching scales
ALGN_OFFSET_RANK List of single relative match values
ALGN_ANGLE_RANK List of single relative match values
ALGN_SCALE_RANK List of single relative match values

List of the best alignment values. Second parameter is the index of the frames, 0 to n-1.
DOCSEL_ALL gets/sets the entire list of ALGN_GETNUMFRAMES values

Argument Description
ALGN_BEST_OFFSET returns a POINT API array for

ALGN_GETNUMFRAMES
ALGN_BEST_ANGLE returns a list of ALGN_GETNUMFRAMES single point

matching angles
ALGN_BEST_SCALE Returns a list of ALGN_GETNUMFRAMES single

point matching scales

ALGN_OPTIONS arguements

Argument Description
ALGN_ROTATE Calculate rotation
ALGN_SCALE Calculate scaling
ALGN_TRANSLATE Calculate translation
ALGN_ALWAYSRECALC Always recalcuate. Use with IpAlignSetInt

ALGN_METHOD arguments. Additional methods can be added here, with
ALGN_ALG_OPTION arguments for algorithm specific settings.

Argument Description
ALGN_FFT FFT correlation
ALGN_USER User-specified offsets

ALGN_ALG_OPTION calls for ALGN_FFT, specific to that algorithm

IpAlignOpen

Page 2-60

Argument Description
ALGN_FFTFULL Set to full FFT correlation
ALGN_FFTPHASE Set to FFT phase correlation
ALGN_FFT_NANGLES Number of angles of rotation (power of 2)
ALGN_FFT_NSCALES Number of scales (power of 2)
ALGN_FFT_APODIZE Boolean, prefilter for rotation/scaling may help with

some images.

ALGN_ALG_OPTION calls for ALGN_USER, specific to that algorithm. These are based on
spatial calibration values

Argument Description
ALGN_USER_X X shift per plane (single)
ALGN_USER_Y Y shift per plane (single)
ALGN_USER_XANGLE X shift angle (single, degrees)
ALGN_USER_YANGLE Y shift angle (single, degrees)
ALGN_USER_XDIST X shift distance (single, degrees)
ALGN_USER_YDIST Y shift distance (single, degrees)
ALGN_USER_ZDIST Z shift distance (single, degrees)

IpAlignOpen
Syntax IpAlignOpen(FileName)

Description This function loads the current offset values.

Parameters FileName LSPTR Load offset values. Fails if the number of offsets
does not match the current number of selected
frames/images, or if the tile layouts are different.

Return Value 0 if successful, -1 if failed, IPCERR_EMPTY if there are no values to load.

IpAlignRemove
Syntax IpAlignRemove(docID, Frame)

Description This function removes the specified workspace/image/frame from the alignment list.

Parameters docID Short ID of the workspace to remove from the document
list. DOCSEL_ALL to clear the list.

 Frame Short Workspace frame to be removed,
 -1 remove all frames/workspaces/images

Return Value 0 if successful, -1 if failed

 IpAlignSave

Page 2-61

IpAlignSave
Syntax IpAlignSave(FileName)

Description This function saves the current offset values.

Parameters FileName LSPTR Save offset values. Fails if the number of offsets
does not match the current number of selected
frames/images, or if the tile layouts are different.

Return Value 0 if successful, -1 if failed, IPCERR_EMPTY if there are no values to save

IpAlignSetEx
Syntax IpAlignSetEx (sAttribute, sParam, lpData)

Description This function sets the alignment attributes.

Parameters sAttribute Short Attribute to set, see list and comments in
IpAlignGet

 sParam Short Number of items for the list to set, see list and
comments in IpAlignGet

 lpData LPVOID Pointer to appropriate data array or value, see list
and comments in IpAlignGet

Return Value 0 if successful, IPCERR_INVCOMMAND if failed, number of values for list function.

See Also IpAlignSetInt, IpAlignSetSingle

IpAlignSetInt
Syntax IpAlignSetInt (sAttribute, sParam, sData)

Description This function sets the alignment attributes

Parameters sAttribute Short Attribute to set, see list and comments in
IpAlignGet

 sParam Short Number of items for the list to set, see list and
comments in IpAlignGet

 sData Short Pointer to appropriate data array or value, see list
and comments in IpAlignGet

Return Value 0 if successful, IPCERR_INVCOMMAND if failed, number of values for list function.

IpAlignSetSearchPattern

Page 2-62

IpAlignSetSearchPattern
Syntax IpAlignSetSearchPattern (RefImageVri, RefFrame, RefRect)

Description This function sets the search pattern

Parameters RefImageVri Integer VRI of the source image

 RefFrame Integer Frame number of the source image

 RefRect Long Rectange defining the search area on the source
image

Return Value 0 if successful, IPCERR_INVCOMMAND if failed, number of values for list function.

Example Dim aoirect1 As RECT,actFrame As Long
'get AOI bounds
ret = IpAoiGet(GETBOUNDS, 0, aoirect1)
If ret<0 Then
 'no AOI, use whole image
 Dim dInfo1 As IPDOCINFO
 ret = IpDocGet(GETDOCINFO, DOCSEL_ACTIVE, dInfo1)
 aoirect1=dInfo1.Extent
End If

'get active frame
ret=IpSeqGet(SEQ_ACTIVEFRAME,actFrame)

Dim hVri1%
ret = IpDocGet(GETDOCVRI, DOCSEL_ACTIVE, hVri1)
'set search pattern
ret=IpAlignSetSearchPattern(hVri1, actFrame, aoirect1)

IpAlignSetSingle
Syntax IpAlignSetSingle (sAttribute, sParam, fData)

Description This function sets the alignment attributes

Parameters sAttribute Short Attribute to set, see list and comments in
IpAlignGet

 sParam Short Number of items for the list to set, see list and
comments in IpAlignGet

 fData Single Pointer to appropriate data array or value, see list
and comments in IpAlignGet

Return Value 0 if successful, IPCERR_INVCOMMAND if failed, number of values for list function.

 IpAlignShow

Page 2-63

IpAlignShow
Syntax IpAlignShow(nDialgo, bShow)

Description This function shows or hides the alignment dialog.

Parameters nDialog Short Use one of the following to indicate which dialog to
hide or show:
ALGN_IMAGETAB
ALGN_OPTIONTAB
ALGN_PREVIEW

 bShow Bool A value of 0 or 1, indicates whether to show or hide
the selected alignment dialog
0 = hide the dialog
1 = show the dialog

Return Value 0 if successful, IPCERR_INVCOMMAND if the dialog cannot be shown

IpAnActivateAll

Page 2-64

IpAnActivateAll
Syntax IpAnActivateAll()

Description This function selects all annotation objects in the current window.

Return Value Returns an error code if no annotation objects are present.

See Also IpAnDeleteAll

IpAnActivateDefaultObj
Syntax IpAnActivateDefaultObj(nObjType)

Description Activates the default object of the specified type.

Parameters nObjType Integer Type of object created. Must be one of the following:
GO_OBJ_LINE
GO_OBJ_RECT
GO_OBJ_ROUNDRECT
GO_OBJ_ELLIPSE
GO_OBJ_TEXT
GO_OBJ_POLY

Return Value Returns the object ID of the default object or an error code.

See Also IpAnCreateObj, IpAnDeleteObj

Comments Default objects are not displayed and used only to keep attributes. New object will be created
with attributes, copied from the default object. This macro is not recorded.

IpAnActivateObjID
Syntax IpAnActivateObjID(nObjID)

Description Activates the specified object.

Parameters nObjID Integer The document ID of the object to be activated.

See Also IpAnCreateObj, IpAnDeleteObj

Comments This macro is recorded when the user selects an annotation object.

 IpAnActivateObjXY

Page 2-65

IpAnActivateObjXY
Syntax IpAnActivateObjXY(X,Y)

Description Activates the object at location x,y.

Parameters X,Y Integer Coordinates of object location

Return Value Returns the object ID of the active object or an error code.

See Also IpAnCreateObj, IpAnDeleteObj,IpAnActivateObjID

Comments This macro is not recorded.

IpAnAddText
Syntax IpAnAddText(szText)

Description Places additional lines of text in the active text object.

Parameters szText String Character string of text to be placed in the object.

Example Multiline text is recorded as a series of macros:
Sub IpAnAddText_example()

' create a text object consisting of 3 lines

ret = IpAnCreateObj(GO_OBJ_TEXT)
ret = IpAnMove(0, 87, 268)
ret = IpAnText("This is the first line.")
ret = IpAnAddText(Chr$(10))
ret = IpAnAddText("This is the second line.")
ret = IpAnAddText(Chr$(10))
ret = IpAnAddText("This is the third line.")
ret = IpAnMove(5, 252, 328)

End Sub

Comments To record and playback multi-line text objects in a text annotation, use
IpAnAddText (Chr$ (10)) . This indicates a line feed rather than a carriage return.

See Also IpAnText

IpAnBurn

Page 2-66

IpAnBurn
Syntax IpAnBurn()

Description This function permanently “burns” the drawing object into the image

Example Sub IpAnBurn_example()

' draw a filled rectangle and then burn it into the image

ret = IpAnCreateObj(GO_OBJ_RECT)
ret = IpAnMove(0, 122, 248)
ret = IpAnMove(5, 259, 339)
ret = IpAnSet(GO_ATTR_PENWIDTH, 4)
ret = IpAnSet(GO_ATTR_RECTSTYLE, GO_RECTSTYLE_BORDER_FILL)
ret = IpAnSet(GO_ATTR_PENCOLOR, 255)
ret = IpAnSet(GO_ATTR_BRUSHCOLOR, 16711680)
ret = IpAnBurn()

End Sub

IpAnCreateObj
Syntax IpAnCreateObj(nObjType)

Description Creates an annotater object of the type nObject

Parameters nObjType Integer Type of object created. Must be one of the following:
GO_OBJ_LINE
GO_OBJ_RECT
GO_OBJ_ROUNDRECT
GO_OBJ_ELLIPSE
GO_OBJ_TEXT
GO_OBJ_POLY

Return Value Returns the Object ID of the new object or an error code.

 IpAnDeleteAll

Page 2-67

Example Sub IpAnCreateObj_example()

' a line

ret = IpAnCreateObj(GO_OBJ_LINE)
ret = IpAnMove(0, 165, 88)
ret = IpAnMove(2, 367, 141)

' a rectangle

ret = IpAnCreateObj(GO_OBJ_RECT)
ret = IpAnMove(0, 113, 182)
ret = IpAnMove(5, 229, 271)

' a round rectangle

ret = IpAnCreateObj(GO_OBJ_ROUNDRECT)
ret = IpAnMove(0, 292, 236)
ret = IpAnMove(5, 418, 321)

' an ellipse

ret = IpAnCreateObj(GO_OBJ_ELLIPSE)
ret = IpAnMove(0, 138, 327)
ret = IpAnMove(5, 248, 437)

' a polygon

ret = IpAnCreateObj(GO_OBJ_POLY)
ret = IpListPts(Pts(0), "285 359 335 421 370 360 413 422 457
359")
ret = IpAnPolyAddPtArray(Pts(0), 5)

' a text entry

ret = IpAnCreateObj(GO_OBJ_TEXT)
ret = IpAnMove(0, 175, 70)
ret = IpAnText("Astrocyte boundary layer")
ret = IpAnMove(5, 330, 90)

End Sub

Comments The Object ID of the new object may be used as a parameter in IpAnActivateObj to select
the new object.

See Also IpAnDeleteObj, IpAnActivateObjID

IpAnDeleteAll
Syntax IpAnActivateAll()

Description This function selects all annotation objects in the current window.

Return Value Returns an error code if no annotation objects are present.

See Also IpAnDeleteAll

Page 2-68

IpAnDeleteObj
Syntax IpAnDeleteObj()

Description Deletes the active object

Example Sub IpAnDeleteObj_example()

' create three rectangles then delete the second one

Dim obj_id As Long ' variable to hold id of second rectangle

ret = IpAnCreateObj(GO_OBJ_RECT)
ret = IpAnMove(0, 86, 108)
ret = IpAnMove(5, 189, 188)
obj_id = IpAnCreateObj(GO_OBJ_RECT)
ret = IpAnMove(0, 228, 186)
ret = IpAnMove(5, 345, 282)
ret = IpAnCreateObj(GO_OBJ_RECT)
ret = IpAnMove(0, 88, 298)
ret = IpAnMove(5, 207, 389)

ret = IpAnActivateObjID(obj_id) ' make second rectangle active
ret = IpAnDeleteObj() ' delete it

End Sub

See Also IpAnCreateObj, IpAnActivateObjID

 IpAnGet

Page 2-69

IpAnGet
Syntax IpAnGet(sAttr, nValue)

Description This function gets the annotation object attributes.

Parameters sAttr Integer Determines the attribute to get. Must be one of the following:
GO_ATTR_PENCOLOR
GO_ATTR_BRUSHCOLOR
GO_ATTR_TEXTCOLOR for text objects only
GO_ATTR_PENWIDTH for text objects only, nValue in range
1-99
GO_ATTR_PENSTYLE see list below for nValue
GO_ATTR_RECTSTYLE see list below for nValue
GO_ATTR_LINESTART for line and poly objects only
GO_ATTR_LINEEND for line and poly objects only (nValue is
the same for LINESTART and LINEEND)
see list below for nValue
GO_ATTR_ZOOM determines if the objects should be zoomed
with the image,
nValue = 0 or 1
GO_ATTR_CONNECT indicates if poly objects should be
closed, nValue = 0 or 1
GO_ATTR_TEXTWORDWRAP for text objects only, nValue =
0 or 1
GO_ATTR_TEXTCENTERED nValue = 0 or 1
 GO_ATTR_FONTSIZE for text objects only, nValue = size in
points
GO_ATTR_FONTBOLD for text objects only, nValue = 0 or 1
GO_ATTR_FONTITALIC for text objects only, nValue = weight
(0 - 800)
GO_ATTR_FONTUNDERLINE for text objects only, nValue =
0 or 1

 The following functions return the point definitions of
the active annotation object (for IpAnGet only). These
allow the macro writer to access and manipulate an
existing annotation object:
GO_ATTR_NUMPOINTS, return the number of control points
in the object. sAttr: Integer
GO_ATTR_POINTS, return the coordinates of the control
points for the object. sAttr: POINTAPI. Note: sAttr must be an
array large enough to contain the number of points present in
the annotation object.

IpAnGet

Page 2-70

Parameters sAttr, con’t Integer The following functions list any annotation objects present and
obtain their ID’s for selection (for IpAnGet only). These allow the
macro writer to access and manipulate existing annotation
objects, either from the entire set of existing objects or from the
set of selected objects:
GO_OBJ_NUMBER, return number of annotation objects in
nValue.
GO_OBJ_INDEX, return value is the object ID for the (zero-
based) object specified by nValue. Returns IPCERR_INVARG if
out of range.
GO_OBJ_TYPE, This command allows you to get information
about the currently active annotation object. It returns the type of
the current object, using the object creation constants, such as
GO_OBJ_LINE.
GO_SEL_NUMBER, return number of selected (through the GUI)
annotation objects in nValue.
GO_SEL_INDEX, return value is the object ID for the selected
object specified by nValue. Returns IPCERR_INVARG if out of
range.

 Parameters nValue Long Pointer to a long variable to receive the attribute’s new

setting:
GO_PENSTYLE_SOLID
GO_PENSTYLE_DASH
GO_PENSTYLE_DOT
GO_PENSTYLE_DASHDOT
GO_PENSTYLE_DASHDOTDOT
GO_RECTSTYLE_BORDER_NOFILL
GO_RECTSTYLE_BORDER_FILL
GO_RECTSTYLE_NOBORDER_FILL
GO_LINEEND_NOTHING
GO_LINEEND_SMALLARROW
GO_LINEEND_ SMALLDIAMOND
GO_LINEEND_LAREGARROW
GO_LINEEND_LARGEDIAMOND
GO_LINEEND_CIRCLE
GO_LINEEND_SMALLTICKMARK
GO_LINEEND_LARGETRICKMARK

Example Sub IpAnGet_example()

Dim obj_id As Long
Dim pen_style As Long
Dim rect_style As Long
Dim pen_color As Long
Dim brush_color As Long

' create a rectangle and then a second based on the first's
attributes

 obj_id = IpAnCreateObj(GO_OBJ_RECT) ' create first rectangle
and store its id
ret = IpAnMove(0, 229, 77)
ret = IpAnMove(5, 345, 159)
ret = IpAnSet(GO_ATTR_PENSTYLE, GO_PENSTYLE_DOT)
ret = IpAnSet(GO_ATTR_RECTSTYLE, GO_RECTSTYLE_BORDER_FILL)
ret = IpAnSet(GO_ATTR_PENCOLOR, 255)

 ret = IpAnSet(GO_ATTR_BRUSHCOLOR, 16711680)

 IpAnGet

Page 2-71

Example

' activate first rectangle and get its attributes

ret = IpAnActivateObjID(obj_id)
ret = IpAnGet(GO_ATTR_PENSTYLE, pen_style)
ret = IpAnGet(GO_ATTR_RECTSTYLE, rect_style)
ret = IpAnGet(GO_ATTR_PENCOLOR, pen_color)
ret = IpAnGet(GO_ATTR_BRUSHCOLOR, brush_color)

' create second rectangle and set its attributes

ret = IpAnCreateObj(GO_OBJ_RECT)
ret = IpAnMove(0, 229, 299)
ret = IpAnMove(5, 345, 388)
ret = IpAnSet(GO_ATTR_PENSTYLE, pen_style)
ret = IpAnSet(GO_ATTR_RECTSTYLE, rect_style)
ret = IpAnSet(GO_ATTR_PENCOLOR, pen_color)
ret = IpAnSet(GO_ATTR_BRUSHCOLOR, brush_color)

End Sub
Sub get_annotation_object_coordinates()
Dim numPoints As Integer
Dim Points() As POINTAPI
Dim i As Integer

ret = IpAnGet(GO_ATTR_NUMPOINTS, numPoints)
ReDim Points(numPoints) As POINTAPI
ret = IpAnGet(GO_ATTR_POINTS, Points(0))

For i = 0 To numPoints - 1
 Debug.Print "Point #" & (i + 1) & "; x, y = " & Points(i).x
& ", " & Points(i).y
Next i

End Sub

Comments Note for IpAnGet: The object with the value that you are trying to get must be active in the
image. That is, you can only get the textcolor if there is an active text box on the image.
IpAnGet is not recordable.

IpAnGetFontName

Page 2-72

IpAnGetFontName
Syntax IpAnGetFontName(szFontName)

Description This function retrieves the font in the annotation text object.

Parameters szFontName String Character string containing the font name

Example Sub IpAnGetFontName_example()

' create a text annotation containing the name of
' the current font setting

Dim font_name As String*20

ret = IpAnCreateObj(GO_OBJ_TEXT)
ret = IpAnMove(0, 70, 214)
ret = IpAnSet(GO_ATTR_TEXTAUTOSIZE, 1)
ret = IpAnMove(5, 146, 241)
ret = IpAnGetFontName(font_name)
ret = IpAnText(font_name)

End Sub

Comments The font name specified must be installed on your computer. To get a font name, there must be an
active text box in the image.

See Also IpAnText, IpAnSetFontName

IpAnMove
Syntax IpAnMove(nHandle, X, Y)

Description Moves the whole active object, or only one sizing handle to a new position.

Parameters nHandle Integer If nHandle = 0, the entire object moves.
If nHandle = a valid handle number, only that handle
moves

 X,Y Integer Indicates new location for handle or object.

 IpAnPolyAddPtArray

Page 2-73

Example Sub IpAnMove_example()

' lines have 2 handles, one at each end

ret = IpAnCreateObj(GO_OBJ_LINE)
ret = IpAnMove(0, 53, 72)
' inital handle becomes handle 1 after object is drawn
ret = IpAnMove(2, 228, 72)

' rectangles have 8 handles starting wth handle 1 at the upper left
corner
' and proceeding clockwise

ret = IpAnCreateObj(GO_OBJ_RECT)
ret = IpAnMove(0, 54, 114)
ret = IpAnMove(5, 174, 185) ' handle 5 is the lower right corner.

' roundrectangles have 1 additional handle (9) that adjusts the
' radius of the corners

ret = IpAnCreateObj(GO_OBJ_ROUNDRECT)
ret = IpAnMove(0, 55, 223)
ret = IpAnMove(5, 172, 301)

' ellipses have 8 handles like rectangles

ret = IpAnCreateObj(GO_OBJ_ELLIPSE)
ret = IpAnMove(0, 264, 116)
ret = IpAnMove(5, 347, 199)

' polygons have as many handles as vertices

ret = IpAnCreateObj(GO_OBJ_POLY)
ret = IpListPts(Pts(0), "247 233 287 299 322 234 360 302 403 232")
ret = IpAnPolyAddPtArray(Pts(0), 5)

' text objects have 8 handles like rectangles

ret = IpAnCreateObj(GO_OBJ_TEXT)
ret = IpAnMove(0, 45, 359)
ret = IpAnText("Text example")
ret = IpAnMove(5, 138, 378)

End Sub

See Also IpAnDeleteObj, IpAnActivateObj

IpAnPolyAddPtArray
Syntax IpAnPolyAddPtArray(Points, nCount)

Description This function adds a point array for an active annotater poly object.

Parameters Points POINTAPI

The address (name) of the array of point
coordinates (BASIC type, POINTAPI) that
contains the number of coordinate points in the
array.

 NCount Integer A variable indicating the size of the array.

IpAnPolyAddPtString

Page 2-74

Example Sub IpAnPolyAddPtAtrray_example()

ret = IpAnCreateObj(GO_OBJ_POLY)
ret = IpListPts(Pts(0), "67 105 133 204 198 98 274 211 336 98")
ret = IpMorePts("400 214")
ret = IpAnPolyAddPtArray(Pts(0), 6)

End Sub

Comments The macro may be applied multiple times to concatenate arrays. This macro is recorded when a
user creates a poly object as a set of IpListPts() and IpMorePts() functions. No more
than 2048 points may be recorded. An attempt to record points array with larger number of points
will automatically reduce number of points recorded, by recording over every other point.

See Also IpAnAddPtString

IpAnPolyAddPtString
Syntax IpAnPolyAddPtString(Points, nCount)

Description This function adds a point string for an active annotater poly object.

Parameters Points String

String containing the list of points to be added
to the polygon.

 nCount Integer A variable indicating the length of the string.

Example Sub IpAnPolyAddPtString_example()

ret = IpAnCreateObj(GO_OBJ_POLY)
ret = IpAnPolyAddPtString("67 105 133 204 198 98 274 211 336 98
400 214")

End Sub

Comments An array is defined as a string similar to the macro IpListPts() and IpMorePts(). The size of string
is limited only by the compiler. If number of integer values in the string is not even, a zero value
is added. If the string is empty, it is equal to (0,0) point. The macro may be applied multiple
times to concatenate arrays.

See Also IpAnAddPtArray

 IpAnSet

Page 2-75

IpAnSet
Syntax IpAnSet (sAttr, nValue)

Description This function sets the object attributes.

Parameters sAttr Integer Determines the attribute to get. Must be one of the following:
GO_ATTR_PENCOLOR
GO_ATTR_BRUSHCOLOR
GO_ATTR_TEXTCOLOR for text objects only
GO_ATTR_PENWIDTH for text objects only, nValue in range
1-99
GO_ATTR_PENSTYLE see list below for nValue
GO_ATTR_RECTSTYLE see list below for nValue
GO_ATTR_LINESTART for line and poly objects only
GO_ATTR_LINEEND for line and poly objects only (nValue is
the same for LINESTART and LINEEND)
see list below for nValue
GO_ATTR_ZOOM determines if the objects should be zoomed
with the image,
nValue = 0 or 1
GO_ATTR_CONNECT indicates if poly objects should be
closed, nValue = 0 or 1
GO_ATTR_TEXTWORDWRAP for text objects only, nValue =
0 or 1
GO_ATTR_TEXTCENTERED nValue = 0 or 1
GO_ATTR_USEASDEFAULT for IpAnSetAttr only, nValue
ignored
GO_ATTR_FONTSIZE for text objects only, nValue = size in
points
GO_ATTR_FONTBOLD for text objects only, nValue = 0 or 1
GO_ATTR_FONTITALIC for text objects only, nValue = weight
(0 - 800)
GO_ATTR_FONTUNDERLINE for text objects only, nValue
= 0 or 1

 nValue Long Pointer to a long variable to receive the attribute’s new
setting:
GO_PENSTYLE_SOLID
GO_PENSTYLE_DASH
GO_PENSTYLE_DOT
GO_PENSTYLE_DASHDOT
GO_PENSTYLE_DASHDOTDOT
GO_RECTSTYLE_BORDER_NOFILL
GO_RECTSTYLE_BORDER_FILL
GO_RECTSTYLE_NOBORDER_FILL
GO_LINEEND_NOTHING
GO_LINEEND_SMALLARROW
GO_LINEEND_LAREGARROW
GO_LINEEND_LARGEDIAMOND
GO_LINEEND_ SMALLDIAMOND
GO_LINEEND_CIRCLE
GO_LINEEND_SMALLTICKMARK
GO_LINEEND_LARGETICKMARK

IpAnSet

Page 2-76

Example Sub IpAnSet_example()

' line
ret = IpAnCreateObj(GO_OBJ_LINE)
ret = IpAnMove(0, 51, 59)
ret = IpAnMove(2, 220, 59)
ret = IpAnSet(GO_ATTR_PENWIDTH, 3)
ret = IpAnSet(GO_ATTR_LINESTART, GO_LINEEND_SMALLDIAMOND)
ret = IpAnSet(GO_ATTR_LINEEND, GO_LINEEND_LARGEARROW)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)
ret = IpAnSet(GO_ATTR_PENCOLOR, 4194368)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)

 ' rectangle
ret = IpAnCreateObj(GO_OBJ_RECT)
ret = IpAnMove(0, 48, 107)
ret = IpAnMove(5, 211, 208)
ret = IpAnSet(GO_ATTR_RECTSTYLE, GO_RECTSTYLE_BORDER_FILL)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)
ret = IpAnSet(GO_ATTR_PENCOLOR, 16711680)
ret = IpAnSet(GO_ATTR_BRUSHCOLOR, 255)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)

 ' roundrectangle
ret = IpAnCreateObj(GO_OBJ_ROUNDRECT)
ret = IpAnMove(0, 57, 256)
ret = IpAnMove(5, 209, 338)
ret = IpAnSet(GO_ATTR_PENSTYLE, GO_PENSTYLE_DOT)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)
ret = IpAnSet(GO_ATTR_PENCOLOR, 4194368)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)

 ' ellipse
ret = IpAnCreateObj(GO_OBJ_ELLIPSE)
ret = IpAnMove(0, 297, 75)
ret = IpAnMove(5, 413, 191)
ret = IpAnSet(GO_ATTR_RECTSTYLE, GO_RECTSTYLE_NOBORDER_FILL)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)
ret = IpAnSet(GO_ATTR_BRUSHCOLOR, 12632256)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)

 ' polygon
ret = IpAnCreateObj(GO_OBJ_POLY)
ret = IpListPts(Pts(0), "279 250 347 335 332 255 415 315")
ret = IpAnPolyAddPtArray(Pts(0), 4)
ret = IpAnSet(GO_ATTR_LINEEND, GO_LINEEND_LARGEARROW)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)
ret = IpAnSet(GO_ATTR_PENCOLOR, 4194368)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)

 IpAnSetFontName

Page 2-77

 ' text
ret = IpAnCreateObj(GO_OBJ_TEXT)
ret = IpAnMove(0, 51, 382)
ret = IpAnText("Text attributes")
ret = IpAnSet(GO_ATTR_FONTSIZE, 24)
ret = IpAnSet(GO_ATTR_FONTBOLD, 700)
ret = IpAnSet(GO_ATTR_FONTITALIC, 1)
ret = IpAnSet(GO_ATTR_FONTUNDERLINE, 1)
ret = IpAnSetFontName("Times New Roman")
ret = IpAnSet(GO_ATTR_TEXTAUTOSIZE, 1)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)
ret = IpAnSet(GO_ATTR_TEXTCOLOR, 255)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)
ret = IpAnMove(5, 178, 406)

End Sub

IpAnSetFontName
Syntax IpAnSetFontName(szFontName)

Description This function changes the font in the annotation text object.

Parameters szFontName String Character string containing the font name

Example Sub IpAnSetFontName_example()

ret = IpAnCreateObj(GO_OBJ_TEXT)
ret = IpAnMove(0, 97, 276)
ret = IpAnSetFontName("Times New Roman")
ret = IpAnSet(GO_ATTR_TEXTAUTOSIZE, 1)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)
ret = IpAnText("This is Times New Roman")
ret = IpAnSet(GO_ATTR_TEXTAUTOSIZE, 1)
ret = IpAnMove(5, 291, 296)

End Sub

Comments The font specified must be installed on your computer. To set a font, there must be an active text
box in the image.

See Also IpAnText, IpAnGetFontName

IpAnShow
Syntax IpAnShow(Show)

Description This function show or hides the annotation dialog.

Parameters Show Integer Shows or hides the annotation dialog:
 0 = hide the dialog, anything non-zerio shows it.

IpAnShowAnnot

Page 2-78

IpAnShowAnnot
Syntax IpAnShowAnnot(bShow)

Description This function show or hides the annotations on all images.

Parameters bShow Integer Shows or hides the annotations:
 0 = hide the annotations, anything non-zerio shows the
annotations if they exist.

Comments The IpAnShowAnnot function shows or hides image annotations on ALL of the currently open
images. The annotations cannot be printed or modified in any way while they are hidden.

IpAnText
Syntax IpAnText(szText)

Description Places the first line of text in the active annotation text object.

Parameters szText String Character string of text to be placed in the object.

Example Sub IpAnText_example

ret = IpAnCreateObj(GO_OBJ_TEXT)
ret = IpAnMove(0, 97, 276)
ret = IpAnSet(GO_ATTR_TEXTAUTOSIZE, 1)
ret = IpAnSet(GO_ATTR_USEASDEFAULT, 1)
ret = IpAnText("This is annotated text.")
ret = IpAnSet(GO_ATTR_TEXTAUTOSIZE, 1)
ret = IpAnMove(5, 291, 296)

End Sub

See Also IpAnAddText

 IpAnotAttr

Page 2-79

IpAnotAttr
Syntax IpAnotAttr(Attr, Value)

Description Changes the attributes of line, rectangle, or ellipse objects.

Parameters Attr Integer Attribute to be changed. Valid values are:
DRAW_FILLCOLOR sets background color
DRAW_LINECOLOR sets foreground color
DRAW_LINEWIDTH sets width of lines

 Value Long For DRAW_FILLCOLOR and DRAW_LINECOLOR,
this value is used to pass the red, green, and blue
values of the desired color. To set these values, use
the following expression:
Red x 65536 + Greeen x 256 + Blue
Red, Green, and Blue can have values in the range 0
- 255.
For DRAW_LINEWIDTH, the value indicates whether
thick or thin lines should be drawn, according to the
following:
DRAW_THINLINE = thin lines = 1 pixel wide
DRAW_THICKLINE = thick lines = 5 pixels wide

See Also IpDraw, IpDrawClear, IpGetLine, IpDrawClearDoc, IpDrawGet, IpDrawSet, IpDrawText,
IpAnotLine, IpAnotBox, IpAnotEllipse

Comments This function is no longer recorded. It has been retained for compatibility with previous
versions of Image-Pro. New macros should use the IpAn Auto-Pro functions.

IpAnotBox
Syntax IpAnotBox(IpBoxRect, bFilled)

Description Draws a box in the area indicated

Parameters IpBoxRect RECT The name of the variable containing the box
coordinates.

 bFilled Integer Indicates if the box is filled or not

Example ipRect.left = 98
ipRect.top = 46
ipRect.right = 205
ipRect.bottom = 137
Ret = IpAnotBox(ipRect, 1)

See Also IpAnotAttr, IpDrawText, IpDrawClear, IpGetLine, IpDrawClearDoc, IpDrawGet, IpDrawSet,
IpAnotLine, IpAnotEllipse

Comments This function is no longer recorded. It has been retained for compatibility with previous
versions of Image-Pro. New macros should use the IpAn Auto-Pro functions.

IpAnotEllipse

Page 2-80

IpAnotEllipse
Syntax IpAnotEllipse(lpCenter, XRadius, Yradius, bFilled)

Description Draws an ellipse in the area indicated

Parameters lpCenter POINTAPI Indicates the center point of the ellipse

 XRadius Integer Indicates the length of the x-axis radius

 YRadius Integer Indicates the length of the y-axis radius

 bFilled Integer A value of 0 or 1 specifying if the ellipse will be filled
or not.
 0 = not filled
 1 = filled

See Also IpAnotAttr, IpDrawText, IpDrawClear, IpGetLine, IpDrawClearDoc, IpDrawGet, IpDrawSet,
IpAnotLine

Comments This function is no longer recorded. It has been retained for compatibility with previous
versions of Image-Pro. New macros should use the IpAn Auto-Pro functions.

IpAnotLine
Syntax IpAnotLine(IpPoints, Numpoints, Endtype, Filled)

Description Draws a line throught the points indicated.

Parameters IpPoints LPPOINT The name and first element of an array containing
the vertices of the line.

 Numpoints Integer Number of points to be drawn

 Endtype Integer For single lines, indicates the type of line ending.
Must be one of the following

 Value Description

 DRAW_PLAINLINE No endpoints.

 DRAW_LARGEARROWRIGHT A large arrow on the right endpoint.

 DRAW_LARGEARROWLEFT A large arrow on the left endpoint.

 DRAW_LARGEARROWBOTH A large arrow on both endpoints.

 DRAW_SMALLARROWRIGHT A small arrow on the right endpoint.

 DRAW_SMALLARROWLEFT A small arrow on the left endpoint.

 DRAW_SMALLARROWBOTH A small arrow on both endpoints.

 DRAW_CIRCLEARROW A circle on the left endpoint and a large arrow on the
right endpoint

 IpAoiChangeName

Page 2-81

 DRAW_ARROWCIRCLE A largearrow on the left endpoint and a circle on the
right endpoint

 DRAW_DIAMONDBOTH Diamonds on both endpoints

 DRAW_CIRCLEBOTH Circles on both endpoints

 Filled Integer Indicates if the line is filled or not

Example ret = IpListPts(Pts(0), “36 151 99 87 130 171 147 111”)
ret = IpAnotLine (Pts(0), 4, DRAWSMALLARROWRIGHT,0)

See Also IpAnotAttr, IpDrawText, IpDrawClear, IpGetLine, IpDrawClearDoc, IpDrawGet, IpDrawSet,
IpAnotLine, IpAnotBox,IpAnotEllipse

Comments This function is no longer recorded. It has been retained for compatibility with previous
versions of Image-Pro. New macros should use the IpAn Auto-Pro functions.

IpAoiChangeName
Syntax IpAoiChangeName(oldName, newName)

Description This function changes the name of the specified AOI. Equivalent to retyping the name of the
selected AOI in the AOI Manager dialog box.

Parameters oldName String A string specifying the name of the AOI that is to be
renamed. Must not exceed 20 characters in length.

 newName String A string specifying the new name to be given to the
AOI. Must not exceed 20 characters in length.

Example ret = IpAoiChangeName("Box1", "Quadrant0")

This statement will rename the “Box1” AOI to “Quadrant0”.

IpAoiCreateBox
Syntax IpAoiCreateBox(ipRect)

Description This function creates a rectangular AOI of the size specified by ipRect. Equivalent to drawing
a rectangular AOI using the Rectangular AOI drawing tool on the Ribbon.

Parameters ipRect RECT The name of the variable containing the AOI
coordinates. By default this variable is defined as
ipRect.

Example The following statements will create a rectangular AOI positioned from 53,111 (upper-left
corner) to 102,162 (lower-right corner). The ipRect definitions preceding the IpAoiCreateBox
statement specify the AOI's coordinates.

ipRect.left = 53
ipRect.right = 102
ipRect.top = 111
ipRect.bottom = 162
ret = IpAoiCreateBox(ipRect)

See Also IpAoiCreateEllipse, IpAoiCreateIrregular, IpAoiShow

IpAoiCreateDonut

Page 2-82

IpAoiCreateDonut
Syntax IpAoiCreateDonut (ipRect,Thickness)

Description This function creates an elliptical donut AOI bounded by a rectangle of the size specified by
ipRect.

Parameters ipRect RECT The name of the variable containing the AOI
coordinates. By default this variable is defined as
ipRect.

 Thickness Integer The thickness in pixels of the donut AOI.

Example The following statements will create a donut AOI positioned within the bounding box defined
from 53,111 (upper-left corner) to 102,162 (lower-right corner) with a 10-pixel thickness. The
ipRect definitions preceding the IpAoiCreateEllipse statement specify the AOI bounding box
coordinates.

ipRect.left = 53
ipRect.right = 102
ipRect.top = 111
ipRect.bottom = 162
ret = IpAoiCreateDonut (ipRect,10)

See Also IpAoiCreateEllipse, IpAoiCreateIrregular, IpAoiShow

IpAoiCreateEllipse
Syntax IpAoiCreateEllipse(ipRect)

Description This function creates an elliptical AOI, bound by a rectangle of the size specified by ipRect.
Equivalent to drawing an elliptical AOI using the Elliptical AOI drawing tool on the Ribbon.

Parameters ipRect RECT The name of the variable containing the coordinates of
the elliptical AOI's rectangular bounding box. By
default this variable is defined as ipRect.

Example ipRect.left = 53
ipRect.right = 102
ipRect.top = 111
ipRect.bottom = 162
ret = IpAoiCreateEllipse(ipRect)

These statements will create an elliptical AOI positioned within the bounding box defined from
53,111 (upper-left corner) to 102,162 (lower-right corner). The ipRect definitions preceding
the IpAoiCreateEllipse statement specify the AOI bounding box coordinates.

See Also IpAoiCreateBox, IpAoiCreateIrregular, IpAoiShow

 IpAoiCreateIrregular

Page 2-83

IpAoiCreateIrregular
Syntax IpAoiCreateIrregular(ipAoiPoint, NumPoints)

Description This function creates a freeform AOI of the size and shape specified by ipAoiPoint and
NumPoints. Equivalent to drawing a polygonal AOI using the Freeform AOI drawing tool on
the Ribbon.

Parameters ipAoiPoint POINTAPI The name and first element of an array containing the
coordinate-pairs specifying the position of each vertex
in the shape. By default this array is defined as Pts.

 NumPoints Integer An integer specifying the total number of coordinate-
pairs defined in Pts.

Example Sub IpAoiCreateIrregular_example()

ret = IpListPts(Pts(0), "162 93 112 150 151 212 233 216 263 153 219 119
210 67 ")
ret = IpAoiCreateIrregular(Pts(0), 7)

End Sub

See Also IpAoiCreateBox, IpAoiCreateEllipse, IpAoiShow

IpAoiGet

Page 2-84

IpAoiGet
Syntax IpAoiGet(Cmd, Param, OutVal)

Description Use this function to get information relating to the active AOI. There is no Image-Pro
command equivalent to this function; it is one that must be manually written with the macro
editor.

Parameters Cmd Integer A command ID, which specifies the type of AOI
information you want to retrieve. Must be one of the
following:

GETTYPE
GETNUMPTS
GETBOUNDS

GETPOINTS
AOIMGR_GET_NUM

See definitions under Comments, below

 Param Integer An integer specifying data with which Cmd will operate.
See definitions under Comments, below for the values
used by each command

 OutVal See below The address (name) of the variable that will receive the
requested data. Be sure this variable is of the type
required by Cmd. See Cmd description under
Comments, below.

Return Value The value returned by IpAoiGet depends upon the command that was used. The table below
describes the return value produced by each command.

Cmd RETURN VALUE
GETTYPE None

GETNUMPTS None

GETBOUNDS None

GETPOINTS Number of points stored in OutVal. If this value is equal
to Param, OutVal was probably not big enough to hold
the entire list of coordinates.

AOIMGR_GET_NUM None

Example The following example uses IpAoiGet to identify the active AOI's type, and then moves the
AOI 100 pixels to the right.

Dim aoitype As Integer
Dim numpoints As Integer
Dim aoirect As RECT
Dim i As Integer

ret = IpAoiGet(GETTYPE, 0, aoitype)

If aoitype = AOI_BOX Then
 ret = IpAoiGet(GETBOUNDS, 0, aoirect)
 aoirect.left = aoirect.left + 100
 aoirect.right = aoirect.right + 100
 ret = IpAoiCreateBox(aoirect)

 IpAoiGet

Page 2-85

ElseIf aoitype = AOI_ELLIPSE Then
 ret = IpAoiGet(GETBOUNDS, 0, aoirect)
 aoirect.left = aoirect.left + 100
 aoirect.right = aoirect.right + 100
 ret = IpAoiCreateEllipse(aoirect)

ElseIf aoitype = AOI_POLYGON Then
 ret = IpAoiGet(GETNUMPTS, 0, numpoints)
 Redim aoipts(numpoints) As pointapi
 ret = IpAoiGet(GETPOINTS, numpoints, aoipts(0))
 For i = 0 To numpoints - 1
 aoipts(i).x = aoipts(i).x + 100
 Next i
 ret = IpAoiCreateIrregular(aoipts(0), numpoints)
End If

Comments When passing an array from a BASIC program, pass the first element of the array by reference
(see example above).
Cmd options are as follows:

Cmd VALUE DESCRIPTION Param VALUE OutVal TYPE

GETTYPE Use this command to
determine the type of AOI
that is active. OutVal will
be set to one of the
following:
 0
 AOI_BOX
 AOI_ELLIPSE
 AOI_POLYGON
0 signals that no AOI is
currently active.

Not used by
GETTYPE. Must be
set to 0.

Integer

GETNUMPTS Use this command to
determine the number of
points in the outline of a
freeform AOI. OutVal will
be set to this value.

Not used by
GETNUMPTS. Must
be set to 0.

Integer

 Note - GETNUMPTS is
applicable to freeform
AOIs, only (i.e.,
AOI_POLYGON).

GETBOUNDS Use this command to get
the coordinates defining
the AOI's bounding box.
The coordinates will be
written to OutVal.

Not used by
GETBOUNDS. Must
be set to 0.

RECT

IpAoiGetStr

Page 2-86

Cmd VALUE DESCRIPTION Param VALUE OutVal TYPE
GETPOINTS Use this command to get

the coordinates defining
the outline of a freeform
AOI. The coordinates will
be written to the array
specified in OutVal.
Note - this command is
applicable to freeform
AOIs, only (i.e.,
AOI_POLYGON).

The maximum
number of points that
can be written to
OutVal (i.e., the
length of your array).

Note - you can use
GETNUMPTS to
determine the number
of elements needed in
this array.

POINTAPI
Note - OutVal
must specify an
array.

AOIMGR_GET
_NUM Use this command to

determine the number of
AOIs available in the AOI
manager.

Not used. Must be set
to zero.

LONG

See Also IpAoiMove, IpAoiCreate, IpDocOpenAoi

IpAoiGetStr
Syntax IpAoiGetStr(Cmd, Param, OutVal)

Description Use this command to determine the name of an AOI in the AOI manager.

Parameters Cmd String See below

 Param Integer An integer specifying data with which Cmd will
operate.

 OutVal See below The address (name) of the variable that will receive
the requested data. Be sure this variable is of the
type required by Cmd. See Cmd description under
Comments, below.

Cmd VALUE DESCRIPTION Param VALUE OutVal TYPE

AOIMGR_GET_
NAME

Use this command to
determine the name of an AOI
available in the AOI manager.

The index of the
AOI of interest,
from 0 to the
number of AOIs,
 -1.

STRING

Return Value The name of the available AOI.

 IpAoiManager

Page 2-87

IpAoiManager
Syntax IpAoiManager(FuncId, Name)

Description This function is used to manipulate AOIs in the AOI list. Equivalent to using the Add, Del,
Set, Load and Save buttons in the AOI Manager dialog box.

Parameters FuncId Integer An enumerated integer specifying the type of AOI
management action that is to be performed. Must be
one of the following:

 AOIADD
 AOIDELETE
 AOIHIDEDLG
 AOILOAD
 AOISAVE
 AOISET

 AOISHOWDLG
 See definitions under Comments, below.

 Name String A string specifying the data upon which FuncId is to
operate. See definitions under Comments, below, for
the values allowed by each option.

Example ipRect.left = 21
ipRect.top = 18
ipRect.right = 85
ipRect.bottom = 50
ret = IpAoiCreateBox(ipRect)
ret = IpAoiManager(AOIADD, "Box1")

This set of statements will create the rectangular AOI defined by ipRect and add it to the
current AOI list as “Box1”.

Comments When the Name parameter is an empty string, all AOIs are deleted from the list.
FuncId options are as follows:

VALUE DESCRIPTION Name VALUES
AOIADD Adds the active AOI to the AOI list,

assigning it the name specified by the
Name parameter.

Note - If the name specified by the
Name parameter is one that already
exists in the current AOI list, the new
AOI definition will replace the
existing one.

The string in Name must
specify the name to be
given to the added AOI.

AOIDELETE Deletes the AOI specified by the
Name parameter. When the Name
paramter is an empty string, all AOIs
are deleted from the list

The string in Name must
specify the name of the
AOI to be deleted or an
empty string to delete all
AOIs.

IpAoiManager

Page 2-88

VALUE DESCRIPTION Name VALUES
AOIHIDEDLG Closes the AOI Manager dialog box

if it is open.
The Name parameter is
ignored when
AOIHIDEDLG is used.
When this is the case, just
set Name to an empty
string (i.e., "").

AOILOAD Loads an AOI list from the file
specified by Name.

The string in Name must
specify the name of the file
containing the AOI list.

AOISAVE Saves the current AOI list to the file
specified by Name.

The string in Name must
specify the name of the file
to which you want the AOI
list stored.

AOISET Assigns the AOI specified by Name to
the active image.

The string in Name must
specify the name of the
AOI to be assigned.

AOISHOWDLG Displays the AOI Manager dialog
box.

The Name parameter is
ignored when
AOISHOWDLG is used.
When this is the case, just
set Name to an empty
string (i.e., "").

See Also IpAoiChangeName

 IpAoiMove

Page 2-89

IpAoiMove
Syntax IpAoiMove(deltaX, deltaY)

Description This function moves the active AOI. Equivalent to dragging the current AOI to a new position
with your mouse.

Parameters deltaX Integer An integer specifying the distance, in pixels, by which
the AOI is to be moved horizontally. Positive values
move the AOI to the right; negative values to the left.

 deltaY Integer An integer specifying the distance, in pixels, by which
the AOI is to be moved vertically. Positive values
move the AOI down; negative values up.

Example ret = IpAoiMove(0, -20)

This statement will move the active AOI 20 pixels up from its current position.

 IpAoiMultAppend
Syntax IpAoiMultAppend(Append)

Description This function adds the current regular AOI to the current multiple AOI or clears the current
multiple AOI.

Parameters Append Integer 1 = add the current AOI to the multiple AOI
0 = clear/reset the current multiple AOI

Example ipRect.left = 94
ipRect.top = 131
ipRect.right = 200
ipRect.bottom = 189
ret = ApAoiCreateBox(ipRect)
ret = IpAoiMultShow(1)
ret = IpAoiMultAppend(1)

Comments IpAoiMultShow must be included in the commands for this macro to work.

See Also IpAoiMultShow

 IpAoiMultShow
Syntax IpAoiMultShow(Mode)

Description This function shows or hides the current multiple AOI.

Parameters Mode Integer 1 = show the current multiple AOI
0 = hide the current multiple AOI

See Also IpAoiMultAppend

IpAoiShow

Page 2-90

IpAoiShow
Syntax IpAoiShow(FrameType)

Description This function activates or deactivates the currently defined AOI. Equivalent to clicking any of
the AOI tool buttons on the Ribbon.

Parameters FrameType Integer An enumerated integer specifying the kind of AOI to be
activated. Must be one of the following:

FRAME_NONE
FRAME_RECTANGLE
FRAME_ELLIPSE
FRAME_IRREGULAR
FRAME_INVIEW
FRAME_RESET

See definitions under Comments, below.

Comments FrameType options are as follows:

VALUE DESCRIPTION

FRAME_NONE

Deactivates the current AOI. Equivalent to clicking
an enabled AOI tool button to deactivate it.

FRAME_RECTANGLE Activates the currently defined rectangular AOI.

FRAME_ELLIPSE Activates the currently defined elliptical AOI.

FRAME_RESET Activates a new AOI.

FRAME_IRREGULAR Activates the currently defined freeform AOI.

FRAME_INVIEW Moves the AOI so it can be seen. Useful in Zoom
and Pan modes.

See Also IpAoiShow, IpAoiCreateBox, IpAoiCreateEllipse, IpAoiCreateIrregular

IpAoiValidate
Syntax IpAoiValidate()

Description This function refreshes the image's internal AOI description, based on the AOI currently shown
on the screen. For performance reasons the internal AOI is not maintained in real-time (i.e., it
is not updated every time the user moves, resizes or deactivates an AOI). Instead, it is the
responsibility of each AOI-constrained operation to initialize this description (from the screen)
when it begins. Image-Pro commands perform this function implicitly. Similarly, if you are
developing your own AOI-constrained process, your procedure must call IpAoiValidate
when it begins. This ensures that the region affected by your program is the one most recently
defined by your user.

See Also IpAoiCreateBox, IpAoiCreateEllipse, IpAoiCreateIrregular

 IpAppArrange

Page 2-91

IpAppArrange
Syntax IpAppArrange(mode)

Description This function is used to arrange open image windows within the Image-Pro application
window. Equivalent to the Tile Images, Cascade Images or Arrange Images commands.

Parameters mode Integer An enumerated integer specifying the way in which
the open image windows are to be arranged. Must
be one of the following:
 DOCS_CASCADE
 DOCS_TILE
 DOCS_OVERLAP
See definitions under Comments, below.

Example ret = IpAppArrange(DOCS_OVERLAP)

This statement will arrange the windows one on top of the other.

Comments mode options are as follows:

VALUE DESCRIPTION

DOCS_CASCADE Layers all open image windows one on top of the
other, such that all title bars are visible.
Equivalent to the Cascade command.

DOCS_TILE Arranges all open image windows in side-by-side
(i.e., “tiled”) fashion. Equivalent to the Tile
command.

DOCS_OVERLAP Stacks all open image windows one on top of the
other. Equivalent to the Overlap command.

See Also IpDocMinimize, IpDocMaximize, IpDocMove

IpAppCloseAll
Syntax IpAppCloseAll()

Description This function closes all open image windows. Equivalent to the Close All command.

See Also IpAppExit, IpDocClose

IpAppCtl

Page 2-92

IpAppCtl
Syntax IpAppCtl(CtlName,ParmCommand, ParmValue)

Description Gets or sets value of a control in the currrently acctive dialog box.

Parameters CtlName String The label, caption, or sting ID of the control.

 ParmValue Long Values for ParmCommand

 Command Value Description

 ParmCommand Integer Commands to invoke. Must be one of the
following

 APC_GETWND Variable that will
receive the handle
of the control.

Gets the window handle of a control.

 APC_CLICK Ignored. Clicks a button (control).

 APC_GETFOCUSID Return value. Returns the ID of the control in focus.

 APC_SETFOCUSID ID of control Sets the ID of the control in focus.

 APC_SETCHECK 0 = uncheck
1= check

Checks or unchecks a checkbox or radio
button.

 APC_GETCHECK 0 = uncheck
1= check

Gets the state of a checkbox or radio button.

 APC_SETSCROLL -1 = up
-2 = down
-3 = top most
-4 = bottom most
-5 = page up
-6 = page down

Sets the scroll position with relative or
absolute values.
A positive value sets the scroll positon.

 APC_GETSCROLL Scroll position Gets the scroll position of the scroll box.

 APC_GETCURSEL 0 = topmost
Current selection
in a list box.

Gets the current selection in a list box or a
drop-down combo box.

 APC_SETCURSEL 0 = topmost Sets the current selection in a list box or a
drop-down combo box.

 APC_SETPOSX 0 = first column Sets the column position of a grid

 APC_SETPOSY 0 = first row Sets the row of a grid

See Also IpAppWindow, IpAppCtlText

 IpAppCtlText

Page 2-93

IpAppCtlText
Syntax IpAppCtlText(CtlName,Caption, Mode)

Description Gets or sets value of a caption of a control

Parameters CtlName String The label, caption, or string ID of the control on the
currently active window or dialog.

 Caption String The caption of the control.

 Mode Integer 0 = Gets the caption into Caption.
1= Sets the caption of the control to Caption.

 Example The first example sets the edit text box following “File Name”
with “Germs.TIF”.

The second example copies the content of control ID 2342 into
the Caption.

ret = IpAppCtlText(”FileName”, Germs.Tif,1)
ret = IpAppCtlText(“#2342,Caption, 0)

See Also IpAppCtl

IpAppExit
Syntax IpAppExit()

Description This function closes Image-Pro. Equivalent to the Exit command.

See Also IpAppCloseAll, IpDocClose

IpAppGet

Page 2-94

IpAppGet
Syntax IpAppGet(Cmd, Param, OutVal)

Description Multi-purpose query function for application-related information.

Parameters Cmd Integer A command ID. See table below for list of commands.

 Param Integer Parameter of the command

 OutVal See below The reference to a variable that will receive the results
of the command. The type of this variable depends on
the command.

Example
'Get the Windows handle for Image-Pro
Dim ipHandle as long
ret = IpAppGet(GETAPPWND, 0, ipHandle)
'Check that Image-Pro is running
if ipHandle = 0 then
 ' Image-Pro is not running.
 ...

end if
'Get the serial number of the copy protection plug:
Dim plugsn as integer
ret = IpAppGet (GETPLUGSN, 0, plugsn)
if ret <> 0 then
 'Plug was found. Check serial number.
 if plugsn = 1234 then
 ...
 end if
end if
...

Comments Each copy of Image-Pro has a unique serial number which is printed on the box and
programmed into the copy protection plug.

 IpAppGet

Page 2-95

Command Param OutVal Return Value Description

GETAPPWND Not used. Must
be 0.

Long None. Gets the Windows handle
to Image-Pro. When
called from an external
program, this command
will return 0 if Image-Pro
is not running.

GETPLUGSN Not used. Must
be 0.

Integer 0 if plug is not
found. 1 if plug is
found.

Gets the serial number of
the copy protection plug.
Each copy of Image-Pro
has a unique serial
number.

MACRO_
PAUSE_TYPE

Not used. Must be
0.

Integer None MACRO_PAUSE_
TYPE. This command is
used to determine how the
new IpMacroPause function
will behave when the macro
uses the MP_
RESPECTSETTING mode.
When this mode is specified
and the MACRO_PAUSE_
TYPE command is set to any
non-zero value, the
IpMacroPause function will
behave like the
MP_WAITFORRESPONSE
mode was selected and will
wait for the user to make a
selection by clicking one of
the dialog buttons.

PST_BLEND_P
REVIEW

Not used. Must
be 0.

Integer None Gets a value indicating
whether paste preview will
be blended (if the value is
non-zero) or not.

PST_BLEND_A
PPLY

Not used. Must
be 0.

Integer None Gets a value indicating
whether paste will be
blended when it is applied to
the image (if the value is
non-zero) or not.

IpAppGet

Page 2-96

Command Param OutVal Return Value Description
PST_BLEND_S
OURCE

Not used. Must be
0.

Integer None Gets a value indicating the
contribution of the pasted
data during blending. This is
expressed as a percentage,
where 100 indicates that the
pasted data will be used with
no blending, 50 indicates an
equal contribution of the
pasted data and target image
data, and 0 indicates the
target image data will not be
modified by the paste. Note
that the
PST_BLEND_PREVIEW
and PST_BLEND_APPLY
attributes determine whether
the blending percentage is
used to preview or during
paste application, or neither.

PST_APPLY_T
YPE

Not used. Must
be 0.

Integer None Gets a value indicating the
type of blending that will
apply when pasting, from the
following types:

PST_APPLY_ALL:
All pasted data will be
applied according to the
current blending.

PST_APPLY_LIGHTER:onl
y pixels in the pasted data
that are lighter than the
destination image will be
applied.

PST_APPLY_DARKER:Onl
y darker pixels will be
applied.

 IpAppGet

Page 2-97

Command Param OutVal Return Value Description
WINDOW_
TILING_
TYPE

Not used. Must
be 0.

Integer None Controls whether to
modify the standard
behavior of the Windows,
Tile command and the
IpAppArrange(DOCS_TIL
E…) Auto-Pro function.
The tiling type can be set
to TILE_NORMAL (the
standard Windows tiling
behavior) or any
combination of the
following constants (with
one exception noted
below):

 TILE_ZOOM_TO_FIT Changes the zoom factor of the images to try to display as
much of the image as possible in the tiled workspace.

TILE_REORDER Reorders the workspaces by the age of the document, by
columns first and then by rows. The oldest document will be in the top-left corner of
the Image-Pro workspace, the next oldest under it in the first column, and so on
until the first column is full and a new column is added to the right of the first.

TILE_SAMESIZE All workspaces will be set to the same size as the smallest
workspace. The workspaces may be different sizes after tiling if the images are
different sizes, or in some cases when the tiled layout results in some columns
having more images than others.

TILE_COMPACT Arranges the workspaces so that they are directly next to each
other in the columns and rows, such that any unused space in the Image-Pro Plus
workspace will be found at the bottom and/or right side. TILE_COMPACT is only
VALID when TILE_SAMESIZE is also specified.

See Also IpDocGet, IpAppGetStr

IpAppGetStr

Page 2-98

IpAppGetStr
Syntax IpAppGetStr(Cmd, Param, OutVal)

Description Use this function to get string data for application-related information.

Parameters Cmd Integer A command ID, see below.

 Param Integer Parameter of the command

 OutVal String The address of the string that will receive the results
of the command.

Command Param OutVal Return Value Description

GETAPPVERSION Not used. Must be
0.

Name of a fixed-
length string
variable.

None. Returns the application’s
version number.

GETOSVERSION Not used. Must be
0.

Name of a fixed-
length string
variable.

None. Returns the OS name and
version number.

GETAPPDIR Not used. Must be
0.

Name of a fixed-
length string
variable.

None. Returns the path to the
directory where Image-
Pro is installed

GETAPPSETTINGSDIR Not used. Must be
0.

Name of a fixed-
length string
variable.

None. Returns the full path to
the Image-Pro settings
folder.

Example sub load_image0
 dim appdir as string*255
 ret = IpAppGetStr(GETAPPDIR, 0, appdir)
 ret = IpWsLoad(IpTrim(appdir) + "images\spots.tif",
"TIF")
end sub

See Also IpAppGet

IpAppHide
Syntax IpAppHide(bHide)

Description This function displays or suppresses the display of Image-Pro application window controls.
Equivalent to toggling between Show Border and Hide Border views using the F4 key.

Parameters bHide Integer A value of 0 or 1 specifying whether the control border
is to be displayed or suppressed. Where:
0 - displays the control border
1 - suppress the control border

Example ret = IpAppHide(1)

This statement will hide the control border.

 IpAppMaximize

Page 2-99

IpAppMaximize
Syntax IpAppMaximize()

Description This function maximizes (enlarges to maximum size) the Image-Pro application window.
Equivalent to clicking the Maximize button on the Control bar.

See Also IpAppMinimize, IpAppRestore, IpAppSize, IpDocMaximize

IpAppMenuSelect
Syntax IpAppMenuSelect(Id1, Id2, ItemName, Mode)

Description This function is used to invoke a menu item from the main Image-Pro command bar. This
command is never recorded; it is one that must be manually written into your macro if it is
needed. It will work ONLY with the menu where it was created (see the Menu Selection
portion of your Reference Guide).

Parameters Id1 Integer An integer specifying the menu or menu item to be
invoked. The values required by Id1 are determined by
Mode. See Mode definitions below.

 Id2 Integer An integer specifying the sub-menu item to be invoked.
The values required by Id2 are determined by Mode.
See Mode definitions below.

 ItemName String A string specifying the menu item name, as it is defined
in the IPWIN32.MNU file. This parameter is used
when Mode is set to MENU_NAME.

 Mode Integer An enumerated integer specifying the method by which
the menu item is being specified. Must be one of the
following:

 MENU_ID
 MENU_NAME
 MENU_COORD
See definitions under Comments, below.

Example The following statements illustrate three ways in which the Open menu command could be
invoked, assuming its default IPWIN32.MNU definition had not been modified.
ret = IpAppMenuSelect(102, 0, "", MENU_ID)
ret = IpAppMenuSelect(0, 0, "&Open...", MENU_NAME)
ret = IpAppMenuSelect(0, 1, "", MENU_COORD)

Comments Mode options, and their associated Id1, Id2 and ItemName values are as follows. Shaded
parameters are ones that are ignored when the described Mode is used. For the DLG commands to
work, the dialog box containing the menu or tab must be active and in focus.

IpAppMenuSelect

Page 2-100

Mode DESCRIPTION Id1 Id2 ItemName

DLG_MENU_ID Used to invoke the menu of
an active dialog box by its
menu ID.

An integer
specifying the
command's ID
number.

ID2 is ignored.
Set it to 0.

ItemName is
ignored. Set
it to an
empty string
(i.e., "").

DLG_MENU_NAME Used to invoke a menu or tab
of an active dialog box by its
name.

ID1 is ignored. Set
it to 0.

ID2 is ignored.
Set it to 0.

A string
specifying
the
command's
name.

DLG_MENU_COORD Used to invoke a menu
command or tab of an active
dialog box by its position on
the menu or tab.

Specifies the menu
on which the
command is
located, where 0 is
the first menu or
tab, 1 is the second
menu or tab and so
forth.

Specifies the
item number
within the menu,
where 0 is the
first item in the
menu, 1 is the
second item and
so forth.

ItemName is
ignored. Set
it to an
empty string
(i.e., "").

MENU_ID Used to invoke a resident
command by its
IPWIN32.MNU ID number.

See important note below
about the use of MENU_ID.

An integer
specifying the
command's ID
number as defined
in IPWIN32.MNU.

ID2 is ignored.
Set it to 0.

ItemName is
ignored. Set
it to an
empty string
(i.e., "").

MENU_NAME Used to invoke a menu
command by its
IPWIN32.MNU name.

ID1 is ignored. Set
it to 0.

ID2 is ignored.
Set it to 0.

A string
specifying
the
command's
name, as
defined in
IPWIN32.M
NU.

MENU_COORD Used to invoke a menu
command by its position on
the command bar.

Specifies the menu
on which the
command is
located, where 0 is
the first menu, 1 is
the second menu
and so forth.

Specifies the
item number
within the menu,
where 0 is the
first item in the
menu, 1 is the
second item and
so forth.

ItemName is
ignored. Set
it to an
empty string
(i.e., "").

When MENU_ID is used, the Id1 parameter must reference the ID value defined in the
command's progitem or progbutton statement in the IPWIN32.MNU file. The ID value
is the last value listed in such a statement, as shown below:

 progitem Ne&w...,Make document.,0,101

 progbutton SAVE,Save current document to disk.,783, 105

 IpAppMinimize

Page 2-101

Important - the MENU_ID option can only be used to call commands that are resident within
the main Image-Pro program, not commands that reside in a Dynamic Link Library (DLL).
Therefore, it cannot be used to invoke commands that are defined with item or button
statements in IPWIN32.MNU.

When MENU_NAME is used, the ItemName parameter must contain the name of the command
exactly as it is defined by the progitem or item statement in the IPWIN32.MNU file,
including the & symbol and any embedded spaces or punctuation (such as an ellipsis). The
name is contained in the Title parameter of a IPWIN32.MNU progitem or item statement, as
shown in the examples below:

 progitem Ne&w...,Make document.,0,101

 item &Color Transform...,Color Models.,colordlg.dll,56,100

Note that the name includes all characters up to, but not including, the comma that separates the
name from the following parameter.

See Also IpAppSize, IpDocMove

IpAppMinimize
Syntax IpAppMinimize()

Description This function minimizes (reduces to an icon) the Image-Pro application window. Equivalent to
clicking the Minimize button on the Control bar.

See Also IpAppMaximize, IpAppRestore, IpAppSize, IpDocMinimize

IpAppMove
Syntax IpAppMove(X, Y)

Description This function moves the Image-Pro application window to the screen position specified by x,y,
where x,y specifies the new position for the upper-left corner of the window. Equivalent to
dragging the Image-Pro application window to a new position.

Parameters X Integer An integer specifying the x-coordinate of the pixel to
which the upper-left corner of the Image-Pro window is
to be moved.

 Y Integer An integer specifying the y-coordinate of the pixel to
which the upper-left corner of the Image-Pro window is
to be moved.

Example ret = IpAppMove(20,40)

This statement will move the Image-Pro application window to screen position 20,40.

See Also IpAppSize, IpDocMove

IpAppRestore

Page 2-102

IpAppRestore
Syntax IpAppRestore()

Description This function returns the Image-Pro application window to its previous screen position and
size, from a minimized or maximized state. Equivalent to clicking the Restore button on a
maximized window or double-clicking the icon of a minimized window.

See Also IpAppMaximize, IpAppMinimize

IpAppRun
Syntax IpAppRun(CommandLine, ShowMode, RunMode)

Description This function executes a DOS or Windows application program. There is no Image-Pro
command equivalent for this function; it is one that must be manually written to your macro
with the macro editor.

Parameters CommandLine String A string specifying the program file name (if it is a
Windows application) or the PIF file name (if it is a
DOS application) and any required arguments.

 ShowMode Integer An enumerated integer specifying the way in which the
application's window is to be displayed after the
program is loaded. Must be one of the following:
 RUN_NORMAL
 RUN_MINIMIZED
 RUN_MAXIMIZED
See definitions under Comments, below.

 RunMode Integer An enumerated integer specifying the way in which
control is to be transferred between Image-Pro and the
application. Must be one of the following:
 RUN_AUTOCLOSE
 RUN_MODAL
 0
See definitions under Comments, below.

Example ret = IpAppRun("DEMO10.EXE", RUN_NORMAL, RUN_AUTOCLOSE)

This statement loads the DEMO10 program and displays its window at its normal size and
position. This program will automatically close when Image-Pro is closed.

Comments Allowable ShowMode options are as follows:

ShowMode DESCRIPTION

RUN_NORMAL Displays the application window in its default size and position.

RUN_MINIMIZED Displays the application window as an icon.

RUN_MAXIMIZED Displays the application window in full-screen mode.

 IpAppSelectDoc

Page 2-103

Allowed RunMode options are as follows:

RunMode DESCRIPTION

0 The macro will continue executing after the application is
loaded. The application will remain open when Image-Pro is
closed.

RUN_AUTOCLOSE The macro will continue executing after the application is
loaded. The application will automatically close when Image-
Pro is closed.

RUN_MODAL The macro will stop and resume only after the other application
is terminated (Image-Pro will be disabled while the application
is active).

IpAppSelectDoc
Syntax IpAppSelectDoc(DocId)

Description This function makes the specified image window the active image, where DocId specifies the
number associated with an open image.

Parameters DocId Integer An integer identifying the ID of the open image
(where the first image opened is image 0) or one of
the following:

DOCSEL_NEXTID
DOCSEL_PREVID

See definitions under Comments, below.

Example ret = IpAppSelectDoc(2)
This statement will select image window number 2 as the active image.

Comments A document “ID” (DocId) is assigned to an image window when it is opened. It retains this ID
for the duration of its existence. IDs are assigned consecutively, in the order in which images are
opened. The next higher ID number is used when a new window is created — e.g., if image 4 is
already open, the next image is assigned an ID of 5.
Because of the dynamic nature of DocId (the mix and sequence of images on your desktop
varies from session to session), macros involving multiple images should be recorded and
played back from an empty imaging area (i.e., one in which there are no images open), or
images should be selected relatively using the DOCSEL_NEXTID and DOCSEL_PREVID
options described below. These measures will ensure that the recorded image numbers select
the intended images on playback.

DocId DESCRIPTION

DOCSEL_NEXTID Selects the image with the next-higher ID, relative to
the active image. If the active image has the highest
ID, the image with the lowest ID is selected.

DOCSEL_PREVID Selects the image with the next-lower ID, relative to
the active image. If the active image has the lowest ID,
the image with the highest ID is selected.

IpAppSet

Page 2-104

IpAppSet
Syntax IpAppSet(Attribute, Value)

Description This function sets the application attributes.

Parameters Attribute Integer Must be one of the following:
PST_BLEND_PREVIEW = Set whether to blend on
paste preview.
PST_BLEND_APPLY = Set whether to blend on paste
apply.
PST_BLEND_SOURCE = Set the blending
percentage. See Comments, below.
PST_APPLY_TYPE = Set the type of blending that will
be applied. See Comments, below.
MACRO_PAUSE_TYPE = Determins how
IpMacroPause will behave. See comments below.

 Value Integer The new value for the specified attribute.

Comments The PST attributes modify the behavior of the IpWsPaste function.
The PST_BLEND_PREVIEW and PST_BLEND_APPLY are flags where if the value is non-
zero, the blending will be applied. The PST_BLEND_SOURCE value is only used if blending is
applied, and must be specified as a percentage, where 100 indicates that the pasted data will be
used with no blending, 50 indicates an equal contribution of the pasted data and target image data,
and 0 indicates the target image data will not be modified by the paste.

The PST_APPLY_TYPE value modifies the paste so that an pixel-by-pixel intensity comparison
is to decide whether to apply the paste, and must be one of the following values:
PST_APPLY_ALL = All pasted data will be applied according to the current blending.
PST_APPLY_LIGHTER = Only pixels in the pasted data that are lighter than the destination
image will be applied.
PST_APPLY_DARKER = Only darker pixels will be applied.

 IpAppSize

Page 2-105

Comments WINDOW_TILING_TYPE= Modifies the selection oof the Windows, Tile command. The tiling
type can be set to TILE_NORMAL (the standard Windows tiling behavior) or any combination of
the following constants (with one exception noted below):

TILE_ZOOM_TO_FIT= Changes the zoom factor of the images to try to display as much of the
image as possible in the tiled workspace.

TILE_REORDER = Reorders the workspaces by the age of the document, by columns first and
then by rows. The oldest document will be in the top-left corner of the Image-Pro workspace, the
next oldest under it in the first column, and so on until the first column is full and a new column
is added to the right of the first.

TILE_SAMESIZE = All workspaces will be set to the same size as the smallest workspace. The
workspaces may be different sizes after tiling if the images are different sizes, or in some cases
when the tiled layout results in some columns having more images than others.

TILE_COMPACT = Arranges the workspaces so that they are directly next to each other in the
columns and rows, such that any unused space in the Image-Pro Plus workspace will be found at
the bottom and/or right side.

MACRO_PAUSE_TYPE = This command is used to determine how the new IpMacroPause
function will behave when the macro uses the MP_RESPECTSETTING mode. When this mode
is specified and the MACRO_PAUSE_TYPE command is set to any non-zero value, the
IpMacroPause function will behave like the MP_WAITFORRESPONSE mode was selected and
will wait for the user to make a selection by clicking one of the dialog buttons.

IpAppSize
Syntax IpAppSize(Width, Height)

Description This function changes the size of the Image-Pro application window to the specified width and
height.

Parameters Width Integer An integer specifying the width, in pixels, at which the
Image-Pro application window is to be displayed.

 Height Integer An integer specifying the height, in pixels, at which the
Image-Pro application window is to be displayed.

Example ret = IpAppSize(800, 400)

This statement will resize the Image-Pro application window to half-screen length on a super-
VGA monitor.

Comments Be aware that there is a minimum size to which the Image-Pro application window can be set. If
you specify dimensions below this minimum, your values will be ignored, and the minimum will
be used. The minimum values vary depending upon the resolution of your screen and the font
that is used.

See Also IpAppRestore, IpAppMove

IpAppUpdateDoc

Page 2-106

IpAppUpdateDoc
Syntax IpAppUpdateDoc(DocId)

Description This function directs Image-Pro to repaint the specified image window, repaint all open image
windows or refrain from repainting any image window. From an Auto-Pro macro, it can be
used to force a repaint before macro termination, so that the results of intermediate macro steps
can be viewed as they occur. From a Visual Basic or Visual C++ program, it can be used to
improve program performance by selectively updating the screen.
There is no command equivalent for this function; it is one that must be manually written into
your macro with the macro editor.

Parameters DocId Integer An integer identifying the ID of the open image (where
the first image opened is image 0) or one of the
following:

DOCSEL_ACTIVE
DOCSEL_ALL
DOCSEL_NONE

See definitions under Comments, below.

Example The following Auto-Pro macro segment will adjust the brightness and contrast characteristics
of the active image, and then sharpen it. After each operation the image will be repainted.
This allows the viewer to see the result of each step as it is executed. Without the
IpAppUpdateDoc statements in this macro, the user would see only the final result when the
macro was finished.
Note - if this segment were executed from a Visual Basic or Visual C++ program, the screen
would automatically be updated after each step. See second example, below.

ret = IpLutSetAttr(LUT_BRIGHTNESS, 78)

ret = IpAppUpdateDoc(DOCSEL_ACTIVE)
ret = IpLutSetAttr(LUT_CONTRAST, 60)
ret = IpAppUpdateDoc(DOCSEL_ACTIVE)
ret = IpLutApply()
ret = IpFltSharpen(5, 8, 2)

If the following sequence were called from a Visual Basic or Visual C++ program, the active
image would not be updated until the entire sequence of LUT and filtering statements had been
performed.
ret = IpLutSetAttr(LUT_BRIGHTNESS, 78)

ret = IpAppUpdateDoc(DOCSEL_ACTIVE)
ret = IpLutSetAttr(LUT_CONTRAST, 60)
ret = IpAppUpdateDoc(DOCSEL_ACTIVE)
ret = IpLutApply()

ret = IpFltSharpen(5, 8, 2)

ret = IpAppUpdateDoc(DOCSEL_NONE)
ret = IpLutSetAttr(LUT_BRIGHTNESS, 78)
ret = IpLutSetAttr(LUT_CONTRAST, 60)
ret = IpLutApply()

ret = IpFltSharpen(5, 8, 2)
ret = IpFltMedian(5, 2)

ret = IpAppUpdateDoc(DOCSEL_ACTIVE)

 IpAppUpdateDoc

Page 2-107

Comments Update the image window only when it is truly necessary. Frequent repainting will slow down a
macro.
DocId options are as follows:

DocId VALUE DESCRIPTION

DOCSEL_ACTIVE Specifies that the active image is to be repainted.

DOCSEL_ALL Specifies that all open images are to be repainted.

DOCSEL_NONE Specifies that no images are to be repainted until the next call to
IpAppUpdateDoc with DOCSEL_ACTIVE or DOCSEL_ALL is
performed.
In a Visual Basic or Visual C++ program, you might want to
use DOCSEL_NONE to eliminate screen painting for
performance reasons, since the screen is, otherwise, updated
every time an Auto-Pro function is called (DOCSEL_NONE can
be set in an Auto-Pro macro, too, however, there is really no
purpose in doing so, since by default, the screen is updated only
when the macro ends or is interrupted by a message box). In
any event, regardless of what program called DOCSEL_NONE, it
must, at some point before its termination, disable this mode by
calling DOCSEL_ALL or DOCSEL_ACTIVE. If this isn't done,
the non-painting mode will continue to be in effect even after
the macro or program terminates, and Image-Pro returns to its
normal, interactive mode.

IpAppWindow

Page 2-108

IpAppWindow
Syntax IpAppWindow(WindowName, WindowParm, Mode)

Description Gets the name and window ID of the active window, or activates a window.

Parameters Window
Name

String The title of the active window.

 Window
Parm

Long The ID or title of the active window.

 Mode Integer 0 = Gets the name of the active window in
WindowName
1= Gets the ID of the active window in WindowParm
2 = Gets the handle of the active window in
WindowParm
3 = Activates the window named in WindowName
4 = Activates a window with the ID equal to
WindowParm
5 = Activates a window with the window handle equal
to WindowParm

Example The following example shows how the AppWindow parameters are used.

ret = IpAppWindow ("Untitled1",0,3)
ret = IpAppWindow ("", 1324,4)
ret = IpAppWindow (WindowName,0, 1,)
ret = IpAppWindow ("Bugs.TIF",WindowParm, 2,)
ret = IpAppWindow ("", WindowParm,5)

See Also IpAppCtl

IpAppWndPos
Syntax IpAppWndPos(WindowName, ipRect, Mode)

Description Sets or gets the position of a window using screeen coordinates

Parameters Window
Name

String The name or ID of the window.

 IpRect RECT Location of the window in screen coordinates.

 Mode Integer 0 = Gets the window position
1= Sets the window position

See Also IpAppWindow, IpAppWndState

 IpAppWndState

Page 2-109

IpAppWndState
Syntax IpAppWndState(WindowName, Statet, Mode)

Description Sets or gets the state of a window.

Parameters Window
Name

String The name or ID of the window.

 State Integer WST_ENABLED
WST_VISIBLE
WST_NORMAL
WST_MINIMIZED
WST_MAXIMIZED

 Mode Integer 0 = Get the window state
1= Set the window state

See Also IpAppWindow, IppAppWndPos

IpBayerGet Int

Page 2-110

IpBayerGet Int
 Syntax IpBayerGetInt(Attribute, Value)

Description This function can be used to get the current value of the Bayer Interpolation options.

Parameters Attribute Integer Indicates the Bayer interpolation attribute to be
inquired, from the following list (see IpBayerSetInt for
details):
BAYER_INTERPOLATION_MODE – The Bayer
interpolation mode.

BAYER_PIXEL_FORMAT – The pixel format.

BAYER_PIXEL_OFFSET – The pixel offset.

BAYER_GREEN_PLANE – The green plane option.
BAYER_OUTPUT – The output option.

 Value Integer An integer variable to receive the current value of the
attribute.

See Also IpBayerSetInt

IpBayerInterpolate
Syntax IpBayerInterpolate()

Description This function is used to process the active image using the current options.

Return Value If successful, the document ID of the first workspace created as the output of the interpolation, or
an error code if the interpolation fails.

 IpBayerSetInt

Page 2-111

IpBayerSetInt
 Syntax IpBayerSetInt(Attribute, Value)

Description This function can be used to set the Bayer Interpolation options.

Parameters Attribute Integer Indicates the Bayer interpolation attribute to be set,
from the following list:
BAYER_INTERPOLATION_MODE – Sets the Bayer
interpolation mode, to one of the following:
BAYER_NO_INTERPOLATION, BAYER_BILINEAR,
or BAYER_BICUBIC.

BAYER_PIXEL_FORMAT – Sets the pixel format to
one of the following: BAYER_FMT_R_GR_GB_B,
BAYER_FMT_GR_R_B_GB,
BAYER_FMT_GB_B_R_GR, or
BAYER_FMT_B_GB_GR_R.

BAYER_PIXEL_OFFSET – Sets the pixel offset to
one of the following: BAYER_NO_OFFSET,
BAYER_HORIZONTAL_OFFSET,
BAYER_VERTICAL_OFFSET, or
BAYER_BOTH_OFFSET.

BAYER_GREEN_PLANE – Sets the green plane
options to one of the following:
BAYER_COMBINE_GREEN (the most common use,
where both the Gr and Gb pixel planes are combined
into the final green plane that is output),
BAYER_USE_GR (where only the Gr plane is
returned), or BAYER_USE_GB (where only the Gb
plane is returned). Note: This attribute is only used
for pixel replication, and will be ignored when the
interpolation mode is set to the bilinear or bicubic
options.

BAYER_OUTPUT – Sets the output to
BAYER_OUTPUT_RGB (where a single RGB image
is output) or BAYER_OUTPUT_PLANES (where
each plane is output separately as a new image
workspace).

 Value Integer Indicates the new value for the attribute (must be one
of the above).

See Also IpBayerGetInt

IpBayerShow

Page 2-112

IpBayerShow
Syntax IpBayerShow(Show)

Description This function shows or hides the Bayer Interpolation feature

Parameters Show Integer 0 = hide Bayer Interpolation
1 (or greater) = show Bayer Interpolation

IpBitAttr
Syntax IpBitAttr(Attribute, Value)

Description This function selects, sets, or deselects options relating to the Bitmap Analysis command.

Parameters Attribute Integer An enumerated integer identifying the option to be set.
Must be one of the following:
BIT_SAMPLE
BIT_CALIB
BIT_SAVEALL
See definitions under Comments, below.

 Value Integer An integer specifying how the option specified in Attrib
is to be set. See definitions below for the values
allowed by each option.

Example The following example sets the sampling rate to every other pixel on every other line.

ret = IpBitAttr(BIT_SAMPLE, 2)

Comments Attrib options are as follows:

Attribute DESCRIPTION Value VALUES

BIT_SAMPLE Sets the sampling rate to the
interval specified in Value.
Equivalent to the Bitmap
Analysis window's Sampling
command.

1 - Every pixel.
2 - Every other pixel.
3 - Every 3rd pixel.
.
.
.

BIT_CALIB Specifies whether the bitmap
values are reported in calibrated
or uncalibrated format.
Equivalent to the Bitmap
Analysis window's Intensity Cal
command.

0 - Display actual.
1 - Display calibrated.

BIT_SAVEALL Specifies whether the top row and
left column will be saved with the
bitmap values. Equivalent to the
Bitmap Analysis window's Pixel
Values Only command.

0 - Save pixels only.
1 - Save pixels with row

and column legends.

See Also IpBitShow, IpBitSaveData

 IpBitSaveData

Page 2-113

IpBitSaveData
 Syntax IpBitSaveData(Filename, SaveMode)

Description This function saves a block of image data in ASCII form to a file or to the Clipboard.
Equivalent to the Bitmap Analysis window's Save Data, Append Data, and Copy To
Clipboard commands.

Parameters Filename String A string specifying the name of the file to which the
bitmap analysis ASCII data will be written.
This parameter is ignored when SaveMode is set to
S_CLIPBOARD. When this is the case, set FileName to
an empty string (i.e., "").

 SaveMode Integer An enumerated integer specifying whether the bitmap
data is to be stored as a new file, appended to an
existing file or written to the Clipboard. Where:

0 - Stores data to a new file (if the file already
 exists, it will be overwritten).

S_APPEND - Appends data to an existing file.
S_CLIPBOARD - Copies data to the Clipboard.
S_PRINT_TABLE - sends data to the printer
S_LEGEND - Saves the legend with the data. Without
the legend, equivalent to checking the "pixel values
only" in the Bitmap Analysis dialog.

Return Value This function will return a 0 if successful. A negative number, otherwise.

Example The following example will save a block of image data from an AOI to the Clipboard.
' create a 16x16 box AOI.

ipRect.left = 100
ipRect.top = 100
ipRect.right = 115
ipRect.bottom = 115
ret = IpAoiCreateBox(ipRect)

' show the bitmap analysis tool.
ret = IpBitShow(1)
' set save attribute to pixels only.
ret = IpBitAttr(BIT_SAVEALL, 0)
' copy the 16x16 block to the clipboard.
ret = IpBitSaveData("", S_CLIPBOARD)

Comments You must call IpBitShow to open the Bitmap Analysis window before calling this function.
IpBitSaveData will fail if the Bitmap Analysis window is not displayed.

See Also IpBitShow, IpBitAttr

IpBitShow

Page 2-114

IpBitShow
Syntax IpBitShow(bShow)

Description This function is used to display, hide and update the Bitmap Analysiswindow. Equivalent to
selecting the Bitmap Analysiscommand to open the window or clicking the Updatemenu or
Close button within it to update or close it.

Parameters bShow Integer An integer value of 0, 1 or 2, specifying whether the
Bitmap Analysis command window is to be shown,
closed or updated. Where:

0 - Closes the window if it is already open.
1 - Opens the window.
2 - Updates the window.

Example ret = IpBitShow(1)

The statement above will open the Bitmap Analysis command window.

Comments If you intend to save bitmap data using IpBitSaveData, you must first call this function with
its bShow flag enabled. Otherwise, IpBitSaveData will fail.

See Also IpBitSaveData, IpBitAttr

IpBlbCount
Syntax IpBlbCount()

Description This function counts and measures the objects in the active image or AOI. Equivalent to
clicking the Count button in the Count/Sizecommand window.

Return Value This function returns an integer representing the number of counted objects within range, or 0
if no objects were found.

Comments Image-Pro will utilize the current intensity, option and measurement settings if you have not
explicitly set them using the IpBlbSetRange, IpBlbSetAttr and IpBlbEnableMeas
functions.

When it is necessary to ensure that your counting macro operates under specific intensity, options
and measurement values, consider saving these values to an environment file. Your program can
then initialize the environment by loading this file via the IpBlbLoadSetting function. Or
you may set them explicitly via the IpBlbSetAttr function.
Generally, this is the second of three steps for obtaining measurement data from objects. The
first and third steps are IpBlbEnableMeas and IpBlbData.

See Also IpBlbSetAttr, IpBlbEnableMeas, IpBlbSetRange, IpBlbLoadSetting, IpBlbMeasure

 IpBlbCreateMask

Page 2-115

IpBlbCreateMask
Syntax IpBlbCreateMask()

Description This function makes a mask from the current count/size result. Equivalent to selecting the
Make Mask command from the Image menu in the Count/Size window.

Comments This statement does nothing if there is no count associated with the active image.

IpBlbData
Syntax IpBlbData(Measure, FromObj, ToObj, DataArray)

Description This function is used to get the measurement data associated with the active object count.
There is no Image-Pro command equivalent to this function; it is one that must be manually
written with the macro editor.

Parameters Measure Integer An enumerated integer specifying the measurement
type for which data is to be obtained. See list in
IpBlbEnableMeas for standard count/size
measurements. This function also supports the
following population density measurements:
BPOP_OBJECTS - A population density measurement
that returns an array containing the number of objects
found in each site.
BPOP_AREA - A population density measurement
that returns an array containing the calibrated area of
each site.
BPOP_DENSITY - A population density measurement
that returns an array containing the density of each
site. Density is calculated as the object count divided
by the calibrated area.
BPOP_CORRDENSITY - A population density
measurement that returns an array containing the
corrected density of each site. Corrected density is
calculated as thedensity minus the background density.
Use the GETNUMSITES command for IpBlbGet to
obtain the length of an array necessary to hold the
population data.

IpBlbData

Page 2-116

 BPOP_OBJECTS_STATS – returns an array of 4
singles: mean, sum, background, and total, in that
order.
BPOP_AREA_STATS - returns an array of 4 singles:
mean, sum, background, and total, in that order.
BPOP_DENSITY_STATS - returns an array of 4
singles: mean, sum, background, and total, in that
order.
BPOP_CORRDENSITY_STATS - returns an array of 4
singles: mean, sum, background, and total, in that
order.
BCLUSTER_STATS - returns an array of 6 singles:
original count, cluster count, single object count,
number of objects in clusters, total objects, and total
object area, in that order.
BLEX_RADIUS - list of radii
BLEX_DIAMETER - list of diameters
BLEX_CALIPER - list of calipers
BLEX_BRANCHLEN - list of branch lengths

 FromObj Integer An integer representing the ID number of the first
object for which you want measurements (the very first
object in the counted set is considered object 0).

 ToObj Integer An integer representing the ID number of the last
object for which you want measurements (the very first
object in the counted set is considered object 0).

 DataArray Single The address (name) of the array (of BASIC type,
Single) that will receive the measurement data. This
array should be large enough to store (ToObj -
FromObj + 1) numbers.

 IpBlbData

Page 2-117

Comments When passing an array to Image-Pro from a BASIC program, be sure to pass the first element of

the array by reference (see example below).
Generally, this is the third of three steps for obtaining measurement data from objects. The first
and second steps are IpBlbEnableMeas and IpBlbCount or IpBlbMeasure. You can find more
information about segmentation range macros on the Media Cybernetics website.
For all of the BLOBM_ measurements, the FromObj parameter should specify the first object
and the ToObj parameter the last object of the set of objects to inquire. Typically, FromObj is
specified as 0 (zero) and ToObj specified as the number of objects - 1. For the BLEX_
measurements, the function returns an array of measurements per object. The FromObj
parameter specifies the object number. For the BLEX_RADIUS, BLEX_DIAMETER, and
BLEX_CALIPER measurements, the ToObj parameter is used to specify the number of radial
measurements that should be calculated and returned. If ToObj is specified as 0 (zero), the
function returns the number of measurements by default (32), or the number of measurements
set via BLBCMD_SETNUMANGLES. For the BLEX_BRANCHLEN measurement, ToObj
indicates the length of array provided. To inquire the number of branches for a given object,
use IpBlbData to get the BLBM_DENDRITES measurement.
To save Count/Size data together with the active image, use IpGalAdd with an empty string
parameter in your macro.

Return Value 0 if successful.

See Also IpBlbGet, IpBlbCount, IpBlbMeasure, IpBlbFilter, IpBlbEnableMeas

Example ' this macro gets the list of area measurements
' for the current object count
 Sub GetAreaData()
 Dim lNum As Long
 Dim lObj As Long
 IpBlbGet(BLBGET_GETNUMOBJEX, 0, 2, lNum)
 ReDim fVals(lNum) As Single
 IpBlbData(BLBM_AREA, 0, lNum-1, fVals(0))
 For lObj = 0 To lNum - 1
 Debug.Print lObj+1; vbTab;
 Debug.Print fVals(lObj)
 Next lObj
End Sub

IpBlbData

Page 2-118

Example
Attribute VB_Name = "Module1"
'this macro prompts the user for how many radius measurements
'to perform and which object to perform them on.

Sub get_radii()
Dim radii(90) As Single
Dim objid As Integer, i As Integer
Dim numangles As Integer
Dim fangle As Single

numangles = 32
ret = IpStGetInt("number of radii?", numangles, 32, _
 2, 90)
fangle = 360.0 / numangles

ret = IpOutputShow(1)
ret = IpOutputClear()

ret = IpBlbGet(GETHIT, 0, 0, objid)

If objid > 0 Then
 ret = IpBlbData(BLEX_RADIUS, objid-1, _
 numangles, radii(0))
 Debug.Print "object: " + Str$(objid) + _
 " # angles: " + Str$(numangles)
 Debug.Print "angle:" + vbTab + vbTab + _
 "radius:"

 For i = 0 To numangles - 1
 Debug.Print Str$(fangle * i) + vbTab _
 + vbTab + Str$(radii(i))
 Next i
End If

End Sub

 IpBlbData

Page 2-119

Example 'same as above, but with diameters instead of radii.
Sub get_diameters()
Dim radii(90) As Single
Dim objid As Integer, i As Integer
Dim numangles As Integer
Dim fangle As Single

numangles = 16
ret = IpStGetInt("number of diameters?", _
 numangles, 16, 2, 90)
fangle = 180.0 / numangles

ret = IpOutputShow(1)
ret = IpOutputClear()

ret = IpBlbGet(GETHIT, 0, 0, objid)

If objid > 0 Then
 ret = IpBlbData(BLEX_DIAMETER, objid-1, _
 numangles, radii(0))
 Debug.Print "object: " + Str$(objid) + _
 " # angles: " + Str$(numangles)
 Debug.Print "angle:" + vbTab + vbTab + _
 "diameter:"
 For i = 0 To numangles - 1
 Debug.Print Str$(fangle * i) + _
 vbTab + vbTab + _
 Str$(radii(i))
 Next i
End If
End Sub

IpBlbData

Page 2-120

Sub GetMultiRangeData()
Dim iRng As Integer
Dim iNumRng As Integer
Dim iObj As Integer
Dim iNumObj As Integer

ret = IpBlbGet(GETNUMRANGES, 0, 0, iNumRng)
If (ret < 0) Then
 Exit Sub
End If

For iRng = 0 To iNumRng - 1
 IpBlbRange(iRng)
 ret = IpBlbGet(GETNUMOBJ, 0, 2, iNumObj)
 ReDim Ranges(iNumObj) As Single
 ret = IpBlbData(BLBM_SRANGE, 0, iNumObj-1, _
 Ranges(0))

 For iObj = 0 To iNumObj - 1
 Debug.Print iObj+1; vbTab;
 Debug.Print Ranges(iObj)
 Next iObj
Next iRng
End Sub

 Sub GetCaliper()
Dim caliper(90) As Single
Dim i As Integer, objid As Integer

ret = IpBlbGet(GETHIT, 0, 0, objid)
ret = IpBlbData(BLEX_CALIPER, objid - 1, 90, _
 caliper(0))

Debug.Print "Object ID: "; objid
For i = 0 To 90 - 1
 Debug.Print i*2; " degrees "; caliper(i)
Next i
Debug.Print
End Sub

 IpBlbData

Page 2-121

 'The following is example code for getting population
'density and/or cluster data:

Dim iNumSites As Integer
Dim i As Integer
Dim sOut As String

ret = IpBlbGet(BLBGET_GETNUMSITES, 0, 0, iNumSites)
If ret = IPCERR_NONE And iNumSites > 0 Then
ReDim fObj(iNumSites) As Single
ReDim fArea(iNumSites) As Single
ReDim fDens(iNumSites) As Single
ReDim fCorr(iNumSites) As Single
ret = IpBlbData(BPOP_OBJECTS, 0, iNumSites-1, _
 fObj(0))
ret = IpBlbData(BPOP_AREA, 0, iNumSites-1, _
 fArea(0))
ret = IpBlbData(BPOP_DENSITY, 0, iNumSites-1, _
 fDens(0))
ret = IpBlbData(BPOP_CORRDENSITY, 0, iNumSites-1, _
 fCorr(0))
sOut = "# sites: " + CStr(iNumSites) + vbCrLf
ret = IpOutput(sOut)

 For i = 0 To iNumSites - 1
 sOut = "#" + CStr(i + 1) + ":" + vbTab + _
 CStr(fObj(i)) + vbTab + _
 CStr(fArea(i)) + vbTab + _
 CStr(fDens(i)) + vbTab + _
 CStr(fCorr(i)) + vbCrLf
 ret = IpOutput(sOut)
Next i

ReDim fObj(4) As Single
ReDim fArea(4) As Single
ReDim fDens(4) As Single
ReDim fCorr(4) As Single
ret = IpBlbData(BPOP_OBJECTS_STATS, 0, 0, fObj(0))
ret = IpBlbData(BPOP_AREA_STATS, 0, 0, fArea(0))
ret = IpBlbData(BPOP_DENSITY_STATS, 0, 0, fDens(0))
ret = IpBlbData(BPOP_CORRDENSITY_STATS, 0, 0, _
 fCorr(0))
sOut = "Pop Dens statistics: " + vbCrLf
ret = IpOutput(sOut)

For i = 0 To 3
 sOut = "#" + CStr(i) + ":" + vbTab + _
 CStr(fObj(i)) + vbTab + _
 CStr(fArea(i)) + vbTab + _
 CStr(fDens(i)) + vbTab + _
 CStr(fCorr(i)) + vbCrLf
 ret = IpOutput(sOut)
Next i
End If

Page 2-122

ReDim fObj(6) As Single
ret = IpBlbData(BCLUSTER_STATS, 0, 0, fObj(0))

If ret = IPCERR_NONE Then
sOut = "Cluster statistics: " + vbCrLf
ret = IpOutput(sOut)
sOut = "Original Count: " + vbTab + _
 CStr(fObj(0)) + vbCrLf
ret = IpOutput(sOut)
sOut = "Cluster Count: " + vbTab + _
 CStr(fObj(1)) + vbCrLf
ret = IpOutput(sOut)
sOut = "Single Count: " + vbTab + _
 CStr(fObj(2)) + vbCrLf
ret = IpOutput(sOut)
sOut = "Count in Clusters:" + vbTab + _
 CStr(fObj(3)) + vbCrLf
ret = IpOutput(sOut)
sOut = "Total Count: " + vbTab + _
 CStr(fObj(4)) + vbCrLf
ret = IpOutput(sOut)
sOut = "Typical Object: " + vbTab + _
 CStr(fObj(5)) + vbCrLf
ret = IpOutput(sOut)
End If

 IpBlbDelete
Syntax IpBlbDelete()

Description This function clears the current set of counted objects and measurements. Equivalent to
clicking the Delete button in the Count/Size command window.

Page 2-123

IpBlbEnableMeas
Syntax IpBlbEnableMeas(MeasurementType, bEnable)

Description This function enables or disables the specified measurement type in preparation for a
Count/Size operation. Equivalent to selecting or deselecting a measurement type with the
Select Measurements command.

Parameters MeasurementType Integer An enumerated integer specifying the measurement
to be selected or deselected. Must be one of the
following:

 BLBM_ALL
BLBM_AREA
BLBM_AREAPOLY
BLBM_ASPECT
BLBM_BLUE
BLBM_BOXX
BLBM_BOXY
BLBM_BOX_AREA
BLBM_BOX_XY
BLBM_BRANCHLEN
BLBM_CENTRX
BLBM_CENTRY
BLBM_CLASS
BLBM_CLUMPINESS
BLBM_CLUSTER
BLBM_CMASSX
BLBM_CMASSY
BLBM_DENDRITES

 BLBM_DENSDEV

BLBM_DENSITY
BLBM_DENSMAX
BLBM_DENSSMIN
BLBM_DENSSUM
BLBM_DIRECTION
BLBM_ENDPOINTS
BLBM_FRACTDIM
BLBM_GREEN
BLBM_HETEROGENEITY
BLBM_HOLEAREA
BLBM_HOLEAREARATIO
BLBM_IOD
BLBM_LENGTH
BLBM_MAJORAX

IpBlbEnableMeas

Page 2-124

 Measurement
Type, con’t

Integer BLBM_MARGINATION
BLBM_MAXCALIP
BLBM_MAXFERRET
BLBM_MAXRADIUS
BLBM_MEANCALIP
BLBM_MEANFERRET
BLBM_MINCALIP
BLBM_MINFERRET
BLBM_MINORAX
BLBM_MINRADIUS
BLBM_NUMHOLES
BLBM_PCONVEX
BLBM_PELLIPSE
BLBM_PERAREA
BLBM_PERIMETER
BLBM_PERIMETER2
BLBM_PERIMETER3
BLBM_PERIIMETERLEN
BLBM_PRATIO
BLBM_RADIUSRATIO
BLBM_RANGE
BLBM_RED
BLBM_ROUNDNESS
BLBM_SIZECOUNT
BLBM_SRANGE
BLBM_WIDTH

 BEnable Integer An integer value of 0 or 1 that will select or deselect
the measurement type specified in
MeasurementType as follows:
 0 - Deselects the specified measurement
 1 - Selects the specified measurement

Example ret = IpBlbEnableMeas(BLBM_PERIMETER,1)

This statement selects the perimeter measurement. When the IpBlbCount or
IpBlbMeasure function is subsequently performed, the perimeter measurement (and any
other currently selected measurements) of all counted objects are recorded.

Comments To ensure that your counting macro records all, and only, the measurement types you want,
consider saving the settings to an environment file. Your program can then initialize the
environment with the appropriate measurement types by loading this file via the
IpBlbLoadSetting function.
Alternatively, while recoding your macro, (and before performing the first count) choose
File:Record Environment from the Count/Size menu bar. This will record every setting in the
Count/Size dialog.
Generally, this is the first of three steps for obtaining measurement data from objects. The
second and third steps are IpBlbCount or IpBlbMeasure and IpBlbData.
BLBM_SRANGE returns zeros for the range number for all except the first range.

Page 2-125

See Also IpBlbCount, IpBlbSetAttr, IpBlbLoadSetting , IpBlbMeasure, IpBlbData

IpBlbFilter
Syntax IpBlbFilter()

Description This function eliminates counted objects whose measurements do not meet the specified
measurement criteria. Equivalent to the “Filter Objects” button in the “Set Ranges” dialog box.

See Also IpBlbSetFilterRange

IpBlbFromAOI
Syntax IpBlbFromAOI (sResetAOI)

Description This function converts an AOI to an object.

Parameters sResetAOI Integer Indicates whether to reset the AOI after conversion or
not. 0 does not reset the AOI. 1 resets the AOI.

Example ret = IpBlbFromAOI(1)

IpBlbGet

Page 2-126

IpBlbGet
Syntax IpBlbGet(Cmd, Param1, Param2, OutVal)

Description Use this function to get information relating to the object count in the current image. There is
no command equivalent to this function; it is one that must be manually written with the macro
editor.

Parameters Cmd Integer A command ID, which specifies the type of information
you want to retrieve. Must be one of the following:

GETNUMOBJEX
GETSTATUS
GETPOINTS
GETRANGE
GETSTATS
GETHIT
GETTHRESH
GETHBLOB
GETMEASENABLED
GETNUMSAMPLES
GETNUMPTS
GETNUMRANGES
GETNUMSITES
GETSITESTATS
GETRANGESTATS
GETIPPSETTINGS
GETSEGMENTATION
GETBOUNDS

Or one of the BLOB attributes used with
GETIPPSETTINGS. See definitions under Comments,
below.

 Param1 Long An integer specifying data with which Cmd will operate.
See definitions under Comments, below, for the values
required by each command.

 Param2 Long An integer specifying additional data with which Cmd
will operate. See definitions under Comments, below,
for the values required by each command

 OutVal See below The address (name) of the variable that will receive the
requested data. Be sure this variable is of the type
required by Cmd. See Cmd description under
Comments, below.

Return Value IpBlbGet returns a 0 if successful except when used with the GETPOINTS command. Then it
will return the number of points stored to OutVal. If this value is equal to Param2, chances are
that OutVal was not large enough to hold all of the points. See GETPOINTS under Comments,
below.

Example The following statements perform an XOR on the inside of all visible objects.

 IpBlbGet

Page 2-127

Redim blbpts(1000) As POINTAPI

Dim numpoints As Integer, numobj As Integer
Dim status As Integer, i As Integer

' get the total number of objects, in-range and out-of-range,
' hidden and visible.

ret = IpBlbGet(GETNUMOBJ, 0, 0, numobj)

For i = 0 To numobj - 1

 ret = IpBlbGet(GETSTATUS, i, 0, status)
 Debug.print ret ' (status)
 ' if object in-range and visible...
 If status >= 0 Then
 'get the outline of the object
 numpoints = IpBlbGet(GETPOINTS, i, 1000, blbpts(0))
 Debug.print numpoints
 If numpoints > 0 Then
 ' create AOI out of the object outline and XOR it.
 ret = IpAoiCreateIrregular(blbpts(0), numpoints)
 ret = IpOpNumberLogic(0, OPL_NOT, 0)
 End If
 End If

Next i

The following statements binarizes the active image based upon the threshold established by the
count.

Dim threshold As Single

ret = IpBlbGet(GETTHRESH, 0, 0, threshold)
ret = IpLutBinarize(0, threshold, 0)

The following statement gets the number of points.
Sub testBlbGet()
 Dim iNum As Integer
 ret = IpBlbGet(GETNUMPTS, 22, 0, iNum)
 MsgBox("Returns " & CStr(iNum))
 ReDim ptTmp(iNum) As POINTAPI
 iNum = IpBlbGet(GETPOINTS, 22, iNum, ptTmp(0))
 MsgBox("Returns " & CStr(iNum))
End Sub

The following macro gets multiple ranges and other data.

Sub PrintObjectRanges()
 Dim iRng As Integer
 Dim iNumRng As Integer
 Dim iObj As Integer
 Dim iNumObj As Integer
 Dim NextRng As Integer
 Dim iAllObj As Integer
 Dim i As Integer, j As Integer

 'count the number of segmentation ranges
 ret = IpBlbGet(GETNUMRANGES, 0, 0, _
 iNumRng)

IpBlbGet

Page 2-128

 If (ret < 0) Then
 Exit Sub
 End If

 'Make sure that the Range measurement is
 'enabled and get rid of hidden objects
 ret = IpBlbEnableMeas(BLBM_AREA, 1)
 ret = IpBlbEnableMeas(BLBM_SRANGE, 1)
 ret = IpBlbMeasure()
 ret = IpBlbUpdate(4)

 'create arrays to hold all of the data
 'from all ranges
 ret = IpBlbGet(GETNUMOBJ, 0, _
 BLB_ALLOBJECTS, iAllObj)
 ReDim Areas(iAllObj) As Single
 ReDim Ranges(iAllObj) As Single

 NextRng = 0

 'Label the output
 ret = IpOutputShow(1)
 ret = IpOutputClear()
 Debug.Print "Objects by Range"
 Debug.Print "Rng-Obj";
 Debug.Print Chr(9); "Area"; Chr(9);
 Debug.Print "Range"

 'Iterate through the ranges
 For iRng = 0 To iNumRng - 1
 IpBlbRange(iRng)
 ret = IpBlbGet(GETNUMOBJ, 0, _
 BLB_ACTIVERANGE, iNumObj)
 ReDim tmpAreas(iNumObj) As Single
 ReDim tmpRanges(iNumObj) As Single
 ret = IpBlbData(BLBM_AREA, 0, _
 iNumObj-1, tmpAreas(0))
 ret = IpBlbData(BLBM_SRANGE, 0, _
 iNumObj-1, tmpRanges(0))

 'iterate through the objects in the
 'current range and build data lists
 'for all objects in the image
 For iObj = 0 To iNumObj - 1
 Debug.Print iObj+1;
 Debug.Print Chr(9); tmpAreas(iObj);
 Debug.Print Chr(9); tmpRanges(iObj)

 Areas(NextRng + iObj) = _
 tmpAreas(iObj)
 Ranges(NextRng + iObj) = _
 tmpRanges(iObj)
 Next iObj

 NextRng = NextRng + iNumObj
 Next iRng

 'label the output
 Debug.Print ""

 IpBlbGet

Page 2-129

 Debug.Print "The entire list of objects"
 Debug.Print "Obj #";
 Debug.Print Chr(9); "Area";
 Debug.Print Chr(9); "Range"

 'iterate through all objects in the image
 For iObj = 0 To iAllObj - 1
 Debug.Print iObj+1;
 Debug.Print Chr(9); Areas(iObj);
 Debug.Print Chr(9); Ranges(iObj)
 Next iObj
End Sub
' Requires that Count/Size be run with whatever segmentation
ranges have been
chosen
Sub GetSegmentation()
 Dim Range(10) As Single
 Dim i As Integer

 ret = IpBlbGet(GETRANGE, 0, 0, Range(0))
 Debug.Print Range(0); Range(1)

 ret = IpBlbGet(GETRANGE, 0, 1, Range(0))
 Debug.Print Range(0); Range(1)

 ret = IpBlbGet(GETRANGE, 0, 2, Range(0))
 Debug.Print Range(0); Range(1)

End Sub

Comments When passing an array to the program from a BASIC program, be sure to pass the first
element of the array by reference (see example, above).
Note that as of Ipp 6.1. GETNUMOBJ has been replaced with GETNUMOBJEX.
Commands are listed below:

Cmd DESCRIPTION

GETNUMOBJEX This command gets the number of objects that have been counted in
the active image. The variable to receive the object count must be a
long. This number will be written to OutVal.

 Param1 VALUE Param2 VALUE OutVal TYPE

 An integer from 1
to 255 specifying
the class, or 0 for
all classes.

BLB_ALLOBJECTS = 0
BLB_INRANGE = 1
BLB_ACTIVERANGE
= 2

Long

IpBlbGet

Page 2-130

Cmd DESCRIPTION

GETSTATUS Param1 VALUE Param2 VALUE OutVal TYPE

GETSTATUS Gets the status of the object specified in Param1. Status is written to
OutVal, as follows:

-1 - Object is out of range or hidden.
-0 - Object is in range.
1 to 255 - object is in range and belongs to the indicated class (i.e.,
OutVal will report a value from 1 to 255 when data have been
classified).

 An integer
specifying the
requested object's
number, where 0 is
the first object, 1 is
the second object,
and so forth.

Not used by
GETSTATUS. Must be
set to 0.

Integer

Cmd DESCRIPTION
GETPOINTS This command gets the list of coordinates defining the outline of the

object specified in Param1. The coordinates will be written to the
array you have specified in OutVal.
Note - the number of points written to OutVal will be returned by the
IpBlbGet. If this value is equal to Param2, OutVal was probably
not big enough to hold the entire list of coordinates.

To close the polygon representing the outline of the object, a line from
the last point in the array to the first point in the array will be
required.

 Param1 VALUE Param2 VALUE OutVal TYPE

 An integer
specifying the
requested object's
number, where 0 is
the first object, 1 is
the second object,
and so forth.

The number of
elements allocated in
OutVal (i.e., the size
of the array).
See the
GETNUMPTS
command

POINTAPI

 IpBlbGet

Page 2-131

Cmd DESCRIPTION

GETRANGE This command returns the starting and ending values of the range
specified in Param1. This range values will be written to OutVal. Note
that OutVal must be an array of two singles. The starting value will be
in the first and the ending value in the second.

 Param1 VALUE Param2 VALUE OutVal TYPE

 An integer
specifying the
range to inquire,
from 0 to the
number of ranges –
1.

Not used. Single

Note: To return array values for upper and lower range limits, use:
Dim Array (0 to 1) as Single
…
IPBLBGET (GETRANGE, BLBM_AREA, 0, ARRAY (0))
1st single = lower range, 2nd single = upper range

Cmd DESCRIPTION

GETSTATS This command gets the statistical data for the measurement type
specified by Param2. It will write the statistics to a 10-element array
in OutVal, as follows:

OutVal (0) - Mean value
OutVal (1) - Standard Deviation
OutVal (2) - Minimum measurement
OutVal (3) - Maximum measurement
OutVal (4) - Range
OutVal (5) - Sum
OutVal (6) - Object ID-1 with Minimum measurement
OutVal (7) - Object ID-1 with Maximum measurement
OutVal (8) - Number of objects
OutVal (9) - Not Currently Used

 An integer from 1
to 255 specifying a
specific class, or 0
for all classes.

An enumerated
integer specifying the
requested
measurement type
(e.g., BLBM_AREA,
BLBM_ASPECT,
BLBM_RED). See
IpBlbEnableMeas for
a complete list of the
allowed measurement
types.

Single
Note - OutVal
must specify a 10-
element array.

IpBlbGet

Page 2-132

Cmd DESCRIPTION

GETRANGESTATS Param1 VALUE Param2 VALUE OutVal TYPE

 An integer from 1
to 255 specifying a
specific range, or 0
for all ranges
(equivalent to
using GETSTATS
with class = 0).

An enumerated
integer specifying the
requested
measurement type
(e.g., BLBM_AREA,
BLBM_ASPECT,
BLBM_RED). See
IpBlbEnableMeas for
a complete list of the
allowed measurement
types.

Single

Note - OutVal
must specify a 10-
element array.

 This commands gets the statistical data for a range of objects, instead
of a class of obeject (use GETSTATS for a class). It will write the
statistics to a 10-element array in OutVal, as follows:

OutVal (0) - Mean value
OutVal (1) - Standard Deviation
OutVal (2) - Minimum measurement
OutVal (3) - Maximum measurement
OutVal (4) - Range
OutVal (5) - Sum
OutVal (6) - Object ID-1 with Minimum measurement
OutVal (7) - Object ID-1 with Maximum measurement
OutVal (8) - Number of object
OutVal (9) - Not Currenly Used

Cmd DESCRIPTION

GETHIT Param1 VALUE Param2 VALUE OutVal TYPE

 Not used by
GETHIT. Must be
set to 0.

Not used by GETHIT.
Must be set to 0.

Long

 This command prompts the user to click on an object. It will write the
object's label number to OutVal. A 0 will be written to OutVal if the
user does not select a valid object.
Note - an object's label number is its external number ⎯ the one the
user sees on the screen when the labels are displayed. External
numbering begins with 1, not 0.

 IpBlbGet

Page 2-133

Cmd DESCRIPTION

GETTHRESH This command calculates the threshold between objects and
background. It writes the threshold value to OutVal.

 Param1 VALUE Param2 VALUE OutVal TYPE

 Not used by
GETTHRESH.
Must be set to 0.

Not used by
GETTHRESH. Must
be set to 0.

Single

Cmd DESCRIPTION

GETNUMSAMPLES This parameter gets information about the number sample
measurements.

 Param1 VALUE Param2 VALUE OutVal TYPE

 BLEX_RADIUS
BLEX_CALIPER
BLEX_DIAMETER
BLEX_BRANCHLEN

Indicates the number
of samples taken
while finding all the
radial mesurements.

Long

Cmd DESCRIPTION

GETNUMPTS This command will return the number of points in the outline +1.
Therefore, you should always check the return from the
GETPOINTS command because it will never return the maximum
number that you’ve passed. In all cases, GETPOINTS will return the
number of valid points in your point array.

 Param1 VALUE Param2 VALUE OutVal TYPE

 An integer
specifying the
requested object's
number, where 0 is
the first object, 1 is
the second object,
and so forth.

Not used by
GETNUMPTS. Must
be set to 0.

Integer

Cmd DESCRIPTION

GETNUMRANGES This command returns the number of segmentation ranges to the
integer variable provided.

 Param1 VALUE Param2 VALUE OutVal TYPE

 Not used by
GETNUMRANGES.
Must be set to 0.

Not used by
GETNUMRANGES.
Must be set to 0.

Integer

IpBlbGet

Page 2-134

Cmd DESCRIPTION

GETMEASENABLED This command adds a new constant to indicate the number of
measurements that can be returned: BLBM_NUM_MEAS. This can
be used to DIM an array of integers to receive one value per
measurment indicating if the corresponding measurement is enabled
(non-zero indicates the measurment is enabled). The BLBM
contants can be used to index the returned array

 Param1 VALUE Param2 VALUE OutVal TYPE

 Must be set to 0. Length of the
OUTVAL array
provided.

Integer

Cmd DESCRIPTION

GETNUMSITES This command gets the number of population sites that have been
analyzed. This will be the length of any measurement arrays that are
returned from IpBlbData, using the BPOP_OBEJCTS,
BPOP_AREA, BPOP_DENSITY, or BPOP_CORRDENSITY
measurements.

 Param1 VALUE Param2 VALUE OutVal TYPE

 Not used by
GETNUMSITES.
Must be set to 0.

Not used by
GETNUMSITES. Must
be set to 0.

Integer

Cmd DESCRIPTION

GETHBLOB This command gets the handle to the active count structure. It
writes the handle to OutVal.

 Param1 VALUE Param2 VALUE OutVal TYPE

 Not used by
GETHBLOB. Must
be set to 0.

Not used by
GETHBLOB. Must be
set to 0.

Long

Cmd DESCRIPTION
GETBOUNDS Description: This command returns the top, left and bottom, right

corners of the bounding box of the selected object. The Bounding
box is the smallest rectangle, parallel to the axes of the image that
completely encloses the object.

 Param1 VALUE Param2 VALUE OutVal TYPE

 Object ID Not use. Must be set
to 0.

Rect

 IpBlbGet

Page 2-135

Cmd DESCRIPTION

GETSITESTATS This command gets the statistical data from the population density
measurement type specified by Param2. It will write the statistics to a
4-element array in OutVal. As follows:

OutVal (0) = Mean value
OutVal (1) = Sum
OutVal (2) = Background
OutVal (3) = Total

 Param1 VALUE Param2 VALUE OutVal TYPE

 Not used by
GETSITESTATS.
Must be set to 0.

An enumerated
integer specifying
the requested
population density
measurement type,
See IpBlbData for a
complete list of the
allowed
measurement types.

Integer

Cmd DESCRIPTION
GETIPPSETTINGS This command added to a BLOB attribute constant gets the current

value of that attribute to an integer variable. See IpBlbSetAttr.

 Param1 VALUE Param2 VALUE OutVal TYPE

 Not used by
GETIPPSETTINGS.
Must be set to 0.

Not used by
GETIPPSETTINGS.
Must be set to 0.

Integer

Cmd DESCRIPTION
GETSEGMENTATION This command added to a BLOB attribute constant gets the three

channel histogram ranges from Count/Size.

 Param1 VALUE Param2 VALUE OutVal TYPE

 Not used by
GETSEGMEN
TATION. Must be
set to 0.

Not used by
GESEGMENTATIO
N. Must be set to 0.

Integer

IpBlbGet

Page 2-136

Comments Note: With regard to the GETNUMPTS and GETPOINTS commands, the outlines that are
returned by these commands (the first returns the number of points, and the second the points
themselves) are assumed to be closed polygons, but the last point that would close the polygon
is NOT included in the count or the array of points. So to draw the polygon, you would draw
an additional line from the last point of the array to the first point. When the outlines are saved
to an outline file, the first point of the polygon is replicated at the end so that other software
that may import these files will be able to tell that the outlines are closed polygons.
Consequently, the outline files will show one more point per outline than you will see when
using the Auto-Pro functions.

See Also IpBlbCount, IpBlbData, IpBlbGetStr, IpBlbSetAttr

 IpBlbGet

Page 2-137

The following count/size constants may be used with GETSETTINGS:

ATTRIB DESCRIPTION ALLOWED VALUES
BLOB_ADDCOUNT Specifies whether the

measurements of new
0 -Adds new results to existing
count.

 objects will replace, or be
merged with, the existing
measurement

1 -Replaces existing count with
new results

 results. Equivalent to the Add
Count check box in the
Count/Size command
window.

BLOB_AUTORANGE Specifies whether objects 0 -Selects manual
 are to be extracted intensity selection.
 using Image-Pro's auto-matic

intensity selection
1 -Selects automatic intensity
selection.

 feature, or whether they are to
be set according to the values
specified by IpBlbSetRange.
Equivalent to selecting the
Automatic or Manual radio
button in the
Count/Sizecommand window.

BLOB_BRIGHTOBJ Specifies whether objects 0 -Selects dark objects.
 are comprised of dark or 1 -Selects bright objects.
 bright intensities
 relative to the back-ground.

This attribute is relevant only
when the Automatic intensity
selection mode is set

 (BLOB_AUTORANGE
enabled). Equivalent to
selecting the Bright Objects
or Dark Objects radio button
in the Count/Size command
window.

BLOB_CLEANBORDER Specifies whether objects that
intersect the edge of the active
image or AOI are to be
included in the

0 -Deselects clean border (objects
at the edge are counted).

 count. Equivalent to the
Clean Borders option in the
Count/Size

1 -All- Selects clean border
(objects at the edges are excluded).

 Options dialog box. 2 - East/West
4 - North/South
8 - North/West
16 - North/East
32 - South/West
64 - South/East

BLOB_CONVEX Specifies convex objects 0 - Deselects convex objects
1 - Selects convex objects

BLOB_DISPLAY Displays the count/size
objects

0 - hides objects
1 - displays objects

IpBlbGet

Page 2-138

ATTRIB DESCRIPTION ALLOWED VALUES
BLOB_FILLHOLES Specifies whether all 1 - Selects fill holes
 pixels encompassed by 1 - Selects fill holes
 an object's perimeter belong

to the object, or whether just
the pixels possessing a value
within the selected intensity
range are part of the object.
Equivalent to the Fill Holes
option in the Count/Size
Options dialog box.

BLOB_FILTEROBJECTS Specifies whether the
measurement criteria

0 -Ignore range criteria.

 will be applied during the
count process.

1 -Apply range criteria.

 Equivalent to the Apply
Ranges check box in the
Count/Sizecommand window.

BLOB_LABELCOLOR Specifies the color to be 0 - Red
 used to label the counted 1 - Green
 objects. Equivalent to 2 - Blue
 selecting the label color 3 - Yellow
 in the Count/Size 4 - Cyan
 options dialog box. 5 - Magenta
 6 - White
 7 - Black
 8 - Dark Red
 9 - Brown
BLOB_LABELMODE Selects the label style 0 - None
 to be used to tag the 1 - Object #
 counted objects. 2 - Class
 Equivalent to selecting
 the label style in the
 Count/Size options
 dialog box.
BLOB_MEASUREOBJECTS Specifies whether objects will

simply be counted,
0 - Do not measure
objects.

 or whether they will be
counted and measured.

1 - Count and measure
objects.

 Equivalent to the Measure
Objects checkbox in the
Count/Sizewindow.

BLOB_MINAREA Specifies whether the 0 - Deselects Pre-filter
 total object population 1 - Selects Pre-filter
 will be comprised of all

intensity-matching objects, or
just objects meeting the
specified measurement
criteria. Equivalent to the
Pre-filter option in the
Count/Sizeoptions dialog box

Page 2-139

ATTRIB DESCRIPTION ALLOWED VALUES
BLOB_OUTLINECOLOR Selects the outline color 0 - Red
 to be used to outline the 1 - Green
 counted objects. 2 - Blue
 Equivalent to selecting 3 - Yellow
 the outline color in the 4 - Cyan
 Count/Size options 5 - Magenta
 dialog box. 6 - White
 7 - Black
 8 - Dark Red
 9 - Brown
BLOB_OUTLINEMODE Selects the outline style 0 - None
 to be applied to the 1 - Outline
 counted objects. 2 - With Holes
 Equivalent to selecting 3 - Filled
 the outline style in the 4 - Ellipse
 Count/Size options 5 - Class
 dialog box.
BLOB_SMOOTHING Specifies how much

smoothing is to be performed
to the counted object's
outline.

You may specify a value from 0 to
100, inclusive, where 0 specifies
no smoothing, and 100 specifies
maximum smoothing.

BLOB_8CONNECT Selects 8-connected objects 1 - 8-connect on, 4-connect off
0 - 8 connect off, 4-connect on

IpBlbGetStr

Page 2-140

IpBlbGetStr
Syntax IpBlbGetStr(Cmd, Param1, Param2, OutVal)

Description Use this function to get string information relating to the object count in the current image.
This command is not recorded.

Parameters Cmd Integer A command ID, which specifies the type of information
you want to retrieve. Must be one of the following:

GETLABEL

 Param1 Integer An integer specifying data with which Cmd will operate.

 Param2 Integer An integer specifying additional data with which Cmd
will operate.

 OutVal String The name of a fixed-length string variable that will
receive the requested data.

Cmd DESCRIPTION

GETLABEL This command gets the name of a measurement.

 Param1 VALUE Param2 VALUE OutVal TYPE

 Must be -1. The measurement ID,
i.e. BLBM_AREA

The name of
afixed-length
string variable.

Example 'debug.print the name of the perimeter measurement
Dim myStr as String * 64
ret = IpBlbGetStr(GETLABEL, -1, BLBM_PERIMETER, myStr)
Debug.print myStr

See Also IpBlbGet

IpBlbHideObject
Syntax IpBlbHideObject (sObjId, sRangeId, sAction)

Description This function is used to show or hide objects in the count/size window.

Parameters sObjId Integer Indicates the Object number

 sRangeID Integer Indicates the intensity or color range of the object

 sAction Integer An integer value of 0 or 1 specifying whether the
object is visible or hidden, where:
 0 = Hide
 1 = Show
 2 = Show even if out-of-range
 3 = Show if hidden, hide if visible

Example ret = IpBlbHideObject

 IpBlbHitTest

Page 2-141

Comments In template mode, IpBlbHideObject() will bring up a dialog. The macro will resume as
soon as the user is finished toggling objects and presses Continue.

IpBlbHitTest
Syntax IpBlbHitTest (X,Y)

Description This function tests whether the specified point is within the object.

Parameters X Integer Indicates the horizontal position to test, in image
coordinates

 Y Integer Indicates the vertical position to test, in image
coordinates

Return Value Returns the object ID if the point is within an object, and -1 if the point is not.

Comments Previously, the return value for this function could have been an integer; with IPP 6.1 it must now
be a long.

IpBlbLoadOutline
Syntax IpBlbLoadOutline(OutlineFile)

Description This function loads a counted object, outline file into the active image. Equivalent to the Load
Outlines command located on the Count/Size window's File menu.

Parameters OutlineFile String A string specifying the name of the file from which the
outlines are to be read.

Example ret = IpBlbLoadOutline("C:\IPWIN\DATA.SCL")
This statement will load outlines from the file DATA.SCL in the \IPWIN directory on the C:
drive.

Comments The file specified by OutlineFile must be an Image-Pro binary .SCL file, not an ASCII outline
file. See IpBlbSaveOutline.

See Also IpBlbSaveOutline

IpBlbLoadSetting

Page 2-142

IpBlbLoadSetting
Syntax IpBlbLoadSetting(SettingFile)

Description This function loads the environment values (i.e., the intensity, option and measurement
selections) from an environment file. Equivalent to the Load Settings command located on the
Count/Size window's File menu.

Example ret = IpBlbLoadSetting("C:\IPWIN\SPORES.ENV")

This statement will initialize the environment with values from the SPORES.ENV file located
in the \IPWIN directory on the C: drive.

Comments Consider using this function to initialize the environment if you are developing a counting macro
that must be executed under the same conditions each time it is run.

See Also IpBlbSaveSetting

IpBlbMeasure
Syntax IpBlbMeasure()

Description This function performs the selected measurements upon the current set of counted objects.
Equivalent to clicking the Measure button in the Select Measurements dialog box.

 Example ret = IpBlbEnableMeas(BLBM_CENTRX, 1)
 ret = IpBlbEnableMeas(BLBM_MAXFERRET, 1)
 ret = IpBlbMeasure()

This set of statements will select the Centr-X (BLBM_CENTRX) and Max. Dia.
(BLBM_MAXFERRET) measurements, and will then measure the counted objects.

See Also IpBlbEnableMeas, IpBlbFilter, IpBlbData

IpBlbMultiRanges
Syntax IpBlbMultiRanges(intRanges, NumRanges)

Description This function sets multiple range limits for gray-scale images. It is equivalent to the "Select
Ranges" command in the Count/Size window. Do not use this command with RGB-class
images.

Parameters intRanges Single(Basic)

LPSINGLE
(C)

It contains 2*numranges of single type values
specifying the starting and ending values of each
range.

 numranges Integer Indicates the total number of ranges specified.

See Also IpBlbSetRange

 IpBlbRange

Page 2-143

IpBlbRange
Syntax IpBlbRange (Range)

Description This function selects a new active range.

Parameters Ranges Integer Indicates the range to activate. Must be between 0 and
the maximum range currently defined.

Return Value 0 if successful, an error code if failed.

See Also IpBlbSetRange

IpBlbRemoveHoles
Syntax IpBlbRemoveHoles()

Description This function eliminates counted objects that are embedded within other counted objects, and
considers all pixels encompassed by the perimeter of an object as belonging to the object.
Equivalent to the Remove Holes command on the Edit menu in the Count/Sizecommand
window.

See Also IpBlbSetAttr

IpBlbSaveClasses
Syntax IpBlbSaveClasses(szDataFile, sAppend)

Description This function saves or appends the class data to a file, or writes the data to the Clipboard.

Parameters szDataFile String A string specifying the name of the file to which the
measurement data will be written.
This parameter is ignored when Append is set to
S_CLIPBOARD. When this is the case, set DataFile to
an empty string (i.e., "").

 SAppend Integer An enumerated integer specifying whether the
measurement data is to be stored as a new file,
appended to an existing file or written to the
Clipboard. Where:

0 - Stores data to a new file (if the file already
exists, it will be overwritten).

S_APPEND - Appends data to existing file.
S_CLIPBOARD - Copies data to the Clipboard.

Example ret = IpBlbSaveClasses("C:\IPWIN\CLUSTER.CNT", 0)

IpBlbSaveData
Syntax IpBlbSaveData(DataFile, Append)

Description This function saves, or appends, the current measurements or statistics to a file or the
Clipboard. Equivalent to the Save Data, Append Data and Copy to Clipboard commands on
the Measurements and Statistics windows' File menus.

IpBlbSaveData

Page 2-144

Parameters DataFile String A string specifying the name of the file to which the
measurement data will be written. The file extension
determines the file format. Where:

.WK1 - Lotus® WK1 format.

.XLS - Microsoft® Excel XLS format.

 Anything else specifies ASCII format.

 Append Integer An expression involving the addition of two enumerated
integers, where the first operand specifies whether the
measurement data or statistics are to be stored, as
follows:
 S_DATA - Measurement Data
 S_STATS - Measurement Statistics
and the second operand specifies whether the
measurement data is stored as a new file, appended to
an existing file or written to the Clipboard, as follows:
 S_DDE - Sends data to an Excel worksheet
 S_APPEND - Appends data to
existing file.
 S_CLIPBOARD - Copies data to the
Clipboard
 S_PRINT_TABLE - sends the data to the
printer
If no second operand is supplied, the data is saved to a
new file (if the file already exists, it will be overwritten).
See the examples below for usage.

Example ret = IpBlbSaveData("C:\IPWIN\DATA.CNT", S_DATA)

This statement will save the current measurement data to a new file called DATA.CNT in the
\IPWIN directory on the C: drive.

ret = IpBlbSaveData("C:\IPWIN\DATA.CNT", S_DATA+S_APPEND)

This statement will append the current measurement data to a file called DATA.CNT in the
\IPWIN directory on the C: drive.

ret = IpBlbSaveData("", S_STATS+S_CLIPBOARD)

This statement will append the current statistic data to the Clipboard. The DataFile parameter
is set to a zero-length string, as this data is not required for a Clipboard operation.

 IpBlbSaveOutline

Page 2-145

IpBlbSaveOutline
Syntax IpBlbSaveOutline(OutlineFile)

Description This function saves the current counted-object outlines to a file. Equivalent to the Save
Outlines command on the File menu in the Count/Sizecommand window.

Parameters OutlineFile String A string specifying the name of the file to which the
current object outlines will be written. The file name's
extension determines the format in which it is saved,
where:
 .SCL - Specifies a binary outline file.
Anything else specifies an ASCII-format outline file.

Example ret = IpBlbSaveOutline("C:\IPWIN\PERIM.SCL")

This statement will save the current outlines in binary form to the PERIM.OUT file in the
\IPWIN directory on the C: drive.

See Also IpBlbLoadOutline

IpBlbSavePopDensities
Syntax IpBlbSavePopDensities(DataFile, Append)

Description This function saves, or appends, the current population density results to a file or the
Clipboard. Equivalent to the Save, Append and Copy to Clipboard commands on the
Population Density windows' File menu.

Parameters DataFile String A string specifying the name of the file to which the
population density data will be written.
This parameter is ignored when append is set to
S_CLIPBOARD. When this is the case, set DataFile to
an empty string (i.e., "").

 Append Integer An enumerated integer specifying whether the
population density data is to be stored as a new file,
appended to an existing file or written to the Clipboard.
Where:

0 - Stores data to a new file (if the file already
exists, it will be overwritten).

 S_APPEND - Appends data to existing file
 S_CLIPBOARD - Copies data to the Clipboard
 S_PRINT_TABLE - Sends the data to the printer

IpBlbSaveSetting

Page 2-146

Example ret = IpBlbSavePopDensities("C:\IPWIN\PD1.cnt", 0)

This statement will save the contents of the Population Density window to the PD1.CNT file
in the \IPWIN directory on the C: drive.

ret = IpBlbSavePopDensities("C:\IPWIN\PD1.cnt", S_APPEND)

This statement will append the contents of the Population Density window to the PD1.CNT
file in the \IPWIN directory on the C: drive.

ret = IpBlbSavePopDensities("", S_CLIPBOARD)

This statement will save the contents of the Population Density window to the Clipboard. The
DataFile parameter is set to a zero-length string, as this data is not required for a Clipboard
operation.

Comments The IpBlbShowPopDens function, with its bShow flag enabled, must be called before this
function. Otherwise, no data will be saved.

See Also IpBlbShowPopDen

IpBlbSaveSetting
Syntax IpBlbSaveSetting(SettingFile)

Description This function saves the current Count/Size intensity, option and measurement settings to a file.
Equivalent to the Count/Size window's Save Settings command.

Parameters SettingFile String A string specifying the name of the file to which the
current environment settings will be written.

Example ret = IpBlbSaveSetting("C:\IPWIN\SPORES.ENV")

This statement will save the current Count/Size environment settings to the SPORES.ENV file
in the \IPWIN directory on the C: drive.

See Also IpBlbLoadSetting

 IpBlbSetAttr

Page 2-147

IpBlbSetAttr
Syntax IpBlbSetAttr(Attrib, Value)

Description This function selects, sets or deselects options relating to the Count/Size command.

Parameters Attrib Integer An enumerated integer which identifies the
option to be set. Must be one of the following:

BLOB_ADDCOUNT
BLOB_AUTORANGE
BLOB_BRIGHTOBJ
BLOB_CLEANBORDER
BLOB_CONVEX
BLOB_DISPLAY
BLOB_FILLHOLES
BLOB_FILTEROBJECTS

BLOB_LABELMODE
BLOB_LABELCOLOR
BLOB_LABELMEAS
BLOB_MEASUREOBJECTS
BLOB_MINAREA
BLOB_OUTLINEMODE
BLOB_OUTLINECOLOR
BLOB_SMOOTHING
BLOB_8CONNECT

 See definitions under Comments, below.

 Value Integer An integer specifying how the option specified
in Attrib is to be set. See definitions below for
the values allowed by each option.

Example ret = IpBlbSetAttr(BLOB_LABELCOLOR,2)

This statement sets the label color to blue.

Comments Attrib options are as follows:

IpBlbSetAttr

Page 2-148

ATTRIB DESCRIPTION ALLOWED VALUES
BLOB_ADDCOUNT Specifies whether the

measurements of new
0 - Adds new results to existing

count.
 objects will replace, or

be merged with, the
existing measurement

1 - Replaces existing count with
new results

 results. Equivalent to
the Add Count check
box in the Count/Size
command window.

BLOB_AUTORANGE Specifies whether
objects

0 - Selects manual

 are to be extracted intensity selection.
 using Image-Pro's auto-

matic intensity selection
1 - Selects automatic intensity

selection.
 feature, or whether they

are to be set according to
the values specified by
IpBlbSetRange.
Equivalent to selecting
the Automatic or
Manual radio button in
the Count/Sizecommand
window.

BLOB_BRIGHTOBJ Specifies whether
objects

0 - Selects dark objects.

 are comprised of dark or 1 - Selects bright
 bright intensities objects.
 relative to the back-

ground. This attribute is
relevant only when the
Automatic intensity
selection mode is set

 (BLOB_AUTORANGE
enabled). Equivalent to
selecting the Bright
Objects or Dark
Objects radio button in
the Count/Size
command window.

 IpBlbSetAttr

Page 2-149

ATTRIB DESCRIPTION ALLOWED VALUES
BLOB_CLEANBORDER Specifies whether objects

that intersect the edge of the
active image or AOI are to
be included in the

0 - Deselects clean border (objects
at the edge are counted).

 count. Equivalent to the
Clean Borders option in the
Count/Size

1 - All- Selects clean border
(objects at the edges are
excluded).

 Options dialog box.
Combinations of these
values can be used to
specify combinations of
clean border settings. For
example, 18 (16{N/E} +
2{E/W}) will specify
clean N/W/E borders

2 - East/West
4 - North/South
8 - North/West
16 - North/East
32 - South/West
64 - South/East

BLOB_CONVEX Specifies convex objects 0 - Deselects convex objects
1 - Selects convex objects

BLOB_DISPLAY Displays the count/size
objects

0 - hides objects
1 - displays objects

BLOB_FILLHOLES Specifies whether all 1 - Selects fill holes
 pixels encompassed by 1 - Selects fill holes
 an object's perimeter

belong to the object, or
whether just the pixels
possessing a value within
the selected intensity
range are part of the
object. Equivalent to the
Fill Holes option in the
Count/Size Options
dialog box.

BLOB_FILTEROBJECTS Specifies whether the
measurement criteria

0 - Ignore range criteria.

 will be applied during the
count process.

1 - Apply range criteria.

 Equivalent to the Apply
Ranges check box in the
Count/Sizecommand
window.

BLOB_LABELCOLOR Specifies the color to be 0 - Red
 used to label the counted 1 - Green
 objects. Equivalent to 2 - Blue
 selecting the label color 3 - Yellow
 in the Count/Size 4 - Cyan
 options dialog box. 5 - Magenta
 6 - White
 7 - Black
 8 - Dark Red
 9 - Brown

IpBlbSetAttr

Page 2-150

ATTRIB DESCRIPTION ALLOWED VALUES
BLOB_LABELMODE Selects the label style 0 - None
 to be used to tag the 1 - Object #
 counted objects. 2 - Class
 Equivalent to selecting 3 – Selected measurement value
 the label style in the
 Count/Size options
 dialog box.
BLOB_MEASUREOBJECTS Specifies whether

objects will simply be
counted,

0 - Do not measure objects.

 or whether they will be
counted and measured.

1 - Count and measure objects.

 Equivalent to the
Measure Objects
checkbox in the
Count/Sizewindow.

BLOB_MINAREA Specifies whether the 0 - Deselects Pre-filter
 total object population 1 - Selects Pre-filter
 will be comprised of all

intensity-matching
objects, or just objects
meeting the specified
measurement criteria.
Equivalent to the Pre-
filter option in the
Count/Sizeoptions
dialog box

BLOB_OUTLINECOLOR Selects the outline color 0 - Red
 to be used to outline the 1 - Green
 counted objects. 2 - Blue
 Equivalent to selecting 3 - Yellow

 the outline color in the 4 - Cyan
 Count/Size options 5 - Magenta
 dialog box. 6 - White
 7 - Black
 8 - Dark Red
 9 - Brown
BLOB_OUTLINEMODE Selects the outline style 0 - None
 to be applied to the 1 - Outline
 counted objects. 2 - With Holes
 Equivalent to selecting 3 - Filled
 the outline style in the 4 - Ellipse
 Count/Size options 5 - Class
 dialog box.

 IpBlbSetFilterRange

Page 2-151

ATTRIB DESCRIPTION ALLOWED VALUES
BLOB_SMOOTHING Specifies how much

smoothing is to be
performed to the
counted object's outline.

You may specify a value from 0 to
100, inclusive, where 0 specifies no
smoothing, and 100 specifies
maximum smoothing.

BLOB_8CONNECT Selects 8-connected
objects

1 - 8-connect on, 4-connect off
0 - 8 connect off, 4-connect on

BLOB_LABELMEAS Sets the measuremnt
that will be used as the
object label when the

Any of the BLBM constants, such as
BLBM_AREA.

 BLOB_LABELMODE
is set to 3, using the
BLBM constants.

 The specified
measurement must be
selected for
measurement or
IpBlbSetAttr will return
an error.

See Also IpBlbSetRange,

IpBlbSetFilterRange
Syntax IpBlbSetFilterRange(MeasurementType, min, max)

Description This function sets measurement criteria. Equivalent to specifying the Start and End values
for each measurement with the Set Ranges command on the Measure menu in the Count/Size
command window.

Parameters MeasurementType Integer An enumerated integer specifying the
measurement to be selected or deselected. See
list in IpBlbEnableMeas

 min Single BLBM_RED
BLBM_ROUNDNESS
BLBM_SIZECOUNT
BLBM_WIDTH

See IpBlbEnableMeas for descriptions

 max Single A number (of IPBasic type, Single) specifying the
largest value to be allowed for the specified
measurement.

Example ret = IpBlbSetFilterRange(BLBM_PERIMETER, 95.0, 450.0)

ret = IpBlbSetFilterRange(BLBM_AREA + CALIB_UNIT 1.2, 3.4)
would be the same as

ret = IpBlbSetFilterRange(BLBM_AREA 240,680)
assuming that 240 pixels = 1.2 units, and 680 pixels = 3.4
units
This statement will set the range of allowable perimeter values from 95.0 to 450.0.

IpBlbSetRange

Page 2-152

Comments The min and max values are expessed by default in terms of pixels or pixel square. To pass the
min and max values in terms of the current spatial calibration, add the flag CALIB_UNIT to the
first parameter, as shown here:

 ret = IpBlbSetFilterRange(BLBM_AREA + CALIB_UNIT, 0.01, 0.02)

CALIB_UNIT is defined as 0 x 4000 (in C) or &4000 (in Basic)

See Also IpBlbFilter

IpBlbSetRange
Syntax IpBlbSetRange(Start, End)

Description This function specifies the range of intensities that define objects to be counted when
Automatic intensity selection is disabled (BLOB_AUTORANGE off). Equivalent to clicking the
Set Range button in the Count/Size command window and selecting the intensity range
manually.

Parameters Start Integer An integer between 0 and 255 (inclusive) that defines
the smallest allowed value in the range.

 End Integer An integer between 0 and 255 (inclusive) that defines
the largest allowed value in the range.

Example ret = IpBlbSetRange(58, 109)

This statement specifies that pixels possessing intensity values between 58 to 109 (inclusive)
comprise objects.
Note - in 12-bit and single-point images, the normalized equivalents to these values will be
used.

Comments For RGB images, the Start and End values represent the values of the luminance channel.

See Also IpBlbSetAttr(BLOB_AUTORANGE,0), IpBlbRange

IpBlbSetRangeEx
Syntax IpBlbSetRangeEx(Range, Start, End)

Description This function allows you to specify multiple intensity ranges.

Parameters Range Integer Indicates the intensity range to add or modify.

 Start Single Indicates the first value in the specified range.

 End Single Indicates the last value in the specified range.

Return Value 0 if successful, a negative error code if failed.

See Also IpBlbRange, IpBlbSetRange

 IpBlbShow

Page 2-153

IpBlbShow
Syntax IpBlbShow(bShow)

Description This function is used to open or close the Count/Sizecommand window. Equivalent to
selecting the Count/Size command to open the window, and clicking the Close button within it
to close it.

Parameters bShow Integer Am integer value of 0 or 1 specifying whether the
Count/Size command window is to be shown. Where:
 0 - Closes the window if it is already open.
 1 - Opens the window.

Example ret = IpBlbShow(1)

This statement will make the Count/Size command window visible during execution of the
macro.

Comments The Count/Size command window does not have to be open during execution of any of the
count macro functions. Its disposition, visible or hidden, is entirely your choice. You will
want to display the window if your users will be required to make choices within it, but if your
objective is simply to obtain measurement results, you may want to run without opening it.

See Also IpBlbSaveStatistics, IpBlbSaveClasses, IpBlbSavePopDensities

IpBlbShowAutoClass
Syntax IpBlbShowAutoClass(ipClassifiers, NumMeas, NumClasses, bIterate, bShow)

Description This function performs an auto-classification process on the current set of measurement results.
Equivalent to the Auto-classification command located on the Measure menu in the
Count/Sizecommand window.

Parameters ipClassifiers Integer
(Basic)

LPSHORT
(C)

The name and first element of an array containing the
integers representing the measurement types that are
to be used for classification. By default this array is
defined as ipClassifiers(0).
See Comments, below, for valid classifier values.

 NumMeas Integer An integer from 1 to 3 (inclusive) specifying the number
of types by which auto-classification is to be done.
Equivalent to counting the number of Classifiers
selected in the Auto-Classification dialog box. This
value identifies the number of elements in the
ipClassifiers array.

 NumClasses Integer An integer from 1 to 16 (inclusive) specifying the
maximum number of categories into which the data will
be classified. Equivalent to the value entered into the
Max. Classes: field in the Auto-Classification dialog
box.

IpBlbShowCluster

Page 2-154

 bIterate Integer An integer value of 0 or 1 specifying whether the
iteration option is to be applied during classification.
Where:
 0 - Iterate option off.
 1 - Iterate option on.
Equivalent to deselecting/selecting the Iterate check
box in the Auto-Classification dialog box.

 bShow Integer An integer value of 0 or 1 specifying whether the Auto-
Classification window is visible or hidden, where:
 0 - Sets the window to be hidden.
 1 - Sets the window to be visible.

Example ipClassifiers(0) = BLBM_AREA
ipClassifiers(1) = BLBM_ASPECT
ipClassifiers(2) = BLBM_CENTRX
ret = IpBlbShowAutoClass(ipClassifiers(0), 3, 7, 1,1)

This set of statements performs an iterative auto-classification of the three classifiers into 7
categories. The auto-classification window is displayed during classification.

Comments The ipClassifiers array must contain integers representing the measurement types that
are to be used.

See Also IpBlbEnableMeas

IpBlbShowCluster
Syntax IpBlbShowCluster(bShow)

Description This function performs a cluster analysis of the current measurements and displays the
Clusters Info message box. Equivalent to the Clusters command located on the Measure
menu in the Count/Size command window.

Parameters bShow Integer An integer value of 0 or 1 specifying whether to open or
close the “Clusters” dialog box. Where:
 0 - Closes the dialog box.

1 - Opens the dialog box and performs the
cluster analysis.

Example ret = IpBlbShowCluster(1)

This statement will perform the cluster analysis, display the analysis results in the Cluster
dialog box and wait for the user to click OK before proceeding to the next macro statement.

 IpBlbShowData

Page 2-155

IpBlbShowData
Syntax IpBlbShowData(bShow)

Description This function opens or closes the Measurements data window. Equivalent to the
Measurement Data command located on the Count/Size window's View menu.

Parameters bShow Integer A value of 0 or 1 specifying whether to open or close
the Measurement data window. Where:
 0 - Closes the Measurements data window

1 - Opens the Measurements data window

Example ret = IpBlbShowData(1)

This statement will display the measurements data window.

IpBlbShowHistogram
Syntax IpBlbShowHistogram(Measure, Bins, bShow)

Description This function displays a histogram of the specified measurement. Equivalent to the Histogram
command on the Count/Size command window's View menu.
Note - do not confuse this function with the Histogram command used to create intensity
histograms. This functions plots measurement results. See IpHstCreate for intensity plotting.

Parameters Measure Integer An enumerated integer specifying the measurement to
be selected or deselected. See list in
IpBlbEnableMeas.

 Bins Integer

 bShow Integer An integer value of 0 or 1 specifying whether the
Histogram dialog box is to be displayed or hidden.
Where:
 0 - Hides the Histogram window.
 1 - Displays the Histogram window.

Example ret = IpBlbShowHistogram(BLBM_AREA,8,1)

This statement will display an 8-bin histogram of the area measurement, then wait for the user
to close the dialog box before continuing to the next macro statement.

Comments When the bShow value is set to 1, the histogram is displayed and macro execution halts until the
user manually closes the histogram window. Once the window is closed, macro execution
resumes at the next statement.

When the bShow value is set to 0, the IpBlbShowHistogram statement is ignored — no
histogram window is shown, and execution is not halted. The function has been implemented this
way to ensure its compatibility with future versions of Auto-Pro.
To set the range of the Histogram, see IpBlbShowSingleClass

See Also IpBlbEnableMeas., IpBlbShowSingleClass

IpBlbShowObjectWindow

Page 2-156

IpBlbShowObjectWindow
Syntax IpBlbShowObjectWindow(bShow)

Description This function displays the object window. Equivalent to the Object Window command
located on the Count/Size command window's View menu.

Parameters bShow Integer An integer value of 0 or 1 specifying whether to open or
close the Object information window. Where:
 0 - Closes the Object window.
 1 - Opens the Object window.

Example ret = IpBlbShowObjectWindow(1)

This statement will display the Object window.

IpBlbShowPopDens
Syntax IpBlbShowPopDens(OutlineFile, bShow)

Description This function performs a population density analysis. Equivalent to the Population Density
command located on the Count/Sizewindow's Measure menu.

Parameters OutlineFile String A string specifying the name of the file from which the
site outlines will be read.

 bShow Integer An integer value of 0 or 1 specifying whether the
Population Density window and the site outlines are
to be displayed . Where:
 0 - Closes the Population Density
window if it is already open, or suppresses its display if
a population density measurement is being performed.
 1 - Displays the Population Density window and

site outlines.

Example ret = IpBlbShowPopDens("C:\IPWIN\CELLS.OUT", 1)

This statement will perform a population density analysis using the site outlines from the
CELLS.OUT file in the \IPWIN directory on the C: drive. The Population Density window,
and the cell site outlines will be displayed.

Comments To close the Population Density window, set the bShow parameter to 0 and specify a zero-length
string in OutlineFile, as shown in the following example:
ret = IpBlbShowPopDens("", 0)
If you intend to save population density information to the Clipboard or a file, you must first
call this function with its bShow flag enabled. Otherwise, no data will be saved.

See Also IpBlbSavePopDensities, IpBlbShow

 IpBlbShowScattergram

Page 2-157

IpBlbShowScattergram
Syntax IpBlbShowScattergram(xMeasure, yMeasure, bShow)

Description This function displays a scattergram of the specified measurement types. Equivalent to the
Scattergram command on the Count/Sizecommand window's View menu.

Parameters xMeasure Integer An enumerated integer specifying the measurement to
be selected or deselected. See list in
IpBlbEnableMeas.

 yMeasure Integer See list in IpBlbEnableMeas

 bShow Integer An integer value of 0 or 1, specifying whether to open
or close the Scattergram window. Where:
 0 - Closes the Scattergram window.
 1 - Opens the Scattergram window.

Example ret = IpBlbShowScattergram(BLBM_AREA, BLBM_PERIMETER, 1)

This statement will display a scattergram of the area and perimeter measurements then wait for
the user to close the scattergram before continuing to the next macro statement.

Comments When the bShow value is set to 1, the scattergram is displayed and macro execution is halted until
the user manually closes the scattergram window. Then, macro execution resumes with the next
statement. When the bShow value is set to 0, the IpBlbShowScattergram statement is ignored —
no scattergram is shown, and macro execution is not halted. The function has been implemented
in this way to ensure its compatibility with future versions of Auto-Pro.
When a Scattergram command is recorded, the IpBlbShowScattergram function is not
written to the script file until the Scattergram window is closed.

IpBlbShowSingleClass
Syntax IpBlbShowSingleClass(NumMeasurements, ipBins, NumClasses, bShow)

Description This function classifies the specified measurement type.

Parameters NumMeasurements Integer An enumerated integer specifying the
measurement type that is to be classified.
See MeasurementType parameter under
IpBlbEnableMeas for allowed values.

 ipBins Single
(Basic)

LPSINGLE
(C)

The name and first element of an array
containing the values (of IPBasic type,Single)
specifying the intervals into which the
measurement is to be classified.
The first value represents the beginning of the
first interval, the second the beginning of the
second interval and so forth. The last value in
the array specifies the end of the range.
Equivalent to the “Bins Start At” values in the
Classification dialog box.

 NumClasses Integer An integer specifying the number of
classifications into which the measurement is to
be divided.

IpBlbShowSingleClass

Page 2-158

 bShow Integer An integer value of 0 or 1 specifying whether to
display the Classification window. Where:
 0 - Closes the Classification
window.

1 - Opens the Classification window.
2 - Open the Histogram window and set
the histogram range.

When bShow is set to 0, the
NumMeasurements, ipBins and NumClasses
parameters are ignored.

Example The following set of statements divides the perimeter into 6 classes, as defined by the values in
ipBins. The results are displayed in the Classification window and saved to the file
CLASS2.CNT. The window is then closed.

ipBins(0) = 8.0
ipBins(1) = 51.83333
ipBins(2) = 95.66666
ipBins(3) = 139.50
ipBins(4) = 183.3333
ipBins(5) = 227.1667
ipBins(6) = 271.0
ret = IpBlbShowSingleClass(18, ipBins(), 6, 1)
ret = IpBlbSaveClasses("C:\IPWIN\CLASS2.CNT", 0)
ret = IpBlbShowSingleClass(0, ipBins(0), 0, 0)

The following example shows how to display the area
classification results as a histogram with 10 equally spaced
classes between 0 and 100 calibrated area units.

ipBins(0) = 0
ipBins(1) = 100
ret = IpBlbShowSingleClass(BLBM_AREA, ipBins(0), 10, 2)

When the class intervals are equal, you can display the classification data as a graph (bShow
= 2), where each class is represented as a bar, and the height of the bar represents how many
objects fall in the class. In this mode, calling IpBlbShowSingleClass is the same as
calling IpBlbShowHistogram, with the added functionality of being able to set the start
and end limits of the histogram (see example).

Comments If you intend to save classification data to the Clipboard or a file, you must first call this function
with its bShow flag enabled. Otherwise, no data will be saved. When bShow is set to 0, the
NumMeasurements, ipBins, and NumClasses parameters are ignored.

See Also IpBlbSaveClasses, IpBlbShowHistogram

 IpBlbShowStatistics

Page 2-159

IpBlbShowStatistics
Syntax IpBlbShowStatistics(bShow)

Description This function calculates and, optionally, displays the statistics window. Equivalent to the
Statistics command on the Count/Size command window's View menu.

Parameters bShow Integer An integer value of 0 or 1 specifying whether to open or
close the Statistics information window. Where:
 0 - Closes the Statistics window.
 1 - Opens the Statistics window.
 2 - Closes the Range Statistics window.
 3 - Opens the Range Statistics window

Example ret = IpBlbShowStatistics(1)

This statement will calculate statistics for the current measurement results, show the Statistics
window then append the data to the STATS.CNT file.

See Also IpBlbSaveStats

IpBlbSmoothObjects
Syntax IpBlbSmoothObjects(smoothing)

Description This function smoothes object outlines. Equivalent to the Smooth Objects command on the
Edit menu in the Count/Sizecommand window.

Parameters smoothing Integer An integer between 1 and 100 (inclusive) specifying the
degree of smoothing that is to be applied.

Example ret = IpBlbSmoothObjects(50)

This statement will apply smoothing to the counted outlines using a smoothing degree of 50.

See Also IpBlbSetAttr

IpBlbSplitObjects

Page 2-160

IpBlbSplitObjects
Syntax IpBlbSplitObjects(bWatershed)

Description This function splits counted objects within the active image or AOI using either the auto-split
or watershed-split method. Equivalent to the Auto-Split and Watershed Split commands on
the Count/Sizecommand window's Edit menu.

Parameters bWatershed Integer An integer value of 0, 1, or 2 specifying whether to use
the Watershed, Limited Watershed, or Automatic
splitting method. Where:
 0 - Applies the “Auto-Split” method.
 1 - Applies the “Watershed” method.
 2 - 127 : Applies the “Limited Watershed”
 method, where the number of pixels eroded for
 separation testing is limited to N-1.

Example ret = IpBlbSplitObjects(1)

This statement will split counted objects using the Watershed method.

IpBlbUpdate
Syntax IpBlbUpdate(bRedrawImage)

Description This function updates the active image window, as well as the Measurements and Statistics
windows, if they are open. When a macro is recorded, this function is automatically inserted after
any action that affects the display of counted objects in the image window, or the results that are
presented in the data sheets. There is no equivalent command in Image-Pro's interactive mode,
as the screen is automatically updated anytime a command affects it.

Parameters bRedrawImage Integer An integer value of 0, 1 , 2 or 4 specifying whether to
redraw the outlines in the image. Where:
 0 - Redraws object outlines.
 1 - Redraws image and outlines.
 2 - Updates classification.

 4 - Discards out-of-range objects. Equivalent
 to choosing Edit:Delete Hidden Objects from the
Count/Size menu bar.

Example ret = IpBlbUpdate(1)

This statement will update the count/size environment and redraw the image window.

 IpCalGet

Page 2-161

IpCalGet
Syntax IpCalGet(ByVal, sAttrib)

Description This function returns various attributes of the intensity or spatial calibration attached to the
active image.

Parameters <sAttrib>

String Command (see list below):

 <sOutput> fixed length String Result (see example)

 Command Name Description

 iName intensity calibration name

 iUnitName intensity unit name

 iType calibration type (0 = free form, 1 = OD, 2 =
response curve)

 iNumPoints number of calibration points

 iFitMode fitting method

 iBlack black OD level

 iIncidend incident OD level

 sName spatial calibration name

 sUnitName spatial unit name

 sXUnitPerPix number of units per pixel horizontally

 sYUnitPerPix number of units per pixel vertically

 sXOrigin X-origin

 sYOrigin Y-origin

 sAngleOffset Angle offset (0 deg. = vertical axis

Comments IpCalGet can be called to inquire one of fourteen attributes. More attributes are likely to be added
in future versions.

Return Value 0 if successful, -7 if no calibration found on active image.

Example The following example prints out all calibration settings to the output window.
 sub get_calib_param()

dim szout as string * 255
dim xratio as single, yratio as single
ret = IpCalGet("iName", szout)
if ret < 0 then
 debug.print "no intensity calibration"
 goto end_intensity
end if

debug.print "intensity calibration:"
debug.print "calib name = " + szout
ret = IpCalGet("iUnitName", szout)
debug.print "unit name = " + szout
ret = IpCalGet("iType", szout)
if val(szout) = 0 then

IpCalGet

Page 2-162

 debug.print "type = free form"
 ret = IpCalGet("iNumPoints", szout)
 debug.print "number of points = " + str$(val(szout))
 ret = IpCalGet("iFitMode", szout)
 debug.print "fitting method = " + str$(val(szout))
end if
if val(szout) = 1 then
 debug.print "type = optical density"
 ret = IpCalGet("iBlack", szout)
 debug.print "black level = " + str$(val(szout))
 ret = IpCalGet("iIncident", szout)
 debug.print "incident level = " + str$(val(szout))
end if
if val(szout) = 2 then
 debug.print "type = response curve"
end if

end_intensity:
ret = IpCalGet("sName", szout)
if ret < 0 then
 debug.print "no spatial calibration"
 exit sub
end if

debug.print "spatial calibration:"
debug.print "calib name = " + szout
ret = IpCalGet("sUnitName", szout)
debug.print "unit name = " + szout

ret = IpCalGet("sXUnitPerPix", szout)
xratio = val(szout)
debug.print "unit/pix (x) = " + str$(xratio)
ret = IpCalGet("sYUnitPerPix", szout)
yratio = val(szout)
debug.print "unit/pix (y) = " + str$(yratio)
debug.print "aspect ratio = " + str$(yratio / xratio)

ret = IpCalGet("sXOrigin", szout)
debug.print "origin (x) = " + str$(val(szout))
ret = IpCalGet("sYOrigin", szout)
debug.print "origin (y) = " + str$(val(szout))
ret = IpCalGet("sAngleOffset", szout)
debug.print "angle offset = " + str$(val(szout))

end sub

 IpCalLoad

Page 2-163

IpCalLoad
Syntax IpCalLoad(FileName)

Description This function loads the specified calibration file from disk. Equivalent to the Calibration
command's Open menu item.

Parameters FileName String A string specifying the name of the file from which the
calibration values will be read.

Example ret = IpCalLoad("C:\IPWIN\MICRONS.CAL")

This statement will load the calibration values from the MICRONS.CAL file in the \IPWIN
directory on the C: drive.

Comments All of the calibrations found in the specified file will be added to the lists of Spatial and Intensity
Calibrations. None of the calibrations will be applied to the active image or made the active
calibration. Note: It may be preferable to use IpICalLoad or IpScalLoad to load calibrations into
either the General or Reference Calibration lists. This function is retained for backward
compatibility with earlier versions.

IpCalSave
Syntax IpCalSave(FileName)

Description This function saves the current calibration values to disk. Equivalent to the Calibration
command's Save menu item.

Parameters FileName String A string specifying the name of the file to which the
calibration values will be written.

Example ret = IpCalSave("C:\IPWIN\MICRONS.CAL")

This statement will save the current intensity and spatial calibration values to the
MICRONS.CAL file in the \IPWIN directory on the C: drive.

Comments If the file you specify already exists, it will automatically be overwritten.

IpCalSaveAll
Syntax IpCalSaveAll(FileName)

Description This function saves the current calibration values to disk. Equivalent to the Calibration
command's Save All menu item.

Parameters FileName String A string specifying the name of the file to which the
calibration values will be written.

Example ret = IpCalSaveAll("C:\IPWIN\MICRONS.CAL")

This statement will save the current intensity and spatial calibration values to the
MICRONS.CAL file in the \IPWIN directory on the C: drive.

Comments If the file you specify already exists, it will automatically be overwritten.

IpCalSaveEx

Page 2-164

IpCalSaveEx
Syntax IpCalSaveEx(FileName, DocID, Mode)

Description This function saves the current calibration values of the specified document to disk.

Parameters FileName String A string specifying the name of the file to which the
calibration values will be written.

 DocID Integer Document ID of the image where calibration should be
saved.

 Mode Integer Can be zero, or any combination of NONAME and
NOSYSTEM. If NONAME is specified, the calibration is
saved without a calibration name. NOSYSTEM is used
to prevent the saved calibration from becoming the
default system calibration.

Return Value 0 if successful, an error code if failed.

See Also IpCalSave

IpCapArea
Syntax IpCapArea(ipFrame, bCursor)

Description This function captures the entire screen or a portion of the screen, and stores it to a file.
Equivalent to selecting the Screen Capture hot key with the Screen or Area selection settings.

Parameters ipFrame RECT The name of a variable containing the AOI coordinates,
or 0 (zero). Where:
Variable name - indicates that only a portion of the
screen is to be captured, and specifies the name of the
variable containing the upper-left and lower-right
coordinates of that portion. By default, this variable is
defined as ipFrame.
0 - specifies that the entire screen is to be captured.

 bCursor Integer An integer value of 0 or 1 specifying whether the cursor
is to be included in the captured image. Where:
 0 - Saves the image without the cursor.

1 - Saves the image, including the cursor.

Example Dim ipFrame as rect
ipFrame.left=92
ipFrame.top=51
ipFrame.right=374
ipFrame.bottom=280
ret = IpCapArea(ipFrame,0)
ret = IpBitSaveData(" ", S_CLIPBOARD)

This set of statements will capture and save the contents of the rectangular screen area from pixel
position 92,51 to 374,280.
The following illustrates the statement that would be used to capture the entire screen:

 ipFrame.left=-1
ret = IpCapArea(ipFrame,0)

 IpCapFile

Page 2-165

Comments Regardless of the value in bCursor, the cursor will not be captured by an Area capture operation
(a non-zero ipRect parameter).
The image file name and format can be specified using the IpCapFile function. If these
values are not explicitly set using IpCapFile, the options currently in effect for the system will
be used.

See Also IpCapFile, IpCapWindow

IpCapFile
Syntax IpCapFile(FileFormat, Directory, Prefix, Number)

Description This function specifies the file format, name and location to which Screen Capture data will
be stored. Equivalent to setting the “File Format”, “File Template” and “Destination
Directory” fields in the Capture Options dialog box.

Parameters FileFormat String A string specifying the file format in which the image is
to be stored. Expressed in “*.XXX” format, where XXX
identifies the standard extension used to designate the
image file format (e.g., TIF, BMP, GIF). See
Comments, below, for a list of valid formats.

 Directory String A string specifying the directory into which the captured
data will be stored.

 Prefix String A string specifying the “prefix” to be used to compose
the file names for the saved images.

 Number Integer An integer specifying the number of digits to be used to
generate the sequence number that will be appended
to the string in Prefix to create a file name.

Example ret = IpCapFile("*.PCX", "C:\IMAGES", "IMG", 4)

This statement will set the capture options so that captured images are stored in PCX format to
the \IMAGES directory on the C: drive. The names of stored files will begin with the prefix
“IMG”, which will be followed by a 4-digit sequence number (e.g., IMG0000, IMG0001,
IMG0002).

Comments The length of the Prefix string must not exceed 4. The length of the Prefix string combined with
the value of Number must not exceed 8.
The following table describes the file extensions that can be specified in the FileFormat
parameter.

 FileFormat DESCRIPTION

 AVI AVI File Format

 BMP Windows™ Bitmap File Format
 CUT HALO® Device Independent Image File Format
 EPS Encapsulated Postscript® File Format
 GIF CompuServe Graphics Interface Format

 HFF HALO File Format

 IPW Image-Pro Workspace File Format

 JPG JPEG File Interchange Format

IpCapHotKey

Page 2-166

 PCD Kodak Photo CD File Format

 PCT Apple® Macintosh® PICT File Format
 PCX ZSoft™ Image File Format
 SEQ Sequence Format

 TIF Tagged Image File Format
 TGA Truevision® Targa® File Format
 FLF Flat File Format (user defined)

See Also IpCapArea, IpCapWindow, IpCapHotKey

IpCapHotKey
Syntax IpCapHotKey(KeyName, bShift, bCtrl, bAlt)

Description This function designates the key (or key combination) that will be used to invoke the Screen
Capture utility. Equivalent to specifying the “Hot Key” in the Capture Options dialog box.

Parameters KeyName String A string specifying the base key that is to be used to
invoke Screen Capture. Expressed in “X=YYY” format,
where X identifies the key and YYY specifies its ANSI
number. See Comments, below.

 bShift Integer An integer value of 0 or 1 specifying whether the “Shift”
key is to be used with the base key specified in
KeyName. Where:
 0 - Shift is not part of the hot key
combination.

1 - Shift is to be used with the base key in the
hot key combination.

 bCtrl Integer An integer value of 0 or 1 specifying whether the “Ctrl”
key is to be used with the base key specified in
KeyName. Where:
 0 - Ctrl is not part of the hot key
combination.

1 - Ctrl is to be used with the base key in the hot
key combination.

 bAlt Integer An integer value of 0 or 1 specifying whether the “Alt”
key is to be used with the base key specified in
KeyName. Where:
 0 - Alt is not part of the hot key
combination.

1 - Alt is to be used with the base key in the hot
key combination.

Example ret = IpCapHotKey("F12=123", 0, 1, 0)

This statement assigns “Ctrl+F12” as the hot key combination.

Comments The bShift, bCtrl and bAlt flags may be used simultaneously.

The following strings are allowed as base key definitions in KeyName.

 IpCapHotKey

Page 2-167

String String String String

"A=65" "N=78" "0=48" "F1=112"

"B=66" "O=79" "1=49" "F2=113"

"C=67" "P=80" "2=50" "F3=114"

"D=68" "Q=81" "3=51" "F4=115"

"E=69" "R=82" "4=52" "F5=116"

"F=70" "S=83" "5=53" "F6=117"

"G=71" "T=84" "6=54" "F7=118"

"H=72" "U=85" "7=55" "F8=119"

"I=73" "V=86" "8=56" "F9=120"

"J=74" "W=87" "9=57" "F10=121"

"K=75" "X=88" "F11=122"

"L=76" "Y=89" "F12=123"

"M=77" "Z=90"

See Also IpCapFile, IpCapArea, IpCapWindow

IpCapWindow

Page 2-168

IpCapWindow
Syntax IpCapWindow(Title, bClientOnly, bCursor)

Description This function captures the specified window or the contents of the specified window, and stores
it to a file. Equivalent to pressing the Screen Capture hot key with the Window or Client
selection settings.

Parameters Title String A string specifying the name of the window to be
captured (as defined by the name in its Title bar).
A zero-length string (i.e., "") can be used to specify the
active window.

 bClientOnly Integer An integer value of 0 or 1 specifying whether the entire
window (including borders, Title bar and so forth) is to
be captured, or just its contents. Where:

 0 - Specifies that entire window is to be
captured (including its borders and bars).

1 - Specifies that just the contents of the window
is to be captured.

 bCursor Integer An integer value of 0 or 1 specifying whether the
cursor is to be included in the captured image.
Where:
 0 - Saves the image without the cursor.
 1 - Saves the image, including the cursor.

Example ret = IpCapWindow("Histogram - circuit.tif", 1, 1)

This statement will capture and save the contents of the “Histogram - circuit.tif” window. If
the cursor is within the window when the capture is performed, it will be included in the image.

Comments The image file name and format can be specified using the IpCapFile function. If these
values are not explicitly set using IpCapFile, the options currently in effect for the system
will be used.

See Also IpCapFile, IpCapArea

IpChrt2DCreate
Syntax IpChrt2DCreate (szTitle, sChartType)

Description This function creates a new chart window.

Parameters szTitle String Title of the new chart window

 sChartType Integer Defines the type of chart window to create. Must
be one of the following:

CHRT_TYPE_GRAPH = data graph
CHRT_TYPE_HIST = histogram
CHRT_TYPE_SCAT = scattergram

Return Value The new chart ID if successful. A negative value with error code if failed.

 IpChrt2DGet

Page 2-169

Example Dim ChartID%
‘create new data chart window
ChartID=IpChrt2DCreate("New Data Graph",CHRT_TYPE_GRAPH)
If (ChartID<0) Then
 Exit Sub 'Error
End If

IpChrt2DGet
Syntax IpChrt2DGet (ChartID, lCommand, lpParam)

Description This function gets various chart parameters.

Parameters ChartID Long ID of the chart window returned by IpChrt2DCreate

 lCommand Long See comments and list below.

 lpParam Double Pointer to a double variable that receives the
value

Return Value 0 if succesful, a negative error code if failed

Comments This macro takes the following commands:

lCommand lParam Description

CHRT_NUM_
GRAPHS

Not used, should be 0 Gets the number of displayed graphs

CHRT_RANGE_
MIN

Axis. 0= X, 1 = Y Gets minimum axis value.

CHRT_RANGE_MAX Axis. 0= X, 1 = Y Gets maximum axis value.

CHRT_COLOR Measurement index, 0-based and has to be
less than the number of graphs set in
CHRT_NUM_GRAPHS.

Gets graph color. The value is in
&Hbbggrr& format.

Example example demonstrating IpChrt2DGet function
Dim ChartID%
 …
‘get axes ranges
Dim RetVal As Double
ret = IpChrt2DGet(ChartID,CHRT_RANGE_MIN,0,RetVal)
Debug.Print "X min = " & RetVal
ret = IpChrt2DGet(ChartID,CHRT_RANGE_MAX,0,RetVal)
Debug.Print "X max = " & RetVal
ret = IpChrt2DGet(ChartID,CHRT_RANGE_MIN,1,RetVal)
Debug.Print "Y min = " & RetVal
ret = IpChrt2DGet(ChartID,CHRT_RANGE_MAX,1,RetVal)
Debug.Print "Y max = " & RetVal

IpChrt2DGraphToClipboard

Page 2-170

IpChrt2DGraphToClipboard
Syntax IpChrt2DGraphToClipboard (ChartID)

Description This function copies the graph to the Windows clipboard in enhanced metafile format.

Parameters ChartID Long ID of the chart returned by IpChrt2DCreate

Return Value 0 if successful, a negative error code if failed.

IpChrt2DMove
Syntax IpChrt2DMove(ChartID, X, Y)

Description This function moves the chart window to a new location.

Parameters ChartID Long ID of the chart returned by IpChrt2DCreate

 X Long X coordinate of the top-left corner of the window

 Y Long Y coordinate of the top-left corner of the window

Return Value The new chart ID if successful. A negative value with error code if failed.

Example Dim ChartID%
…
‘move window to 93,32 coordinate
ret = IpChrt2DMove(ChartID, 93, 32)

 IpChrt2DSet

Page 2-171

IpChrt2DSet
Syntax IpChrt2DSet (ChartID, lCommand, lParam,dValue)

Description This function sets various chart parameters.

Parameters ChartID Long ID of the chart window returned by
IpChrt2DCreate

 lCommand Long See comments and list below.

 lParam Long Long option, which depends on the chart
lCommand selected (see below)

 dValue Double Double option, which depends on the chart
lCommand selected (see below)

Return Value 0 if succesful, a negative error code if failed

Comments This macro takes the following commands:

lCommand lParam dValue Description

CHRT_NUM_GRAPHS Not used, should be 0 The number of graphs Sets the number of
graphs

CHRT_ADD_VALUE Graph ID, the ID is 0-
based and has to be
less than the number of
graphs set in
CHRT_NUM_
GRAPHS

The value. adds one value point to
graph. If the
CHRT_BUFFER_SIZE
is set and the new
value exceeds the
buffer size, the value
from the head is
removed from the
buffer.

CHRT_BUFFER_SIZE Not used, should be 0 The size of the buffer, or -1
to turn the rolling buffer off

Sets maximum buffer
size (size of the rolling
buffer)

IpChrt2DSet

Page 2-172

lCommand lParam dValue Description

CHRT_DATA_POOL Not used, should be 0 ChartID of the window that
holds the data pool. After
executing of this function
all chart data operations
have to be done with
ChartID (source data pool).
The data will be updated
automatically in the current
chart when the window
with ChartID is updated

Sets the data pool of
another chart to share
data

CHRT_DSPL_MEAS Not used, should be 0 Measurement index.
Selecting one
measurement the index is
0-based and has to be less
than the number of graphs
set is
CHRT_NUM_GRAPHS.
If the value is
CHDSP_MEAS_ALL , all
added measurements are
shown in the graph
CHDSP_MEAS_SEL, only
selected measurements
are shown. See
CHRT_RESET_SEL_MEA
S and
CHRT_ADD_EL_MEAS.

Sets the display
measurements for the
data graph and
histogram

CHRT_DSPL_LABEL Not used, should be 0 Measurement index, 0-
based and must be less
than the number of graphs
set by CHRT_NUM_
GRAPHS. If the value is
CHDSP_
LABEL_OBJ, the object
number is used as a label.

Sets the label
measurement for the
data graph

CHRT_DSPL_MEAS_X Not used, should be 0 Measurement index, 0-
based and must be less
than the number of graphs
set by CHRT_NUM_
GRAPHS

Sets X measurement
for scatterplot

 IpChrt2DSet

Page 2-173

lCommand lParam dValue Description
CHRT_DSPL_MEAS_Y Not used, should be 0 Measurement index, 0-

based and must be less
than the number of graphs
set by CHRT_NUM_
GRAPHS

Sets Y measurement
for scatterplot

CHRT_RESET_SEL_
MEAS

Not used, should be 0 Not used, should be 0 Resets the list of
selected
measurements

CHRT_ADD_SEL_MEAS Not used, should be 0 Measurement index, 0-
based and must be less
than the number of graphs
set by CHRT_NUM_
GRAPHS

Adds measurement to
the selected list. After
adding of all
measurements the
CHRT_DSPL_MEAS
has to be set to
CHDSP_MEAS_SEL.

CHRT_HIST_BINS Not used, should be 0 The number of bins Sets number of bins in
histogram

CHRT_RANGE_AUTO Axis:
0 = X, 1 = Y

1= on
0 = off

Sets auto-range chart
parameter

IpChrt2DSet

Page 2-174

lCommand lParam dValue Description

CHRT_RANGE_MIN Axis:
0 = X, 1 = Y

The value Sets minimum range
value. Auto-range must
be turned off.

CHRT_RANGE_
MAX

Axis:
0 = X, 1 = Y

The value Sets maximum range
value. Auto-range must
be turned off.

CHRT_SHOW_
LEGEND

Not used, should be 0 1= show
0 = hide

Turns chart title/legend
on or off

CHRT_CHART_
TYPE

Not used, should be 0 Chart type, must be one of
the following:

Sets chart type

 CHRT_2DTYPE_PLOT = Line chart.
CHRT_2DTYPE_BAR = Bar chart.
CHRT_2DTYPE_PIE=Pie chart.
CHRT_2DTYPE_STACKINGBAR = Stacking
bar chart. CHRT_2DTYPE_AREA = Area chart.
CHRT_2DTYPE_HILO = HiLo chart.
CHRT_2DTYPE_HILOOPENCLOSE =
HiLoOpenClose chart.
CHRT_2DTYPE_CANDLE = Candle chart.
CHRT_2DTYPE_POLAR = Polar chart
CHRT_2DTYPE_RADAR = Radar chart
CHRT_2DTYPE_FILLEDRADAR = Filled radar
chart. CHRT_2DTYPE_BUBBLE =Bubble
chart.

lCommand lParam dValue Description

CHRT_CHART_
BACKG_COLOR

Not used, should be 0 Color in &Hbbggrr& format.
For example &H000080& is
dark red

Sets chart background
color

CHRT_CHART_
FOREGR_COLOR

Not used, should be 0 Color in &Hbbggrr& format.
For example &H000080& is
dark red

Sets chart foreground
color (axis, frame,
text)

CHRT_DEPTH_3D Not used, should be 0 Depth value Set chart 3D viewing
depth

CHRT_
ELEVATION_3D

Not used, should be 0 Elevation value in degrees Set chart 3D viewing
elevation

CHRT_ROTATION_3D Not used, should be 0 Rotation value in degrees Sets chart 3D viewing
rotation

 IpChrt2DSet

Page 2-175

lCommand lParam dValue Description

CHRT_COLOR Measurement index, 0-
based and has to be
less than the number of
graphs set in
CHRT_NUM_
GRAPHS.

Color in &Hbbggrr& format.
For example &H000080& is
dark red

Sets color for
measurement graph
(set to
bar,line,symbol). The
color is linked to the
data pool, so if the
data pool is shared
other graphs will use
this color displaying
the measurement.

CHRT_LINE_STYLE Measurement index, 0-
based and has to be
less than the number of
graphs set in
CHRT_NUM_
GRAPHS.

Line style, can be one of the
following:

Sets line style for
measurements. Can
be used only with
CHRT_2DTYPE_PLO
T chart type

 CHRT_2DLINE_STYLE_NONE = None
CHRT_2DLINE_STYLE_SOLID = Solid
CHRT_2DLINE_STYLE_LONGDASH = Long Dash
CHRT_2DLINE_STYLE_DOTTED = Dotted
CHRT_2DLINE_STYLE_SHORTDASH = Short Dash
CHRT_2DLINE_STYLE_LONGSHORTLONGDASH =
Long Short Long Dash
CHRT_2DLINE_STYLE_DASHDOT = Dash Dot

CHRT_LINE_WIDTH Measurement index, 0-
based and has to be
less than the number of
graphs set in
CHRT_NUM_
GRAPHS.

Line width Sets line width for
measurements. Can be
used only with
CHRT_2DTYPE_PLOT
chart type

CHRT_SYMB_SIZE Measurement index, 0-
based and has to be
less than the number of
graphs set in
CHRT_NUM_
GRAPHS.

Symbol size Sets symbol size for
measurements. Can be
used only with
CHRT_2DTYPE_PLOT
chart type

CHRT_SYMB_STYLE Measurement index, 0-
based and has to be
less than the number of
graphs set in
CHRT_NUM_
GRAPHS.

Symbol style, can be
one of the following:

Sets symbol style for
measurements. Can be
used only with
CHRT_2DTYPE_PLOT
chart type

IpChrt2DSet

Page 2-176

lCommand lParam dValue Description

CHRT_SYMB_STYLE CHRT_2DSYMB_STYLE_NONE = None
CHRT_2DSYMB_STYLE_DOT = Dot
CHRT_2DSYMB_STYLE_BOX= Box
CHRT_2DSYMB_STYLE_TRIANGLE = Triangle
CHRT_2DSYMB_STYLE_DIAMOND = Diamond
CHRT_2DSYMB_STYLE_STAR = Star
CHRT_2DSYMB_STYLE_VERTICALLINE =
Vertical Line
CHRT_2DSYMB_STYLE_HORIZONTALLINE =
Horizontal Line CHRT_2DSYMB_STYLE_CROSS =
CrossCHRT_2DSYMB_STYLE_CIRCLE = Circle
CHRT_2DSYMB_STYLE_SQUARE = Square
CHRT_2DSYMB_STYLE_INVERTTRIANGLE =
Inverted Triangle
CHRT_2DSYMB_STYLE_DIAGONALCROSS =
Diagonal Cross
CHRT_2DSYMB_STYLE_OPENTRIANGLE= Open
Triangle
CHRT_2DSYMB_STYLE_OPENDIAMOND =
Open Diamond
CHRT_2DSYMB_STYLE_OPENINVERTTRIANGLE
= Open Inverted Triangle

CHRT_PREDEF_
TYPE

Not used, should be 0 Predefined chart type,
should be one of the
following:

One of the predefined
chart types

 CHARTTYPE_PLOT2D
CHARTTYPE_AREA2D
CHARTTYPE_BAR2D
CHARTTYPE_PLOT3D
CHARTTYPE_AREA3D
CHARTTYPE_BAR3D

 IpChrt2DSet

Page 2-177

lCommand lParam dValue Description

CHRT_DC_BLOCKS Not used, should be 0 Predefined chart type,
should be one of the
following:

Sets block configuration.
Can be used only with
Data Collector charts.

 CHRT_BLOCKS_LAST = last block of data in the
data collector
CHRT_BLOCKS_ALL_IN_ONE = all blocks of data in
the data collector, one measurement in one graph
CHRT_BLOCKS_ALL_SEPARATE = all blocks of
data in the data collector; every block in separate
graph (only 1 measurement possible), number of
graphs corresponds to the number of blocks
CHRT_BLOCKS_ALL_SEP_BY_VAL = chart all
blocks of data in the data collector; every
measurement value in a block in a separate graph;
number of graphs corresponds to the number of
values in the longest measurement

CHRT_NUM_SGNF_
DIG

Not used, should be 0 Number of significant
digits

Sets the number of
significant digits in the
data values.

CHRT_NUM_X_
ARRAYS

Not used, should be 0 The number of X arrays Sets the number of X
arrays. If the number is
not set or 0, then the
object index is used as X
coordinate; if the value is
set the X coordinates set
by
CHRT_ADD_X_VALUE
used for the graphs. If the
value is 1, points with the
same index on multiple
graphs will use the same
X value. The name of the
X axis in that case can be
set using
CHRT_X_NAME option. If
the number of X arrays is
more than 1, every graph
will use separate XY
coordinate pairs. The
option can be used only
with Data Graphs.

IpChrt2DSet

Page 2-178

lCommand lParam dValue Description

CHRT_ADD_X_
VALUE

Graph ID, the ID is 0-
based and has to be
less than the number of
graphs set is
CHRT_NUM
_X_ARRAYS

The value Add one X coordinate
value to graph. The
function should be paired
with CHRT_ADD_VALUE.
The option can be used
only with Data Graphs. If
the
CHRT_BUFFER_SIZE is
set and the new value
exceeds the buffer size,
the value from the head is
removed from the buffer.

CHRT_RESET_ALL Not used, should be 0 Not used, should be 0 Resets the graph and the
data pool associated with
the graph

CHRT_TITLE_TXT_ROT
ATION

Not used, should be 0 Rotation, can be one of
the following:

Sets Y-axis text title
rotation

 CHRT_2D_ROTATENONE = No rotation.
CHRT_2D_ROTATE90DEGREES = Rotate 90 degrees.
CHRT_2D_ROTATE270DEGREES =Rotate 270 degrees.

 IpChrt2DSet

Page 2-179

Example ‘example demonstrating multiple graphs
Sub RollingMultiGraph()
Dim ChartID%,HistID%,ScattID%
ChartID=IpChrt2DCreate("New Data Graph",CHRT_TYPE_GRAPH)
If (ChartID<0) Then
 Exit Sub 'Error
End If

HistID=IpChrt2DCreate("New Histogram",CHRT_TYPE_HIST)
If (HistID<0) Then
 Exit Sub 'Error
End If

ScattID=IpChrt2DCreate("New Scatterplot",CHRT_TYPE_SCAT)
If (ScattID<0) Then
 Exit Sub 'Error
End If

'share ChartID data pool with HistID and ScattID
ret = IpChrt2DSet(HistID,CHRT_DATA_POOL,0,ChartID)
ret = IpChrt2DSet(ScattID,CHRT_DATA_POOL,0,ChartID)

'set rolling buffer size to 100
ret = IpChrt2DSet(ChartID,CHRT_BUFFER_SIZE,0,100)

ret=IpChrt2DShow(ChartID,1)
ret=IpChrt2DShow(HistID,1)
ret=IpChrt2DShow(ScattID,1)

'set data to ChartID and it will be automatically
‘shown in HistID and ScattID
ret = IpChrt2DSet(ChartID,CHRT_NUM_GRAPHS,0,3)
'set measurement names
ret = IpChrt2DSetStr(ChartID,CHRT_GRAPH_NAME,0,"Energy")
ret = IpChrt2DSetStr(ChartID,CHRT_GRAPH_NAME,1,"Entropy")
ret = IpChrt2DSetStr(ChartID,CHRT_GRAPH_NAME,2,"Efficiency")

'set colors
ret=IpChrt2DSet(ChartID,CHRT_COLOR,0,&H000080&)
ret=IpChrt2DSet(ChartID,CHRT_COLOR,1,&H008000&)
ret=IpChrt2DSet(ChartID,CHRT_COLOR,2,&H800000&)

'update chart
ret=IpChrt2DUpdate(ChartID)

'display ALL measurements in data graph
ret = IpChrt2DSet(ChartID,CHRT_DSPL_MEAS,0,CHDSP_MEAS_ALL)
'object number as label
ret = IpChrt2DSet(ChartID,CHRT_DSPL_LABEL,0,CHDSP_LABEL_OBJ)

IpChrt2DSet

Page 2-180

Example 'display 2 measurements in histogram
ret = IpChrt2DSet(HistID,CHRT_RESET_SEL_MEAS,0,0)
ret = IpChrt2DSet(HistID,CHRT_ADD_SEL_MEAS,0,0)'measurement
0
ret = IpChrt2DSet(HistID,CHRT_ADD_SEL_MEAS,0,2)'measurement
2
ret = IpChrt2DSet(HistID,CHRT_DSPL_MEAS,0,CHDSP_MEAS_SEL)
'set 12 bins
ret = IpChrt2DSet(HistID,CHRT_HIST_BINS,0,12) 'set
scatterplot measurements
'set measurement 2 as X
ret = IpChrt2DSet(ScattID,CHRT_DSPL_MEAS_X,0,2)
'set measurement 0 as Y
ret = IpChrt2DSet(ScattID,CHRT_DSPL_MEAS_Y,0,0)

Dim i%
’add random data, run loop to 10000
For i=0 To 10000
 ret = IpChrt2DSet(ChartID,CHRT_ADD_VALUE,0,Rnd()*200+0)
 If (ret<0) Then
 'chart is closed
 Exit Sub
 End If
 ret = IpChrt2DSet(ChartID,CHRT_ADD_VALUE,1,Rnd()*100+100)
 ret = IpChrt2DSet(ChartID,CHRT_ADD_VALUE,2,Rnd()*120+0)

 'update chart
 ret=IpChrt2DUpdate(ChartID)
Next i
End Sub

 IpChrt2DSetArr

Page 2-181

IpChrt2DSetArr
Syntax IpChrt2DSetArr (ChartID, lCommand,lMeasID, InumValues, lpParam)

Description This function sets the data array values

Parameters ChartID Long ID of the chart window returned by IpChrt2DCreate

 lCommand Long Type of the data, can be one of the following:
CHRT_ARR_DOUBLE = array of double values
CHRT_ARR_SINGLE = array of single values
CHRT_ARR_LONG = array of long values
CHRT_ARR_SHORT = array of short integer values

 lMeasID Long Measurement index, 0-based and has to be less
than the number of graphs set in
CHRT_NUM_GRAPHS

 lNumValues Long Number of values to set

 lpParam Any Pointer to the array of data. The type of the array
is defined by lCommand.

Return Value 0 if succesful, a negative error code if failed

Example Dim ChartID%
…
ReDim ValuesArray(NPoints) As Single

Dim i As Long, j As Long
For j=0 To NGraphs-1
 For i=0 To NPoints-1
 ValuesArray(i)=5*i*i*i/(NPoints*NPoints*NPoints)
 Next i
 ‘set data as array
 ret =
IpChrt2DSetArr(ChartID,CHRT_ARR_SINGLE,j,NPoints,ValuesArr
ay(0))
Next j
‘update chart
ret=IpChrt2DUpdate(ChartID)

IpChrt2DSetStr
Syntax IpChrt2DSetStr (ChartID, lCommand, lParam,szStr)

Description This function sets some chart string parameters.

Parameters ChartID Long ID of the chart window returned by
IpChrt2DCreate

 lCommand Long See comments and list below.

IpChrt2DSetStr

Page 2-182

 lParam Long Long option, which depends on the
chart lCommand
selected (see
below)

 szStr String Sting, which depends on the chart
lCommand selected
(see below)

Return Value 0 if succesful, a negative error code if failed

Comments This macro takes the following commands:

lCommand lParam szStr Description

CHRT_GRAPH_
NAME

Graph ID, the ID
is 0-based and
has to be less
than the number
of graphs set is
CHRT_NUM_
GRAPHS

Graph name Sets graph name

CHRT_X_NAME X array ID, the ID
is 0-based and
has to be less
than the number
of graphs set is
CHRT_NUM
_X_ARRAYS

X array name Sets the name for the corresponding X
array. If the number of the X array is one,
the name is displayed in the Label combo
box. This option can only be used with
Data Graphs.

CHRT_AXIS-TITLE 0 = X axis
1 = Y axis

Axis title Sets X or Y axis title. This option can be
used with Data Graph and Histogram

CHRT_TEMPLATE 0 = load
1 = save

Template
name

Loads/saves chart template. It can be
used to set multiple display options such
as colors, chart types, fonts etc.

CHRT_EXPORT_
DATA

Destination type,
must be one of
the following:

File name,
ignored for
Data Export

Exports chart data to file or data exchange

 CHRT_EXPORT = export to data exchange target program (Excel, Origin)
CHRT_FILE_TAB = save to tab-delimited file
CHRT_FILE_CSV =comma-delimited file
CHRT_FILE_HTML = html file

 IpChrt2DShow

Page 2-183

Example Dim ChartID%
…

Dim TmplName As String
TmplName="C:\Temp\TestHistTemplate.oc2"
'load new histogram template
ret = IpChrt2DSetStr(ChartID,CHRT_TEMPLATE,0,TmplName)
‘update window
ret=IpChrt2DUpdate(ChartID)
…

‘export data to Excel (or Origin)
ret =
IpChrt2DSetStr(ChartID,CHRT_EXPORT_DATA,CHRT_EXPORT,"")

‘save data to tab-delimited file

 ret = IpChrt2DSetStr(ChartID,CHRT_EXPORT_DATA,_
CHRT_FILE_TAB,"C:\TabFile.txt")
‘save data to HTML file
ret = IpChrt2DSetStr(ChartID,CHRT_EXPORT_DATA,_
 CHRT_FILE_HTML,"C:\ TestHTML.htm")
‘save data to CSV file
ret = IpChrt2DSetStr(ChartID,CHRT_EXPORT_DATA,_
 CHRT_FILE_CSV,"C:\ TestCSV.csv")

IpChrt2DShow
Syntax IpChrt2DShow (ChartID, bShow)

Description This function shows or hides the chart window.

Parameters ChartID Long ID of the chart returned by IpChrt2DCreate

 sChartType Integer 1 = show chart
0 = hide chart

Return Value 0 if successful, a negative error code if failed.

Example Dim ChartID%
 ‘create new data chart window
ChartID=IpChrt2DCreate("New Data Graph",CHRT_TYPE_GRAPH)
If (ChartID<0) Then
 Exit Sub 'Error
End If
‘show chart
ret=IpChrt2DShow(ChartID,1)

IpChrt2DSize

Page 2-184

IpChrt2DSize
Syntax IpChrt2Size (ChartID, X, Y)

Description This function resizes the chart window.

Parameters ChartID Long ID of the chart returned by IpChrt2DCreate

 X Long New width of the chart window

 Y Long New height of the chart window

Return Value 0 if successful, a negative error code if failed.

Example Dim ChartID%
 …
‘set new chart window size 1076x494

 ret = IpChrt2DSize(ChartID, 1076, 494)

IpChrt2DUpdate
Syntax IpChrt2Update (ChartID)

Description This function updates the data and/or display options in the chart window.

Parameters ChartID Long ID of the chart returned by IpChrt2DCreate

Return Value 0 if successful, a negative error code if failed.

Example 'set colors
ret=IpChrt2DUpdate(ChartID,CHRT_COLOR,0,&H000080&)
ret=IpChrt2DUpdate(ChartID,CHRT_COLOR,1,&H008000&)
ret=IpChrt2DUpdate(ChartID,CHRT_COLOR,2,&H800000&)

'update chart
ret=IpChrt2DUpdate(ChartID

IpClprClipboard
Syntax IpClprClipboard(nCommand)

Description This function cuts, copies, or pastes the sampling tool to the clipboard.

Parameters nCommand Integer Must be one of the following:
CLPR_CUT - cut the selected tool(s) to the
clipboard
CLPR_COPY - copies the selected tool(s) to
the clipboard
CLPR_PASTE - pastes the selected tool(s)
from the clipboard

 IpClprCreateDerivativeEdge

Page 2-185

IpClprCreateDerivativeEdge
Syntax IpClprCreateDerivativeEdge(szName, szLabel, lColor, nOffset, nStyle)

Description This function creates a edge detector using the derivative method.

Parameters szName String Name of the edge detector without the label, i.e.
“Peak”.

 szLabel String Single character label, i.e. “A”.

 lColor Long Color of the markers. Value is in BGR format.

 nOffset Integer Number of pixels from the detected position to
where the marker will be displayed. Negative
number puts the marker before the detected
position. Positive number puts the marker after
the detected position.

 nStyle Integer CLPR_PEAK – peak
CLPR_VALLEY – valley
CLPR_RISING – rising point of inflection
CLPR_FALLING – falling point of
inflection.

Peak is found where the first derivative is zero
and the second derivative is negative number.
Valley if found where the first derivative is zero
and the second derivative is positive number.
Rising point of inflection is found where the
second derivative is zero and the first derivative
is a positive number.
Falling point of inflection is found where the
second derivative is zero and the first derivative
is a negative number

Example Sub IpClprCreateDerivativeEdge_ex()

' create 4 edge detectors, 1 of each type and make them different colors

ret = IpClprCreateDerivativeEdge("Peak", "A", 255, 0, CLPR_PEAK)
ret = IpClprCreateDerivativeEdge("Valley", "B", 4259584, 0, CLPR_VALLEY)
ret = IpClprCreateDerivativeEdge("Rising", "C", 16711680, 0,
 CLPR_RISING)
ret = IpClprCreateDerivativeEdge("Falling", "D", 33023, 0, CLPR_FALLING)

End Sub

See Also IpClprCreatePatternMatchEdge

IpClprCreateMeas

Page 2-186

IpClprCreateMeas
Syntax IpClprCreateMeas(nType, szFromName, szToName)

Description This function creates a caliper measurement.

Parameters nType Integer Selects a measurement type:
CLPR_MEAS_POSX – x position of
markers in the image. Values are in image
coordinate.
CLPR_MEAS_POSY – y position of
markers in the image. Values are in image
coordinate.
CLPR_MEAS_DIST - distance of markers
from the origin of the sampling tool.
CLPR_MEAS_DIST1- distance of markers
between two consecutive markers of the
same edge detector.
CLPR_MEAS_DIST2- distance of markers
between two markers of two different edge
detectors.

 szFromName String Name of the starting edge detector.

 SzToName String Name of the destination edge detector. Ignored if
the nType is not CLPR_MEAS_DIST2

Example Sub IpClprCreateMeas_example()

' clear any existing measurements
ret = IpClprDeleteMeas(-1, "", "")
' create measurements
ret = IpClprCreateMeas(CLPR_MEAS_POSX, "Peak", "") ' x coord
ret = IpClprCreateMeas(CLPR_MEAS_POSY, "Peak", "") ' y coord
ret = IpClprCreateMeas(CLPR_MEAS_DIST, "Peak", "") ' dist from
beginning of sampler
ret = IpClprCreateMeas(CLPR_MEAS_DIST1, "Peak", "") ' dist
between detectors of same type
ret = IpClprCreateMeas(CLPR_MEAS_DIST2, "Peak", "Valley") '
dist between different detectors

End Sub

See Also IpClprDeleteMeas

 IpClprCreatePatternMatchEdge

Page 2-187

IpClprCreatePatternMatchEdge
Syntax IpClprCreatePatternMatchEdge(szName, szLabel, lColor, nOffset, nThreshold, ptPattern,

nNumPoints)

Description This function creates an edge detector using the pattern match method.

Parameters szName String Name of the edge detector without the label, i.e.
“Pattern”.

 szLabel String Single character label, i.e. “A”.

 lColor Long Color of the markers. Value is in BGR format.

 nOffset Integer Number of pixels from the detected position to
where the marker will be displayed. Negative
number puts the marker before the detected
position. Positive number puts the marker after
the detected position.

 nThreshold Integer Number in the range of 0 to 100 indicating the
degree of match. 100% = perfect match.

 ptPattern Single
LPSINGLE
(C)

Pattern template. Values are normalized to
numbers between 0 and 100.

 nNumPoints Integer Number of points in ptPattern.

Example Sub IpClprCreatePatternMatchEdge_e()
' gather up points for pattern
ipPattern(0) = 77.28 : ipPattern(1) = 77.06 : ipPattern(2) = 77.09
ipPattern(3) = 75.31 : ipPattern(4) = 73.87 : ipPattern(5) = 72.13
ipPattern(6) = 70.16 : ipPattern(7) = 68.04 : ipPattern(8) = 65.85
ipPattern(9) = 63.66 : ipPattern(10) = 61.54 : ipPattern(11) = 59.54
ipPattern(12) = 57.69 : ipPattern(13) = 56.13 : ipPattern(14) = 54.57
ipPattern(15) = 53.33 : ipPattern(16) = 52.32 : ipPattern(17) = 51.56
ipPattern(18) = 51.02 : ipPattern(19) = 50.70 : ipPattern(20) = 50.59
' create first detector
 ret = IpClprCreatePatternMatchEdge("Pattern1", "A", 255, 0, 50,
ipPattern(0), 21)

End Sub

See Also IpClprCreateDerivativeEdge

IpClprCreateSampler

Page 2-188

IpClprCreateSampler
Syntax IpClprCreateSampler(nType, szName, Pt, nNumPoints)

Description This function creates a sampling tool.

Parameters nType Integer Selects the type of sampling tool. Must be
one of the following:
 CLPR_LINE - two point line
 CLPR_CWCIRCLE - clockwise circle
 CLPR_CCWCIRCLE - counter -
 clockwise circle
 CLPR_POLYLINE - a line containing
 more than two points

 szName String Name of the sampling tool, for example, "C1".

 Pt POINTAPI
LPPOINT (C)

Array of two points for line and circles to indicate
the anchor (index 0) and the opposite corner on
the bounding rectangle (index 1).
Array of nNumPoints vertices for polyline.
In any case, the point specified at index 0
becomes the anchor or the position of the object

 nNumPoints Integer Ignored by line and circles. Used by the polyline to
indicate the number of points.

Example Sub IpClprCreateSampler_example()
' create a line sampling tool
ret = IpListPts(Pts(0), " 25 84 147 84")
ret = IpClprCreateSampler(CLPR_LINE, "L1", Pts(0), 2)
' create a clockwise circle sampling tool
ret = IpListPts(Pts(0), " 32 32 480 480")
ret = IpClprCreateSampler(CLPR_CWCIRCLE, "C1", Pts(0), 2)
' create a 3 segment polyline sampling tool
ret = IpListPts(Pts(0), " 29 427 490 427 21 255 490 255")
ret = IpClprCreateSampler(CLPR_POLYLINE, "P1", Pts(0), 4)

End Sub

Return Value This function returns the object ID of the sample.

See Also IpClprSelectSampler, IpClprDeleteSampler, IpClprEditSampler, IpClprClipboard

IpClprDeleteEdge
Syntax IpClprDeleteEdge()

Description This function deletes the currently active or selected edge detector in the edge detector list box.

 IpClprDeleteMeas

Page 2-189

IpClprDeleteMeas
Syntax IpClprDeleteMeas(nType, szFromName, szToName)

Description This function deletes a caliper measurement.

Parameters nType Integer Selects a measurement type:
CLPR_MEAS_POSX – x position of markers in
the image. Values are in image coordinate.
CLPR_MEAS_POSY – y position of markers in
the image. Values are in image coordinate
CLPR_MEAS_DIST - distance of markers from
the origin of the sampling tool.
CLPR_MEAS_DIST1- distance of markers
between two consecutive markers of the same
edge detector.
CLPR_MEAS_DIST2- distance of markers
between two markers of two different edge
detectors.

 SzFromName String Name of the starting edge detector.

 SzToName String Name of the ending edge detector. Ignored if the
nType is not CLPR_MEAS_DIST2

Example Sub IpClprDeleteMeas_example()
' create a measurement
 ret = IpClprCreateMeas(CLPR_MEAS_DIST2, "CLPR_PEAK",
"CLPR_PEAK")
' now delete it
ret = IpClprDeleteMeas(CLPR_MEAS_DIST2, "CLPR_PEAK",
"CLPR_PEAK")

End Sub

Comments -1 indicates all measurements, therefore IpClprDeleteMeas(-1, "" , "") will clear all
measurements.

See Also IpClprCreateMeas

IpClprDeleteSampler
Syntax IpClprDeleteSampler()

Description This function deletes the currently active or selected sampling tool.

IpClprDetGetInt
Syntax IpClprDetGetInt(sAttribute, sSampler, sDetector, fValue)

Description This function gets the current value of a detector or marker attibute

Parameters sAttribute Integer Attribute to inquire. See comments below.

 sSampler Integer The index of the sampler to inquire. See
comments.

IpClprDetGetSng

Page 2-190

 sDetector Integer The index of the detector to inquire. See
comments.

 fValue Single A single variable to receive the current value of the
attribute.

Comments This function can be used to inquire the number of detectors, the type of each detector, as well as
the number of the markers that have been found by the detector or added by the user.

 CLPR_GET_NUM_DETECTORS: Returns the number of detectors defined for the
current sampler. The sDetector parameter is ignored.

CLPR_GET_NUM _TYPE: Integer variable to receive type.

CLP_GET_DETECTOR_TYPE : The type of the specified detector which will be either
CLPR_DERIVATIVE or CLPR_PATTERN_MATCH.

CLPR_GET_DET_NUM_MARKERS: Returns the number of markers detected by the
specified detector.

See Also IpClprDetGetSng

IpClprDetGetSng
Syntax IpClprDetGetSng(sAttribute, sSampler, sDetector, sIndex, fValue)

Description This function returns the current value for a detector marker attibute

Parameters sAttribute Integer Attribute to inquire, either
CLPR_GET_DET_MARKER_x or
CLPR_GET_DET_MARKER_Y

 sSampler Integer The index of the sampler to inquire. See

comments.

 sDetector Integer The index of the detector to inquire. See
comments.

 sIndex Integer The index of the marker to inquire. See comments

 fValue Single An single variable to receive the current value of
the attribute.

Comments This function can be used to inquire the position of the markers that have been found by the
detector (or added by the user) Use IpClprGetIntEx to determine the number of samplers. Use
IpClprDetGetInt to determine the number and type of detectors on each sampler, as well as the
number of markers detected by each detector. This function can then be used to return the
position of each of the detected markers.

See Also IpClprGetIntEx, IpClprDetGetInt

 IpClprEditSampler

Page 2-191

IpClprEditSampler
Syntax IpClprEditSampler(nHandle, X, Y)

Description This function moves or resizes a sampling tool.

Parameters nHandle Integer Must be one of the following:
Handle number:
0 – Moves the position of the object. The
position must be specified for the anchor of
the object. The anchor is the first point
specified in IpClprCreateSampler.
For line:
1 – Resizes the object by moving the anchor
of the line.
2 – Resizes the object by moving the end
point of the line.
For circles:
1,3,5,7 - Resizes the circle by moving the
handle where handle 1 is the anchor (not the
center) of the circle, 5 is the opposite end of
handle 1, and the rest are corners of the
bounding rectangle numbered in clockwise
direction.
For poly line:
1-n Moves the vertices of a poly line where 1
is the first vertex and n is the last vertex.

 X Integer X position of the image coordinates.

 Y Integer Y position of the image coordinates.

See Also IpClprCreateSampler

IpClprGet

Page 2-192

IpClprGet
Syntax IpClprGet (sAttr, fData)

Description This function gets the caliper tool attributes.

Parameters sAttr Integer See list below:

 Attribute Value Description

 CLPR_AUTOREFRESH Turn on/off Auto-Refresh flag during multiple
attribute settings. 0 to turn-off auto-refresh, 1 to
turn it back on.

 CLPRE_COLOR Color of the currently selected edge detector

 CLPRE_OFFSET Offset of the currently selected edge detector

 CLPRE_STYLE Style of the currently selected derivative edge
detector

 CLPR_CIRCLE_ORIGIN Origin of circle sampling tool. Number is specified in
angle (degree). 90 degree is at the top of the circle.

 CLPRO_SMOOTHING Gaussian smoothing factor kernel size.

 CLPRO_THICKNESS Sampling tool line thickness.

 CLPRO_APPLY_ICAL Apply intensity calibration to luminance profile.

 CLPRO_APPLY_SCAL Apply spatial calibration to measurement numbers.

 CLPRO_AUTO_SCALE Scale luminance profile to fit minimum and maximum
profile value to the graph area.

 CLPR_SENS Set the sensitivity threshold.

 CLPRO_SHOW_LABEL Show edge detector label on markers

 CLPRO_SHOW_NUMBER Show marker’s sequence number

 CLPRO_PRECISION Set number of digits after decimal point

 IpClprGet

Page 2-193

 fData Single Attribute value.

Example Sub IpClprGet_example
 Dim caliper_attr_singles(14) As Integer
 Dim caliper_attribute_strings(2) As Integer
 Dim i As Integer
 Dim attribute_f As Single

 caliper_attr_singles(1) = CLPR_AUTOREFRESH
 caliper_attr_singles(2) = CLPR_CIRCLE_ORIGIN
 caliper_attr_singles(3) = CLPRE_COLOR
 caliper_attr_singles(4) = CLPRE_OFFSET
 caliper_attr_singles(5) = CLPRE_STYLE
 caliper_attr_singles(6) = CLPRE_THRESHOLD
 caliper_attr_singles(7) = CLPRO_SMOOTHING
 caliper_attr_singles(8) = CLPRO_THICKNESS
 caliper_attr_singles(9) = CLPRO_APPLY_ICAL
 caliper_attr_singles(10) = CLPRO_APPLY_SCAL
 caliper_attr_singles(11) = CLPRO_AUTO_SCALE
 caliper_attr_singles(12) = CLPRO_SHOW_LABEL
 caliper_attr_singles(13) = CLPRO_SHOW_NUMBER
 caliper_attr_singles(14) = CLPRO_PRECISION

 ' open output window and clear it

 ret = IpOutputShow(1)
 ret = IpOutputClear()

 ' loop through the numeric attributes and debug.print their
values

 For i = 1 To UBound(caliper_attr_singles)
 ret = IpClprGet(caliper_attr_singles(i),
 attribute_f)
 ret = IpOutput(Str(attribute_f) + Chr(13) + Chr(10))
 Next i

End Sub

See Also IpClprSet, IpClprGetStr, IpClprSetStr

IpClprGetData

Page 2-194

IpClprGetData
Syntax IpClprGetData(Command, nParam1, nParam2,szRetVal)

Description This function retrieves information from the measurement and statistics tables.

Parameters Command Integer Must be one of the following commands:
CLPD_GETROWCOUNT – get the number of rows
(including column header)
CLPD_GETCOLCOUNT – get the number of
columns (including row header)
CLPD_GETCELL – get cell data
These commands can be OR-ed with CLPD_STAT
to obtain the statistics table. If CLPD_STAT is not
specified, the information is retrieved from the
measurement table which is the top part of the
Measurement Tab.

 nParam1 Integer Used only by CLPD_GETCELL to specify the row
number.

 nParam2 Integer Used only by CLPD_GETCELL to specify the column
number.

 SzRetVal String This return value is always a string.

Example Sub IpClprGetData_example
 Dim return_string As String*16
 Dim rows As Integer
 Dim i As Integer

 ' open output window and clear it
 ret = IpOutputShow(1)
 ret = IpOutputClear()

 ' figure out the number of rows in the table

 ret = IpClprGetData(CLPD_GETROWCOUNT, 0, 0, return_string)
 rows = Val(return_string) - 1 'take into account the
column headings

 ' loop through the table and debug.print the values in
the first column

 For i = 1 To rows
 ret = IpClprGetData(CLPD_GETCELL, i, 1,
return_string)
 ret = IpOutput(return_string + Chr(13) + Chr(10))
 Next i

End Sub

See Also IpClprSave, IpClprSettings

 IpClprGetDataEx

Page 2-195

IpClprGetDataEx
SyntaxIpClprGetDataEx(MeasureIndex, Number, Values)

DescriptionThis function retrieves information from the measurement and statistics tables.

ParametersMeasureIndex Integer Index of the measurement to return, from 0 to the
number of measurements - 1 (use the
CLPR_NUM_MEASUREMENTS attribute to
determine the number of measurements available).

 Number Integer The number of values to return (use the
CLPR_NUM_MEAS_VALUES to determine the
number of values available for a particular
measurement)

 Values Single An array of Singles re-dimensioned to contain the
specified number of measurement values.

Return Value 0 if successful, or a negative value if measurements are not available.

See Also IpClprGetData

IpClprGetIntEx

Page 2-196

IpClprGetIntEx
Syntax IpClprGetIntEx(sAttribute, Index, Value)

Description This function gets the current value of the specified attribute.

Parameters Attribute Integer Must be one of the following commands:
CLPR_ACTIVE_DETECTOR – Returns the index of
the active detector
CLPR_NUM_SAMPLERS - Returns the number of
samplers. The index parameter is not used.
CLPR_SAMPLER_ID - Returns the ID of the sample
specified by the index parameter (0 to the number of
samplers -1)
CLPR_NUM_PROFILE_POINTS Returns the
number of points in the caliper profile along the
sampler specified by the Index parameter. The
number of points can be used to dimension an array
to receive the caliper luminance profile (see the
CLPR_PROFILE command to IpClprGetSngEx).
CLPR_NUM_SAMPLER_POINTS returns
the number of CLPRPTS_SAMPLER that
will be returned by IpClprGetPoints when that
of point return is selected. Note that you can use
the existing attribute
CLPR_NUM_PROFILE_POINTS to get the number
of points returned for CLPRPTS_PROFILE.

 Index Integer Used to specify the sampler of interest.

 Value Integer ID number of the sampler

See Also IpClprGetInt, IpClprSetIntEx

 IpClprGetPoints

Page 2-197

IpClprGetPoints
Syntax IpClprGetPoints (Sampler, PointType, NumberofPoints, Points)

Description This function gets the number and type of points in the sampler.

Parameters Sampler Integer The index of the sampler of interest, from 0 to the
number of samplers minus 1 (the
CLPR_NUM_SAMPLERS attribute can be used to
determine the number of samplers defined)

 PointType CLPRPOINT_
TYPES

The type of sampler points requested. This can be
CLPRPTS_SAMPLER to return a small number of
points that define the sampler (for instance the
bounding box that contains a circular sampler), or
CLPRPTS_PROFILE to return the points on the
image sampled (for instance all of the points along
a line sampler). The
CLPR_NUM_SAMPLER_POINTS attribute can be
used with IpClprGetIntEx to get the number of
CLPRPTS_SAMPLER points, and
CLPR_NUM_PROFILE_POINTS to get the number
of points returned for CLPRPTS_PROFILE.

 NumberofPoints Integer The size of the points array, i.e. the largest number
of points that can be returned.

 Points POINTAPI An array of POINTAPI structures to receive the
requested points, in image coordinates

IpClprGetSngEx
Syntax IpClprGetSngEx(Attribute, Index, Value)

Description This function gets the current value of the specified attribute.

Parameters Attribute Integer CLPR_PROFILE - Returns the caliper luminance
profile. The Index parameter should specify the
sampler index of the sampler whose profile should
be returned. The Data parameter should be a Single
array with enough elements to receive the number of
profile intensities indicated by the
CLPR_NUM_PROFILE_POINTS

 Index Integer Used to specify the sampler of interest.

 Value Single ID number of the sampler

IpClprGetStr

Page 2-198

IpClprGetStr
Syntax IpClprGetStr(sAttr, lpString)

Description This function gets the caliper string attribute values.

Parameters sAttr Integer CLPR_NAME - name of the currently-selected edge
detector
CLPR_LABEL - label of the currently-selected edge
detector

 lpString String Attribute value (null terminated string)

Example Sub IpClprGetStr_example
 Dim caliper_attribute_strings(2) As Integer
 Dim i As Integer
 Dim attribute_s As String*16
 caliper_attribute_strings(1) =
CLPRE_NAME
 caliper_attribute_strings(2) =
CLPRE_LABEL
 ' open output window and clear it
 ret = IpOutputShow(1)
 ret = IpOutputClear()
 ' loop through the string attributes and
print their values
 For i = 1 To
UBound(caliper_attribute_strings)
 attribute_s = ""
 ret =
IpClprGetStr(caliper_attribute_strings(i),
attribute_s)
 ret = IpOutput(IpTrim(attribute_s) + Chr(13)
+ Chr(10))
 Next i
 End Sub

See Also IpClprSet, IpClprGet, IpClprSetStr

 IpClprGetStrEx

Page 2-199

IpClprGetStrEx
Syntax IpClprGetStrEx(Attribute, Index,BYREF Value)

Description This function gets the current value of the specified attribute.

Parameters Attribute Integer Must be CLPR_SAMPLER_NAME – Returns the
name of the sampler specified by the Index
parameter using an index from 0 to the number of
samples minus 1 (See also the IpClprGetIntEx
attribute CLPR_NUM_SAMPLERS).
CLPR_DETECTOR_NAME: Returns the name of the
detector specified by the Index parameter, using an
index from 0 to the number of detectors minus 1 (see
also the IpClprDetGetIntEx attribute
CLPR_NUM_DETECTORS).

 Index Integer Used only by CLPR_SAMPLER_NAME to get the
sample name

 Value String Name of the sampler

IpClprSave
Syntax IpClprSave(szFileName, nSaveMode)

Description This function sends caliper data to the clipboard, file, DDE, or printer.

Parameters szName String Name of the output file.

 nSaveMode Integer A combination of the following:
One of:
S_DATA1 – Luminance Profile
S_DATA2 – Measurement Table
One of:
S_FILE – Send data to file. SzFileName should be
specified.
S_CLIPBOARD – Send data to clipboard
S_DDE – Send data to Excel
S_PRINTER – Send data to printer
Optional:
S_APPEND – Append to existing file. Use with
S_FILE only.

IpClprSelectEdge

Page 2-200

Example Sub IpClprSave_example()

' send the luminance profile and measurements
' table to the debug.printer

ret = IpClprSave("", S_DATA1 + S_DEBUG.PRINTER)
ret = IpClprSave("", S_DATA2 + S_DEBUG.PRINTER)

' append the measurements table to a file

ret = IpClprSave("C:\IPWIN7\example.cpm", S_DATA2 + S_APPEND)

End Sub

Comments Luminance Profile (S_DATA1) can only be sent to clipboard and printer.

See Also IpClprSettings, IpClprGetData

 IpClprSelectEdge
Syntax IpClprSelectEdge(szName)

Description This function selects or activates an edge detector in the edge detector list box.

Parameters szName String Name of the edge detector without the label, i.e.
“Peak”.

See Also IpClprCreateDerivativeEdge, IpClprCreatePatternMatchEdge, IpClprDeleteEdge

IpClprSelectSampler
Syntax IpClprSelectSampler(nID)

Description This function selects or activates a sampling tool.

Parameters nID Integer The object ID of the sampling tool.

See Also IpClprCreateSample, IpClprEditSampler, IpClprDeleteSampler, IpClprClipboard

IpClprSet
Syntax IpClprSet (sAttr, fData)

Description This function sets the caliper tool attributes.

Parameters sAttr Integer See list below:

 fData Single Attribute value.

 Attribute Value Description

 CLPR_AUTOREFRESH Turn on/off Auto-Refresh flag during multiple
attribute settings. 0 to turn-off auto-refresh, 1 to
turn it back on.

 CLPRE_COLOR Color of the currently selected edge detector

 IpClprSet

Page 2-201

 Attribute Value Description

 CLPRE_OFFSET Offset of the currently selected edge detector

 CLPRE_STYLE Style of the currently selected derivative edge
detector

 CLPR_CIRCLE_ORIGIN Origin of circle sampling tool. Number is specified
in angle (degree). 90 degree is at the top of the
circle.

 CLPRO_SMOOTHING Gaussian smoothing factor kernel size.

 CLPRO_THICKNESS Sampling tool line thickness.

 CLPRO_APPLY_ICAL Apply intensity calibration to luminance profile.

 CLPRO_APPLY_SCAL Apply spatial calibration to measurement numbers.

 CLPR_SENS Sets sensitivity threshold

 CLPRO_AUTO_SCALE Scale luminance profile to fit minimum and

maximum profile value to the graph area.

 CLPRO_SHOW_LABEL Show edge detector label on markers

 CLPRO_SHOW_NUMBER Show marker’s sequence number

 CLPRO_PRECISION Set number of digits after decimal point

 CLPRO_LOAD_AS_TEMPLATE Activates the Load as Template checkbox on the
Caliper Input/Output page.

Example Sub IpClprSet_example()

' set color of current edge detector to white
ret = IpClprSet(CLPRE_COLOR, 16777215)

End Sub

See Also IpClprGet, IpClprGetStr, IpClprSetStr

IpClptSetIntEx

Page 2-202

IpClptSetIntEx
Syntax IpClprSetIntEx(sAttribute,sValue)

Description This function sets the new value for a specified attribute.

Parameters sAttribute Integer CLPR_ACTIVE_SAMPLER: Sets the active sampler,
using an index from 0 to the number of samplers
minus 1 (see also Comments and the IpClprGetIntEx
attribute CLPR_NUM_SAMPLERS).
CLPR_ACTIVE_DETECTOR: Sets the active
detector to the specified index, using an index from 0
to the number of detectors minus 1 (see also the
IpClprDetGetInt attribute
CLPR_GET_NUM_DETECTORS, and
IpClprSetIntEx)

 sValue Integer The new value for the attribute. See comments.

Comments The active sampler is set when you select a sampler using the selection tool. The active sampler
determines the set of measurements that are available, as only the measurements for the active
sampler are displayed on the Measurements page or available using IpClprGetDataEx. The
desired sampler is specified by its index, from zero to the number of samplers minus 1. The
number of samplers can be determined using IpClprGetIntEx with the CLPR_NUM_SAMPLERS
attribute.

The active detector is set when you select a detector in the detector list. The active detector can be
deleted using IpClprDeleteEdge. The desired detector is specified by its index, from zero to the
number of detectors minus 1. The number of detectors can be determined using
IpClprGetDetIntEx with the CLPR_NUM_DETECTORS attribute.

IpClprSetStr
Syntax IpClprSetStr(sAttr, lpString)

Description This function sets the caliper string attribute values.

Parameters sAttr Integer CLPR_NAME - name of the currently-selected edge
detector
CLPR_LABEL - label of the currently-selected edge
detector

 lpString String Attribute value (null terminated string)

Example Sub IpClprSetStr_example()

' change name and label of edge detector to Peak-Z and Z

ret = IpClprSetStr(CLPRE_NAME, "Peak-Z")
ret = IpClprSetStr(CLPRE_LABEL, "Z")

End Sub

See Also IpClprGet, IpClprGetStr, IpClprSet

 IpClprSettings

Page 2-203

IpClprSettings
Syntax IpClprSettings(szFileName, bSave)

Description This function saves or loads caliper tool settings, including sampling tools, edge detectors,
measurements, and options.

Parameters szFileName String Name of the settings file where the information will
be stored.

 bSave Integer 1 = save settings file
0 = load settings file

Example Sub IpClprSettings_example()

' save current caliper settings
ret = IpClprSettings("C:\IPWIN7\caliper_example.cps", 1)

End Sub

IpClprShow
Syntax IpClprShow(nShow)

Description This function shows or hides the caliper tool.

Parameters nShow Integer A value of 0 or 1, indicating whether to show or
hide the caliper tool dialog:
0 - hides the dialog
1 - shows the first tab in the dialog (Luminance
Profile)
2 - shows the Measurements tab
3 - shows the Input/Output tab
4 - shows the Options tab

IpClprToggleMarker

Page 2-204

IpClprToggleMarker
Syntax IpClprToggleMarker (X,Y)

Description This function adds or deletes a marker at the specified x, y position.

Parameters X Integer X position in image coordinates

 Y Integer Y position in image coordinates

Example Sub IpClprToggleMarker_example()

' toggle markers

' if they exist at the specified coordinates they
' are deleted otherwise they are created using the
' currently selected edge detector

ret = IpClprToggleMarker(166, 294)
ret = IpClprToggleMarker(164, 270)
ret = IpClprToggleMarker(166, 266)
ret = IpClprToggleMarker(169, 238)

End Sub

Comments If a marker doesn’t exist at the specified position, a new marker is added. This function always
deletes the marker belonging to any edge detector, but only it only adds a marker belonging to the
currently selected/active edge detector.

 IpClprTool

Page 2-205

IpClprTool
Syntax IpClprTool(NewTool)

Description This function selects a caliper tool for interactive use on the active image.

Parameters NewTool Integer The tool to select, from:

 CLPRTOOL_NONE = Set to no active tool.

 CLPRTOOL_SELECT = Set to selection tool.

 CLPRTOOL_LINE = Set to line sampler creation
tool

CLPRTOOL_CWCIRCLE = Set to clockwise
circular sampler creation tool

CLPRTOOL_CCWCIRCLE = Set to counter-
clockwise circular sampler creation tool

 CLPRTOOL_POLYLINE = Set to poly-line
sampler creation tool

CLPRTOOL_MARKER = Set to marker edit tool

Return Value 0 (zero) if successful or a negative error code otherwise.

Comments The CLPRTOOL_MARKER tool requires that there be at least one caliper sampler and at
least one caliper detector on active image, even if the detector is empty (no markers detected).

IpCmChannelExtract

Page 2-206

IpCmChannelExtract
Syntax IpCmChannelExtract(cmColor, cmComp, Channel)

Description This function extracts the specified color channel from the active image or AOI. Equivalent to
the Extract Channel command.

Parameters cmColor Integer An enumerated integer identifying the color model in
which the active image is currently expressed. Must be
one of the following:

CM_RGB
CM_HSI

CM_HSV
CM_YIQ

See definitions under Comments, below.

 cmComp Integer An enumerated integer specifying the color model from
which the channel is to be extracted. Must be one of
the following:

CM_RGB
CM_HSI
CM_HSV

 CM_YIQ
See definitions under Comments, below.

 Channel Integer An integer specifying which of the channels is to be
extracted. See definitions under Comments, below.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

Example ret = IpCmChannelExtract(CM_RGB, CM_YIQ, 1)
This statement will extract the In-Phase channel under YIQ mode from an RGB image.

Comments The following table describes the values allowed in the cmColor, cmComp and Channel
parameters:

 Channel VALUES
OPTION DESCRIPTION 0 1 2
CM_RGB Red, Green and

Blue (RGB)
model.

Red Green Blue

CM_HSI Hue, Saturation
and Intensity
(HSI) model

Hue Saturation Intensity

CM_HSV Hue, Saturation
and Value (HSV)
model

Hue Saturation Value

CM_YIQ Luminance, In-
Phase and
Quadrature (YIQ)
model.

Luminance In-Phase Quadrature

 IpCmChannelMerge

Page 2-207

 To select multiple channels,start with a value of 8 for multiple channels. Then add:
1 to select channel 0 (red, hue, or luminance)
2 to select channel 1 (green, saturation, or in-phase)
4 to select channel 2 (blue, intensity, value, or quadrature)

Therefore, to select blue and green, the channel parameter would be 8 +4 (blue) + 2 (green) = 14

See Also IpCmChannelMerge, IpCmTransform

IpCmChannelMerge
Syntax IpCmChannelMerge(DocId, cmColor, Channel)

Description This function merges the specified channel from the active image or AOI into the specified
image. Equivalent to the Merge Channel command.

Parameters DocId Integer An integer specifying the ID number of the image into
which the active image or AOI is to be merged.

 cmColor Integer An enumerated integer identifying the color model by
which the active image is to be merged. Must be one
of the following:

CM_RGB
CM_HSI

CM_HSV
CM_YIQ

See definitions under Comments, below.

 Channel Integer An integer specifying the channel into which the active
image data is to be merged. See definitions under
Comments, below.

Example ret = IpCmChannelMerge(4, CM_HSI, 1)
This statement will merge the active image as the saturation channel in image 4.

Comments The active image must be of Gray Scale class. The image into which the active image is merged
must be True Color class. The following table describes the values allowed in the cmColor and
Channel parameters:

 Channel VALUES
cmColor DESCRIPTION 0 1 2
CM_RGB Red, Green and Blue

(RGB) model.
Red Green Blue

CM_HSI Hue, Saturation and
Intensity (HSI)
model

Hue Saturation Intensity

CM_HSV Hue, Saturation and
Value (HSV) model

Hue Saturation Value

CM_YIQ Luminance, In-Phase
and Quadrature
(YIQ) model.

Luminance In-Phase Quadrature

See Also IpCmChannelExtract, IpCmTransform

IpCmChannelMerge3

Page 2-208

IpCmChannelMerge3
Syntax IpCmChannelMerge3 (colorDoc, redDoc, greenDoc, blueDoc, cModel,bNewImage)

Description This functions merges a color channel or channels into another image.

Parameters colorDoc Integer ID of the destination color image, or -1 for a new color
image

 redDoc Integer ID of the red image, or -1 for no image.

 greenDoc Integer ID of the green image or -1 for no image.

 blueDoc Integer ID of the blue image or -1 for no image.

 cModel Integer The color model: RGB, HIS, etc,

 bNewImage Integer 1 = create new image
0 = use the image specified by colorDoc as the
destination image

Return Value This function returns the Document ID of the new image, which will be an integer greater than 0.
A negative return value indicates an error.

See Also IpCmChannelMerge, IpCmChannelExtract

IpCmmCorrectColors
Syntax IpCmmCorrectColors (IpInData, IpOutData, nPixels, ImClass)

Description This function converts pixel colors using the current profile.

Parameters IpInData Any Pointer to input data

 IpOutData Any Pointer to output data

 nPixels Long Number of pixels to convert

 ImClass Integer Image class, can be IMC_RGB, IMC_RGB36, or
IMC_RGB48

Example Sub TestRaw()

 Dim InArray(3) As Byte
 Dim OutArray(3) As Byte

 InArray(0)=79
 InArray(1)=79
 InArray(2)=79

 ret=IpCMMCorrectColorsRaw(InArray(0),OutArray(0),1,IMC_RGB)

 Debug.Print "Out Red: " & OutArray(0)
 Debug.Print "Out Green: " & OutArray(1)
 Debug.Print "Out Blue: " & OutArray(2)

End Sub

 IpCmmGet

Page 2-209

IpCmmGet
Syntax IpCmmGet (sAttribute, sParam, pValue)

Description This function gets the various parameters of the Color-Pro module.

Parameters sAttribute Long The command ID. See table below.

 sParam Integer A parameter of the command. See table below.

 pValue Integer Integer value to receive the data

 sAttribute sParam pValue Description

 CMM_ENABLE Ignored, should be
0

1 = enable
0 = disable�

Returns the enabled flag for
color correction on the
monitor and/or printer.

 CMM_ENABLE_CAM_C
ORR

Ignored, should be
0

1 = enable
0 = disable

Returns the enabled flag
for captured image
correction

 CMM_INP_INTENT Ignored, should be
0

0 = picture
(default)
1 = proof
2 = graphics
3 = match print

Returns the rendering
intent for color correction.

Return
Value

0 if successful, a negative error code if failed

See Also IpCmmSetInt, IpCmmSetStr

IpCmmSelectCameraProfile
Syntax IpCmmSelectCameraProfile ()

Description This function shows or hides the camera color profile selection dialog.

Example ret = IpCmmSelectCameraProfile()

IpCmmSetInt

Page 2-210

IpCmmSetInt
Syntax IpCmmSetInt (sAttribute, sParam)

Description This function sets the various parameters of the Color-Pro module.

Parameters sAttribute Long The command ID. See table below.

 sParam Integer A parameter of the command. See table below.

 sAttribute sParam Description

 CMM_ENABLE 1 = enable
0 = disable

Enables/disables color correction on the
monitor and/or printer

 CMM_USE_IMAGE_PROOF 1 = camera profile
0 = working space

Indicates whether the selected camera
profile or default working color space
should be used for captured images

 CMM_CONVERT_VRI Virtual image handle Converts image using existing camera
profile

 CMM_INP_INTENT 0 = picture (default)
1 = proof
2 = graphics
3 = match print

Indicates the rendering intent for color
correction.

 CMM_ATTACH_ICC Image VRI Attaches the selected ICC color profile to
the image. The profile is selected by
previous CMM_CAMERA_PROF and
CMM_USE_IMAGE_PROF commands.

 CMM_CONVERT_TO_WPR
OF

1 = working profile
0 = destination
profile

Indicates whether the selected destination
profile or the default working color space
should be used for converted images.

 CMM_CREATE_NEW_IMAG
E

1 = put results in
new image
0 = use active imagee

Indicates whether a new image should be
created with the next conversion operation,
or if the active image should be used.

 CMM_SAVE_ICC_PROF 1 = on
0 = off

Turns the ‘Save ICC profiles in TIFF files’
option on or off.

 CMM_SAVE_ICC_ALWAYS 1 = on
0 = off

Turns the ‘Always save ICC profiles’ option
on or off. If this option is off, the profile is
saved only if it is not the working profile.

 CMM_CONVERT_ACT Ignored, should be 0 Converts the active image to a new profile.
The destination profile should be already
selected using CMM_CONV_TO_WPROF
and CMM_DEST_PROF functions.

Return
Value

0 if successful, a negative error code if failed. For CMM_CONVERT_ACT, the return value will be
the ID of the new image, if successful, a negative error code if failed.

 IpCmmSetStr

Page 2-211

Example 'enable color management for monitor and printer
ret = IpCmmSetInt(CMM_ENABLE,1)

'use default working color space for captured images
ret = IpCmmSetInt(CMM_USE_IMAGE_PROF,0)

Dim DocId As Integer, hVri As Integer
'get Vri of the active image
ret = IpDocGet(GETACTDOC, 0, DocId)
ret = IpDocGet(GETDOCVRI, DocId, hVri)'convert image
ret = IpCmmSet(CMM_CONVERT_VRI,0,hVri)
'update image
ret = IpAppUpdateDoc(DocId)

ret = IpCMMSetInt(CMM_USE_IMAGE_PROF,1)
ret = IpCMMSetStr(CMM_CAMERA_PROF,0,"C:\ MP5_2_Green.icc")
ret = IpCMMSetInt(CMM_ATTACH_ICC,0)

‘convert image to working profile
ret = IpCMMSetInt(CMM_CONV_TO_WPROF,1)
ret = IpCMMSetInt(CMM_CREATE_NEW_IMAGE,0)
ret = IpCMMSetInt(CMM_CONVERT_ACT,0)

See Also IpCmmGet, IpCmmSetStr

IpCmmSetStr
Syntax IpCmmSetStr (sAttribute, sParam, pValue)

Description This function sets the string values for the color profile.

Parameters sAttribute Long The command ID. See table below.

 sParam Integer A parameter of the command. See table below.

 pValue String The name of a fixed-length string.

 sAttribute sParam pValue Description

 CMM_CAMERA_PRO
F

Ignored, should be 0 String
containing the
file name

Sets the file name for the
camera color profile

 CMM_WORK_PROF Ignored, should be 0 String
containing the
file name

Sets the file name for the
working color profile

 CMM_DEST_PROF Ignored, should be 0 String
containing the
file name

Sets the file name for the
destination color profile in
the Convert To Profile
dialog; This profile will be
used in the next
IpCMMSetInt
(CMM_CONVERT_ACT,
0) operation

Return Value 0 if successful, a negative error code if failed

IpCmmShow

Page 2-212

Example ‘Set camera profile
ret = IpCmmSetStr(CMM_CAMERA_PROFILE,0,”C:\DCS720XDaylightsource.icm”)

See Also IpCmmGet, IpCmmSetInt,

IpCmmShow
Syntax IpCmmShow (WindowType, Show)

Description This function shows or hides the color management dialogs.

Parameters bShow Integer Must be one of the following:
 SHOW = 1, show dialog
 HIDE = 0, hide dialog

 WindowType Applies to one of the following:
Color Management dialog = CMM_W_MANAGER
Assign Color Profile dialog = CMM_W_ASSIGN
Convert to Profile dialog = CMM_W_CONVERT

Example IpCmMShow (CMM_W_MANAGER)

Return Value 0 if successful, an error code otherwise

IpCmTransform
Syntax IpCmTransform(cmOut, cmIn, bNewImage)

Description This function transforms the active image to another color model. Equivalent to the Color
Transform command.

Parameters cmOut Integer An enumerated integer, which identifies the color
model to which the active image is to be transformed:

CM_RGB
CM_HSI

CM_HSV
CM_YIQ

See definitions under Comments, below.

 cmIn Integer An enumerated integer, which identifies the color
model in which the active image is currently expressed
(or is to be interpreted). Must be one of the following:

CM_RGB
CM_HSI
CM_HSV

 CM_YIQ
See definitions under Comments, below.

 IpCmpAdd

Page 2-213

 bNewImage Integer An integer value of 0 or 1 specifying whether the
transformed image is to be written to a new image
window, or back into the active image window. Where:
 0 - Writes the transformed results to the
active window.

1 - Writes the transformed results to a new
image window.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

Example ret = IpCmTransform(CM_HSI, CM_RGB, 0)

This statement will convert RGB image data to HSI image data.

Comments The following table describes the values allowed in the cmOut and cmIn parameters.

cmColor DESCRIPTION

CM_RGB Red, Green and Blue (RGB) model.
CM_HSI Hue, Saturation and Intensity (HSI) model
CM_HSV Hue, Saturation and Value (HSV) model
CM_YIQ Luminance, In-Phase and Quadrature (YIQ) model.

See Also IpCmChannelExtract, IpCmChannelMerge

IpCmpAdd
Syntax IpCmpAdd (DocId, Hue)

Description This function adds a document to the active composite image.

Parameters DocId Integer Indicates the image to add to the color composite.

 Hue short Indicates a color for the source image. Hue may be any
number from 0 to 360, or be one of the following
predefined values:
 HUE_RED = 0
 HUE_GREEN = 120
 HUE_BLUE = 240
 HUE_YELLOW = 60
 HUE_CYAN = 180
 HUE_MAGENTA = 300
 HUE_WHITE = 361
 HUE_DEFAULT - use color specified in Hue
 property, if any (if no default is specified,
 HUE_WHITE will be used)
 HUE_QUERY - displays Hue dialog to set
 color interactively

Example IpCmpAdd (0, HUE_QUERY) ‘Adds document 0, queries the user for
the hue.’
IpCmAdd(DOCSEL_ACTIVE,HUE_RED) Adds the active image

Return Value 0 if successful, an error code otherwise.

IpCmpAddEx

Page 2-214

IpCmpAddEx
Syntax IpCmpAddEx (DocId, Hue)

Description This function allows you to add images to the color composite while simultaneously defining
their X and Y shift.

Parameters DocId Integer Indicates the image to add to the color composite.

 Hue short Indicates a color for the source image. Hue may be any
number from 0 to 360, or be one of the following
predefined values:
 HUE_RED = 0
 HUE_GREEN = 120
 HUE_BLUE = 240
 HUE_YELLOW = 60
 HUE_CYAN = 180
 HUE_MAGENTA = 300
 HUE_WHITE = 361
 HUE_DEFAULT - use color specified in Hue
 property, if any (if no default is specified,
 HUE_WHITE will be used)
 HUE_QUERY - displays Hue dialog to set
 color interactively

Example IpCmpAddEx (0, HUE_QUERY) ‘Adds document 0, queries the user
for the hue.’
IpCmAddEx(DOCSEL_ACTIVE,HUE_RED) Adds the active image

Return Value 0 if successful, an error code otherwise.

IpCmpAddTint
Syntax IpCmpAddTint (DocId, Tint)

Description This function adds a new channel to the existing color composite, which must be the active
image when this function is called.

Parameters DocId Long Indicates the image to use for color compositing

 Tint Long Indicates the tint requested

Return Value The document ID of the image which received the new color composite channel.

 IpCmpAddTintPos

Page 2-215

Example This example assumes that you have three images
on screen with ID numbers of 0,1, and 2
respectively:

Sub SampleComposite()
Dim CompositeID As Integer
Dim Tint1 As Long, Tint2 As Long, Tint3 As Long

'You need to fill the values of Tint1, Tint2,
and Tint3
' in some way, perhaps by calling IpDyeGet
CompositeID = IpCmpNewTint(0, Tint1)
ret = IpAppSelectDoc(CompositeID)
ret = IpCmpAddTint(1, Tint2)
ret = IpAppSelectDoc(CompositeID)
ret = IpCmpAddTint(2, Tint3)

End Sub

IpCmpAddTintPos
Syntax IpCmpAddTintPos (DocId, Tint)

Description This function adds a document with an RGB tint and a specific X/Y shiift to the color
composite.

Parameters DocId Long Indicates the image to use for color compositing

 Tint Long Indicates the tint requested

 Dx Long Indicates the X position of the composite

 Dy Long Indicates the Y position of the composite

Return Value 0 if successful, an error code otherwise.

IpCmpDel
Syntax IpCmpDelete (DocId)

Description This function removes a document from the active composite image

Parameters DocId short Indicates the document ID of the image to remove from
the color composite.

Example IpCmpDelete(0) ‘Remove the image with a document ID of 0’

Return Value 0 if successful, or IPCERR_INVARG (bad docID) or IPCERR_FUNC (not a composite active)
if failed

IpCmpGet

Page 2-216

IpCmpGet
Syntax IpCmpGet (Command, DocId, Value)

Description This function gets the values for color compositing.

Parameters Command short Must be one of the following:
 LUT_BRIGHTNESS
 LUT_CONTRAST
 LUT_GAMMA
 SHIFT_X
 SHIFT_Y
 COMP_HUE
 COMP_BACKGROUND
 COMP_DISPLAY
 COMP_FRAME
 COMP_NUMFRAMES
 GETNUMDOC
 GETDOCLST

 DocId short For the LUT , FRAME, NUMFRAMES, and SHIFT
commands, Doc Id is the the DocID of the source image
to inquire about or DOCSEL_ACTIVE for the color
composite itself.

 Value long Value indicates the variable that will receive the selected
setting’s current value.

Comments

COMMAND DocID VALUE
LUT_BRIGHTNESS
LUT_CONTRAST
LUT_GAMMA

DocID of the source
image to inquire about, or
DOCSEL_ACTIVE to
inquire about the color
composite preview
image’s setting.

Current LUT value.
Gamma is scaled by a
factor of 100 so that it can
be integrated.

SHIFT_X
SHIFT_Y

DocID of the source
image to inquire about, or
DOCSEL_ACTIVE to
inquire about the color
composite preview
image’s setting.

Current pixel shift

COMP_DISPLAY DocID of the source
image to inquire about.

Flag indicating if displayed
or not (non-zero if
displayed).

 IpCmpGet

Page 2-217

COMMAND DocID VALUE
COMP_FRAME DocID of the source

image to inquire about, or
DOCSEL_ACTIVE to
inquire about the color
composite preview
image’s setting.

Current frame

COMP_HUE DocID of the source
image to inquire about.

Hue

COMP_BACKGROUND none DocID of the background,
-1 if none

COMP_NUMFRAMES DocID of the source
image to inquire about, or
DOCSEL_ACTIVE to
inquire about the color
composite preview
image’s setting

Number of frames in the
source image or
composite.

GETNUMDOC none Number of documents
(images) in the color
composite.

GETDOCLST This parameter should
indicate the size of the
array provided by the
Value parameter. The
array should be
dimensioned to the
number of documents
provided by the
GETNUMDOC commad.

An integer array of the
document Ids of all the
documents in the color
composite. Use the
GETNUMDOC command to
get the number of values
that will be returned.

Example dim parm1 as integer
ret = IpCmpGet (LUT_BRIGHTNESS, 0, parm1)
Print parm1

Return Value 0 if successful, an error code otherwise

IpCmpNew

Page 2-218

IpCmpNew
Syntax IpCmpNew (DocId, Hue)

Description This function creates a new color composite, based on the size of the supplied image.

Parameters DocId short Indicates the image to use for color compositing

 Hue short Indicates a color for the source image. Hue may be any
number from 0 to 360, or be one of the following
predefined values:
 HUE_RED = 0
 HUE_GREEN = 120
 HUE_BLUE = 240
 HUE_YELLOW = 60
 HUE_CYAN = 180
 HUE_MAGENTA = 300
 HUE_WHITE = 361
 HUE_DEFAULT - use color specified in Hue
 property, if any (if no default is specified,
 HUE_WHITE will be used)
 HUE_QUERY - displays Hue dialog to set
color interactively

Example IpCmpNew (0, HUE_RED)
‘Creates a new color composite and adds Document 0 to that
‘color composite, and tints its channel Red.

Return Value 0 if successful, an error code otherwise.

IpCmpNewTint
Syntax IpCmpNewTint (DocId, Tint)

Description This function creates a new color composite channel with a specific RGB tint.

Parameters DocId Long Indicates the image to use for color compositing

 Tint Long Indicates the tint requested

Return Value The document ID of the new color composite preview image.

 IpCmpSet

Page 2-219

IpCmpSet
Syntax IpCmpSet (Command, DocId, Value)

Description This function sets the values for color composites.

Parameters Command short Must be one of the following:
 LUT_BRIGHTNESS
 LUT_CONTRAST
 LUT_GAMMA
 SHIFT_X
 SHIFT_Y
 COMP_HUE
 COMP_BACKGROUND
 COMP_DISPLAY
 COMP_RESET
 COMP_BESTFIT
 COMP_FRAME
 COMP_MAKESEQUENCE
 COMP_AUTO_COMPOSITE

 DocId short For the LUT, SHIFT, RESET, BESTFIT, and FRAME
commands, parameter is the DocID of the souce to
adjust, or DOCSEL_ACTIVE for the color composite
itself.

 Value long New value for the specified setting.
Not used with COMP_RESET or COMP_BESTFIT.

Comments For COMP_RESET or COMP_BESTFIT the value argument is ignored, and a LUT bestfit or reset
is performed on the specified image. COMP_HUE cannot be adjusted on the color composite
preview image. For COMP_BACKGROUND the document ID argument is ignored, and the value
argument is used to specify the background document, or –1 to reset.

COMMAND DocID VALUE
LUT_BRIGHTNESS
LUT_CONTRAST
LUT_GAMMA

DocID of the source
image to adjust, or
DOCSEL_ACTIVE to
adjust the color
composite preview
image’s setting.

New LUT value. Gamma
is set to
gamma*100 to allow
integration.

SHIFT_X
SHIFT_Y

DocID of the source
image to adjust, or
DOCSEL_ACTIVE to
adjust the color
composite preview
image’s setting.

New pixel shift

COMP_DISPLAY DocID of the source
image to inquire about.

New display value. The
document is displayed in
the color composite if
Value is non-zero.

IpCmpShow

Page 2-220

COMMAND DocID VALUE
COMP_RESET
COMP_BESTFIT

DocID of the source
image to adjust, or
DOCSEL_ACTIVE to
adjust the color
composite preview
image’s setting.

none

COMP_FRAME DocID of the source
image to adjust, or
DOCSEL_ACTIVE to
adjust the color
composite preview
images’s setting

New frame

COMP_HUE Document ID of the
source image to adjust

Hue

COMP_MAKESEQUENCE Not used Not used
COMP_BACKGROUND none DocID to use for

background,
-1 to reset

Example IpCmpSet (LUT_BRIGHTNESS,0,87)

Return Value 0 if successful, an error code otherwise.

IpCmpShow
Syntax IpCmpShow (flag)

Description This function shows or hides the color composite dialog.

Parameters flag short Must be one of the following:
 COMP_SHOW = 1, show dialog
 COMP_HIDE = 0, hide dialog

Example IpCmpShow (COMP_SHOW)

Return Value 0 if successful, an error code otherwise

IpColCalAdd
Syntax IpColCalAdd (fRGB, fLAB)

Description This function adds a point to the color calibration.

Parameters fRGB Any An array of RGB values, must be declared as:
Dim fRGB(3) as single

 fLAB Any An array of color values, can be LAB or XYZ, must be
declared as:
Dim fLAB(3) as single

 IpColCalConvert

Page 2-221

IpColCalConvert
Syntax IpColCalConvert (ColMode)

Description This function converts the color from one model to another.

Parameters ColMod Integer Indicates the color model to convert the active image
into. Must be one of the following:
COLM_LAB
COLM_XYZ
COLM_RGB
COLM_YIQ
COLM_CMY

IpColCalCorrect
Syntax IpColCalCorrect (InNames$, Out Name$)

Description This function corrects the color.

Parameters InName$ Long Indicates the name of the color calibration to correct
from.

 OutName$ Long Indicates the name of the color calibration to correct to.

IpColCalCreate
Syntax IpColCalCreate ()

Description This function creates a color calibration.

Comments Must be called after at least 3 IpColCalAdd calls.

IpColCalGet
Syntax IpColCalGet(Command)

Description This function gets the color calibration data

Parameters Command Long Data type, must be one of the following:
GET_CAL_POINT
GET_CAL_INFO
GET_CAL_MATRIX
GET_CAL_ICC

 N Integer Number of the point

 Out Any See below.

IpColCalGet

Page 2-222

Command N Out Description

GET_CAL_POINT 0 to 19 Returns the data.
Out is an array of
6 singles:
Out[0]- R input
value of the point
Out[1]- G input
value of the point
Out[2]- B input
value of the point
Out[3] - R (or L or
X)output value of
the point
Out[4]- G (or a or
Y)output value of
the point
Out[5]- B (or b or
Z)output value of
the point

Gets a point of input values of color
calibration

GET_CAL_ICC Ignored, must be 0 Returns a single
variable to
receive the data

Gets ICC profile information

 IpColCalGet

Page 2-223

Command N Out Description

GET_CAL_INFO Ignored, must be 0 Returns the data.
Out is an array of
3 singles:
Out[0] - Color
mode of the
calibration, can
be
0=COLM_LAB,
1=COLM_XYZ,
2=COLM_RGB
Out[1]- Image
Class of the
calibration,
0=RGB24,
1=RGB36,
2=RGB48
Out[2] - Number
of points in the
calibration

Gets calibration information

GET_CAL_MATRIX Color Channel Out- returns the
matrix for the
channel, Out is
array of 20
singles
:Out[0]..Out[19]
 - matrix
data

Gets the calibration matrix

Comments For COLM_RGB the function returns coefficient of color conversion polynomial, for
COLM_LAB and COLM_XYZ the function returns XYZ matrix

IpColCalGetRGB

Page 2-224

IpColCalGetRGB
Syntax IpColCalGetRGB (X,Y, Size, outRGBval,)

Description This function gets the RGB values from the x and y positions of the active image.

Parameters X Long X position

 Y Long Y position

 Size Long Size of the array in pixels

 outRGBval Single Output array of RGB values, must be declared as:
Dim outRGBval(3) as single

IpColCalLoad
Syntax IpColCalLoad (fNames$)

Description This function loads a color calibration.

Parameters fNames$ Long Name of the calibration to load

Return Value

IpColCalNew
Syntax IpColCalNew (InpMode%, ColModel%)

Description This function starts a new color calibration.

Parameters InpMode Long Indicates the image class. Can be one of the following:
0 = RGB24
1 = RGB36
2 = RGB48

 ColModel Long Indicates the color model. Must be one of the following:
COLM_LAB
COLM_XYZ
COLM_RGB
COLM_YIQ
COLM_CMY

IpColCalSave
Syntax IpColCalSave (fNames$)

Description This function saves a color calibration.

Parameters fNames$ Long Name of the calibration to save

 IpColCalSet

Page 2-225

IpColCalSet
Syntax IpColCalSet(Command, N, In)

Description This function sets the color calibration data

Parameters Command Long Data type, must be one of the following:
SET_CAL_POINT
SET_CAL_INFO
SET_CAL_MATRIX
SET_CAL_ICC

 N Integer Number of the point

 InData Any See below.

Command N InData Description

SET_CAL_POINT 0 to 19 Returns the data. InData is an
array of 6 singles:
In[0]- R input value of the point
In[1]- G input value of the point
In[2]- B input value of the point
In[3] - R (or L or X)Input value
of the point
In[4]- G (or a or Y)Input value
of the point
In[5]- B (or b or Z)Input value
of the point

Sets a point of input values of color
calibration

SET_CAL_ICC Ignored,
must be 0

A single value.
1 = on
0 = off

Sets the ICC profile option

SET_CAL_INFO Ignored,
must be 0

Returns the data. In is an array
of 3 singles:
In[0] - Color mode of the
calibration, can be
0=COLM_LAB, 1=COLM_XYZ,
2=COLM_RGB
In[1]- Image Class of the
calibration, 0=RGB24,
1=RGB36, 2=RGB48
In[2] - Number of points in the
calibration

Sets calibration information

IpColCalShow

Page 2-226

Command N In Description

SET_CAL_MATRIX Color Channel In- returns the
matrix for the
channel, In is
array of 20
singles
:In[0]..In[19]
 - matrix
data

Sets the calibration matrix

Comments For COLM_RGB the function returns the coefficient of color the conversion polynomial,
for COLM_LAB and COLM_XYZ the function sets the XYZ matrix

IpColCalShow
Syntax IpColCalShow (Show)

Description This function shows or hides the color calibration dialog.

Parameters Show Long 1= Show the dialog
0 = Hide the dialog

IpColExtract
Syntax IpColExtract (Mask, ColMod, IsSingle)

Description This function extracts the color channels.

Parameters Mask Long Indicates the mask for the channel to be extracted,
should be COLM_CH1, COLM_CH2, and/or
COLM_CH3

 ColMod Integer Color model, must be one of the following:
COLM_LAB
COLM_XYZ
COLM_RGB
COLM_YIQ
COLM_CMY

 IsSingle Integer Indicates the type of the output image:
1 = single point image
0 = Gray8, Gray12, or Gray 16 depending on on the
class of the source

IpColShow
Syntax IpColShow (Show)

Description This function shows or hides the color coordinates dialog.

Parameters Show Long 1= Show the dialog
0 = Hide the dialog

 IpCoLocForward

Page 2-227

IpCoLocForward
Syntax IpCoLocForward (SecondImage, ColorPair, Type)

Description This function calculates the co-localization scatterplot and parameters

Parameters SecondImage Integer Document ID of the image to use as the second
grayscale channel (the active image is used as the first
channel). The second image ID should be –1 if the first
image is a color image.

 ColorPair Interger Indicates the color that should be used:
CP_RED_GREEN Red for first channel,
 green for second
CP_BLUE_RED Blue for first, red for
 second
CP_GREEN_BLUE Green for first,
 blue for second
CP_GREEN_RED Green for first,
 red for second
CP_RED_BLUE Red for first,
 blue for second
CP_BLUE_GREEN Blue for first,
 green for second

 Type Integer Indicates the type of output desired:
CLOC_FWDMASK: Creates a color composite
workspace only if the input images are grayscale.
It will create and return the grayscale scatterplot.

CLOC_FWDCOLOR : Creates a color composite
workspace only if the input images are grayscale.
It will create and return the color scatterplot.

CLOC_FWD3D: Creates a color composite
workspace only if the input images are grayscale.
It will also create a grayscale scatterplot that
should be the active image for the surface plot. It
will create and return the color scatterplot.

CLOC_FWDPARAMS: Calculates the first set of
co-localization parameters and sends them to the
output window.

Comments This function, IpCoLocForward, can end up creating up to 3 new workspaces (or none at all)
depending on the type of image being operated on, and the co-localization option selected.

Return Value Returns the Doc ID of the co-localization scatterplot for all output types except
CLOC_FWDPARAMS. A negative return value indicates an error.

Page 2-228

IpCoLocGetDocument

Syntax IpCoLocGetDocument (DocType, DocID)

Description This function gets the document IDs of the documents created by IpCoLocForward.

Parameters DocType Integer Identifies the document type to return. Must be one of
the following:

CLDOC_COLORCOMPOSITE – Return the
document ID of the color composite or color input
image.
CLDOC_SCATTERPLOT - Return the document
ID of the co-localization scatterplot.
CLDOC_3DMASK – Return the document ID of
the grayscale scatterplot used for surface plotting.

Parameters DocID Integer An integer variable to recieve the document ID.

Return Value 0 if successful. A negative return value indicates an error .

Comments The document ID returned by CLDOC_COLORCOMPOSITE may be the color iput image or a
new document containing a color composite created from the grayscale imput images. The
document ID returned by CLDOC_SCATTERPLOT will be the same ID returned by
IpCoLocForward. The document ID returned by CLDOC_3DMASK should be the active image
for proper display of the co-localization surface plot.

Example ret = IpCoLocGetDocument(CLDOC_COLORCOMPOSITE, ColorImg)

See Also IpCoLocForward

 IpCoLocGetForward

Page 2-229

IpCoLocGetForward
Syntax IpCoLocGetForward (SecondImage, ColorPair, Data)

Description This function gets the co-localization overlap parameters of the original image.

Parameters SecondImage Integer Document ID of the image to use as the second
grayscale channel (the active image is used as the first
channel). The second image ID should be –1 if the first
image is a color image.

 ColorPair Interger Indicates the color that should be used:
CP_RED_GREEN Red for first channel,
 green for second
CP_BLUE_RED Blue for first, red for
 second
CP_GREEN_BLUE Green for first,
 blue for second
CP_GREEN_RED Green for first,
 red for second
CP_RED_BLUE Red for first,
 blue for second
CP_BLUE_GREEN Blue for first,
 green for second

 Data Single Data should be an array of 10 singles, which will
receive the forward parameters:

Data(0) - Pearson's correlation Rr
Data(1) - Overlap coefficient R
Data(2) - Overlap coefficient k1
Data(3) - Overlap coefficient k2
Data(4..9) - reserved

Return Value 0 if successful, an error code otherwise.

IpCoLocGetInverse
Syntax IpCoLocGetInverse (Data)

Description This function gets the co-localization parameters.

Parameters Data Single Data should be an array of 10 singles, which will
receive the forward parameters:

Data(0) - Co-localization coefficient M1
Data(1) - Co-localization coefficient M2
Data(2 - 9) - reserved

Return Value 0 if successful, an error code otherwise

IpCoLocInverse

Page 2-230

IpCoLocInverse
Syntax IpCoLocInverse (Type)

Description This function calculates co-localization parameters on the basis of the active AOI on the co-
localization plot.

Parameters Type Integer CLOC_INVMASK: Creates a mask of co-localizing
pixels on the base of an AOI on the image of co-
localization plot
CLOC_INVPARAMS: Calculates the second set of co-
localization parameters and sends them to the output
window.

Return Value If the input is CLOC_INVMASK, the return value is the document ID of the mask image.
If the input is CLOC_INVPARAMS, the return value is 0.

IpCoLocShow
Syntax IpCoLocShow (show)

Description This function shows or hides the co-localization dialog.

Parameters Show Integer Must be one of the following:
 COMP_SHOW = 1, show dialog
 COMP_HIDE = 0, hide dialog

Return Value 0 if successful, an error code otherwise

IpDbAddField
Syntax IpDbAddField(FieldName, FieldType, FieldLength)

Description This function adds a custom field to the image record.

Parameters FieldName String Identifies the name of the field to be added.

 FieldType Integer An enumarated value that specifies the type of field.
Must be one of the following:
DB_INT: a 2-byte integer
DB_LONG: a 4-byte integer
DB_MEMO: a long string, limited only by your database
 engine
DB_STRING: 1 - 255 byte string

 FieldLength Integer A number between 1 and 255 indicating the number of
characters in the string field (used by DB_STRING,
ignored by the others).

Example ret = IpDbAddField(“MyTextField”, DB_STRING, 40)

 IpDbFind

Page 2-231

IpDbFind
Syntax IpDbFind(FieldName, FieldType, Operator, Field Value)

Description This function searches in the current view according to the specified criteria and selects
(highlights) the next record (thumbnail) that matches.

Parameters FieldName String The name of the field. The name can be selected from
the list of available fields in the Single Image Layout
Preferences dialog.

 FieldType Integer An enumarated value that specifies the type of field.
Must be one of the following:
DB_INT
DB_LONG
DB_STRING
All data fields are of the type STRING, with the
exception of the following fields, which are LONG:
File Size, Resolution, Width in pixels, Height in pixels

 Operator Integer An enumarated value that specifies the operator of
field. Must be one of the following:
OP_EQUAL (equal to)
OP_LT (less than)
OP_LE (less than or equal to)
OP_GT (greater than)
OP_GE (greater than or equal to)
OP_LIKE
OP_NOTLIKE
Depending on the field type, only certain operations will
be valid. These operators cannot be recorded.

 FieldValue See below The address (name) of a variable that includes the data
to be found.

Return Value Success = IPCERR_NONE
Failure = in case of invalid Field Type or invalid Operator, IPCERR_INVARG,
otherwise, IPCERR_FUNC or IPCERR_APPINACTIVE

Example ret = IpDbFind ("Keywords", DB_STRING, OP_LIKE,"color")
ret = IpDbFind ("Width in pixels",DB_LONG, OP_GT,"300")

This statement will search in the current view for records wider than 300 pixels.

IpDbGoto

Page 2-232

IpDbGoto
Syntax IpDbGoto(RecordNum)

Description This function highlights a specific record in the database.

Parameters RecordNum Integer The sequential number of the record to be selected in
the current view, or special values as follows:
DB_FIRST - the first record in the view.
DB_LAST - the last record in the view.
DB_NEXT - the next record in the view.
DB_PREV - the previous record in the view.

Return Value Success = IPCERR_NONE
Failure = IPCERR_FUNC or IPCERR_APPINACTIVE

Example ret = IpDbGoto(5)

This statement will select (highlight) the sixth record (thumbnail) in the current view.

Comments The ‘Archive’ operation of Image-Pro Plus places the archived image as the last record in the
current view.

See Also IpDbSearch()

IpDbLoadView
Syntax IpDbLoadView(ViewName)

Description This function loads a saved view.

Parameters ViewName String The name of the view.

Return Value Success = IPCERR_NONE
Failure = in case of invalid or null View Name, IPCERR_INVARG,
otherwise, IPCERR_FUNC or IPCERR_APPINACTIVE

Example ret = IpDbLoadView(“DemoView”)

This statement will load the previously saved view ‘DemoView’.

IpDbNewFolder
Syntax IpDbNewFolder(FolderName,Description)

Description This function creates a new folder.

Parameters FolderName String The name of the folder.

 Description String The description of the folder (optional)

 IpDbOpenFolder

Page 2-233

Return Value Success = IPCERR_NONE
Invalid folder name = IPCERR_INVARG
Failure = IPCERR_FUNC

Example ret = IpDbNewFolder(“Sample”, “Sample Images”)

This statement will create a new folder named‘Sample’ with the description ‘Sample Images.’

IpDbOpenFolder
Syntax IpDbOpenFolder(FolderName)

Description This function opens an existing folder.

Parameters FolderName String The name of the folder.

Return Value Success = IPCERR_NONE
Invalid folder name = IPCERR_INVARG
Failure = IPCERR_FUNC

Example ret = IpDbOpenFolder(“Sample”)

This statement will open the folder named‘Sample’.

IpDbPrint
Syntax IpDbPrint(Layout)

Description This function prints the thumbnails in a database or folder.

Parameters Layout Integer Identifies the layout to print the thumbnails. Must be
one of the following:
1 = Gallery Layout
2 = Single Image Layout
3 = Gallery Layout - Tagged Images
4 = Single Image Layout - Tagged Images

Comments Thumbnails are printed from the currently open folder or “No Folder.”

Example ret = IpDbPrint (1)

IpDbReadStr

Page 2-234

IpDbReadStr
Syntax IpDbReadStr(FieldName, FieldType, FieldValue, ValueLength)

Description This function reads data from the specified field in the database.

Parameters FieldName String The name of the field. The name can be selected from
the list of available fields in the Single Image Layout
Preferences dialog.

 FieldType String An enumerated value that specifies the type of field.
Must be one of the following:
DB_ STRING, DB_STRING + DB_FILE

 FieldValue See below The address (name) of a variable that receives the
data from the field, or output filename if DB_FILE is
used.

 ValueLength Long The length of the data in bytes.

Return Value Success = IPCERR_NONE
Failure = in case of invalid Field Type: IPCERR_IVARG
otherwise, IPCERR_FUNC or IPCERR_APPINACTIVE

 IpDbReadStr

Page 2-235

Example Dim theSubject as String * 30
Ret = IpDbReadStr ("Subject", DB_STRING, theSubject, 30)
If ret = 0 Then
Debug.Print theSubject
Else
Debug.Print "Operator failed"
End If
This statement will read up to a 30 character string stored in
the ‘Subject’ field of the current image (see comments) into
the string variable ‘theSubject’. The information found in the
‘Subject’ field will be printed to the Output Window. If no
information is found the message “Operator failed” will be
displayed in the Output Window.
Dim FileDateTime as String * 30
Ret = IpDbReadStr ("FileDateTime", DB_STRING, FileDateTime, 30)
If ret = 0 Then
Debug.Print FileDateTime
Else
Debug.Print "Operator failed"
End If
This statement will read up to a 30 character string stored in
the ‘FileDateTime’ field of the current image (see comments)
into the string variable ‘FileDateTime’. The information found
in the ‘FileDateTime’ field will be printed to the Output
Window. If no information is found the message “Operator
failed” will be displayed in the Output Window.
Ret = IpDbReadStr ("Subject", DB_STRING + DB_FILE,
“c:\sample.txt", 30)
This statement will read the value from the subject field of
the current image into a new file called sample.txt.

Comments The current image is the one in a Single Image Layout, or the selected (highlighted) image in a
database view.

See Also IpDbFind(); IpDbGoto()

IpDbSetAttr

Page 2-236

IpDbSetAttr
Syntax IpDbSetAttr(Atttrib, nValue, strValue)

Description This function sets the preferences for your database.

Parameters Attrib Integer DB_CAPTION - set caption display fields
DB_COPYCUSTOM - set flag to copy custom fields

 nValue Integer 0 = Don't set default values of custom fields in new
records
1 = Set default values of custom fields in new records
This parameter is used by DB_COPYCUSTOM

 strValue String The field name that will be used as the caption (used
by DB_CAPTION)

Example IpDbSetAttr (DB_COPYCUSTOM, 1, "")

IpDbSearch
Syntax IpDbSearch(FieldName, FieldType, Operator, Field Value)

Description This function searches in the current view according to the specified criteria and creates a new
view containing the results of the search.

Parameters FieldName String The name of the field. The name can be selected from
the list of available fields in the Single Image Layout
Preferences dialog.

 FieldType Integer An enumerated value that specifies the type of field.
Must be one of the following:
DB_INT
DB_LONG
DB_STRING

All data fields are of the type STRING, with the
exception of the following fields, which are LONG:
File Size, Resolution, Width in pixels, Height in pixels

 IpDbViewAll

Page 2-237

 Operator Integer An enumerated value that specifies the operator of
field.
Must be one of the following:
OP_EQUAL (equal to)
OP_LT (less than)
OP_LE (less than or equal to)
OP_GT (greater than)
OP_GE (greater than or equal to)
OP_LIKE
OP_NOTLIKE
Depending on the field type, only certain operations will
be valid. These operators cannot be recorded.

 FieldValue See below The address (name) of a variable that includes the data
to search for.

Return Value Success = IPCERR_NONE
Failure = in case of invalid Field Type or invalid Operator, IPCERR_INVARG,
otherwise, IPCERR_FUNC or IPCERR_APPINACTIVE

Example ret = IpDbSearch("Caption", DB_STRING, OP_EQUAL, "Demo.tif")
ret = IpDbSearch("Custom5", DB_LONG, OP_LE, "50")

This statement will search the current view for records that have ‘Demo.tif’ in their ‘Caption’
field and create a new view containing the results of the search.

IpDbViewAll
Syntax IpDbViewAll()

Description This function displays the content of the entire database.

Return Value Success = IPCERR_NONE
Failure = IPCERR_FUNC or IPCERR_APPINACTIVE

Example ret = IpDbViewAll()

This statement will display the content of the entire database.

IpDbViewFolder
Syntax IpDbViewFolder(FolderName)

Description This function takes the named folder and makes it the current folder.

Parameters FolderName String The name of the folder.

Return Value Success = IPCERR_NONE
Failure = IPCERR_FUNC or IPCERR_APPINACTIVE

Example ret = IpDbViewFolder(“Sample”)

This statement will display the content of the folder ‘Sample’.

IpDbWriteStr

Page 2-238

IpDbWriteStr
Syntax IpDbWriteStr(FieldName, FieldType, FieldValue, ValueLength)

Description This function writes data to the specified field in the database.

Parameters FieldName String The name of the field. The name can be selected from
the list of available fields in the Single Image Layout
Preferences dialog.

 FieldType String Must be one of the following:
 DB_ STRING, DB_STRING + DB_FILE

 FieldValue See below The address (name) of a variable that includes the data
to be written in the field, or output filename if DB_FILE
is used.

 ValueLength Long Ignored

Return Value Success = IPCERR_NONE
Failure = in case of invalid Field Type or invalid Operator, IPCERR_INVARG,
otherwise, IPCERR_FUNC or IPCERR_APPINACTIVE

Example

Dim theSubject as String * 30

theSubject = “Tissue sample”

ret = IpDbWriteStr (“Subject”, DB_STRING, theSubject, 0)

This statement will write a 30 character string stored in the
string variable ‘theSubject’ in the Subject field of the current
image (see comments).

Dim FileDateTime as String * 30

FileDateTime = “03/11/98 12:07:00”

ret = IpDbWriteStr (“FileDateTime”, DB_STRING, FileDateTime, 0)

This statement will write a 30 character string stored in the
string variable ‘FileDateTime’ in the ‘FileDateTime’ field of the
current image (see comments).

Dim Custom1 as String * 30

Custom1 = “03/11/98 12:07:00”

ret = IpDbWriteStr (“Custom1”, DB_STRING, Custom1, 0)

This statement will write a 30 character string stored in the
string variable ‘Custom1’ in the Custom1 field of the current
image (see comments).

ret = IpDbWriteStr("Subject", DB_STRING + DB_FILE,
"C:\sample.txt", 0)
This statement will read the data from Sample.txt and write it
into the field specified as "Subject".

 IpDcAddCol

Page 2-239

Comments The current image is the one in a Single Image Layout, or the selected (highlighted) image in a
database view.

See Also IpDbFind(); IpDbGoto()

IpDcAddCol
Syntax IpDcAddCol(ColumnName)

Description This function adds columns to the Data Collector.

Parameters ColumnName String Indicates the name that will be displayed in the
column header to identify the data.

Return Value A positive column ID if successful, a negative error code if failed.

Comments This function adds a new column to the data collector layout. This will clear any data that’s
already collected (just as adding an item to the layout does in the Data Collector Layout page).
Any columns that are added using this function will be visible in the Layout page, but they cannot
be added or be selected to be removed from that page. They can only be removed from a script,
using IpDcDeleteCol. Columns added from a macro function will be displayed in the layout using
the name of macro that inserted the column. Columns added by an external program will be
displayed using “External Program”.

The ColumnName that is supplied is used as the column header in the data table.

The function returns a column ID. This column ID must be used in any future operations that
affect the column, e.g. adding data to the column or deleting the column. This will usually mean
that the column ID should be saved to a global variable for use in other macros in the same script.

Example ‘ This macro creates two columns and adds data to them
Dim ColN1 As Long ‘ variables to hold
Dim ColN2 As Long ‘ the column IDs
Dim nArray(3) As Single ‘ array variable to hold the data
‘ Note that the columns should only be created
‘ ONCE per session of data collection
ColN1 = IpDcAddCol("Single1")‘ this is just a name, not a type
ColN2 = IpDcAddCol("String1")
‘ We can repeatedly do the following
nArray(0) = 30‘ sample data
nArray(1) = 31
nArray(2) = 32
‘ Add all the single data
‘ We’ve set the NewBlock parameter to 1 to create a new block
‘ with just our data. If we are adding our data to an existing
‘ block of data (e.g. already collected from Count/Size or
‘ another data source), we should set NewBlock to zero.
IpDcAddSng(ColN1, 1, 3, nArray(0))
‘ Add the string data a row at a time
‘ Note that the NewBlock parameter must be zero here,
‘ or we’ll add a new block instead of adding to the current
‘ block
IpDcAddStr(ColN2, 0, 0, "First String")
IpDcAddStr(ColN2, 0, 1, "Second String")
IpDcAddStr(ColN2, 0, 2, "Third String")

IpDcAddSng

Page 2-240

See Also IpDcDeleteCol, IpDcAddSng, IpDcAddStr

IpDcAddSng
Syntax IpDcAddSng(ColumnId, NewBlock, NumRows, Data)

Description This function adds one or more rows of single data to specified column of the Data Collector.

Parameters ColumnID Long Indicates the column where the data should be
added. The Column ID must have been returned
from IpDcAddCol.

 NewBlock Integer Determines if the data should be added to a new
block (if non-zero) or replace the data in the current
block (if zero).

 NumRows Integer Indicates the number of rows in the data.

 Data Single Contains the array of single data to be added.

Return Value 0 if successful, a negative error code if failed.

Comments This function can add multiple rows of single-precision single point data to the specified column.
The array provided should be a 1-dimensional array of the column data. The data will be added to
the first row of a new block when NewBlock is non-zero. When NewBlock is zero, the data will
replace the data in the current block (if any).

You cannot add single point data to a column that contains strings and vice-versa. You should
instead create separate columns

See Also IpDcAddCol

IpDcAddStr
Syntax IpDcAddStr(ColID, NewBlock, Row, Data)

Description This function adds a string of data to the Data Collector.

Parameters ColumnID Long Indicates the column where the data should be
added. The Column ID must have been returned
from IpDcAddCol.

 NewBlock Integer Determines if the data should be added to a new
block (if non-zero) or replace the data in the current
block (if zero).

 Row Integer Indicates the row where the string should be
inserted.

 Data String Contains the string to be added.

Return Value 0 if successful, a negative error code if failed.

 IpDcGet

Page 2-241

Comments This function adds single string to the collected data. The data will be added to the first row and
column of a new block when NewBlock is non-zero. When NewBlock is zero, the data will replace
the current data in the block.

The Row parameter is used to specify the insertion point of the string in the current or new block.
You cannot add single point data to a colum that contains singles, or vice-versa. Instead, you
should create additional columns.

See Also IpDcAddCol

IpDcDeleteCol

Syntax IpDcDeleteCol(ColumnName)

Description This function removes a column from the Data Collector.

Parameters ColumnName Long Indicates the ID of the column to be deleted. The
Column ID must have been returned from
IpDcAddCol

Return Value 0 if successful, a negative error code if failed.

Comments This function deletes an exsiting column from the data collector layout. This will clear any data
that’s already collected (just as adding an item to the layout does in the Data Collector Layout
page).

Example ColN1 = IpDcAddCol("Example")
...
IpDcDeleteCol(ColN1)‘ delete this column

See Also IpDcAddCol

IpDcGet
Syntax IpDcGet (sCmd, sParam, lpParam)

Description This functions gets data from the data collector.

Parameters sCmd Integer The command ID. See table in the Comments section.

 sParam Integer A parameter of the command. See table below.

 lpParam Reference A variable or array name.

Return Value DC_TYPE: returns 0 = empty, 5 = text, other = numerical value

DC_STATS:returns number of values in lpParam. 0 for text columns.
DC_DATA: returns number of values in lpParam. 0 for text columns.

IpDcGet

Page 2-242

Comments (1) The current column and the current row can be set via IpDcSet(DC_COL/DC_ROW...). The
current column can also be set via IpDcGet(DC_TYPE...).
(2) DC_NUMCOL and DC_TYPE will fail if the data list is empty since information about
collected data items is not known yet.
 (3) DC_STATS and DC_DATA will return 0 (failed) if current column contains text instead of
numerical values.
(4) You can call DC_NUMVAL to determine how large of an array to pass to DC_DATA.

 sCmd sParam lpParam Description

 DC_BLOCKROW1 block number , 0 = first
block

Long variable
receving the result

Gets the starting row of a
given block in the data
list.

 DC_CUSTCOLID The index of the custom
column, from 0 to the
number of custom
columns -1.

Long variable
receving the result

Gets the ID of the
specified column that was
added using
IpDcAddColumn.

 DC_DATA Number of values to get. An array of at
least (sParam)
singles.

Gets numerical values for
the current column in the
data list, starting at
current row. Empty cells
are skipped. For
numerical columns only.

 DC_NUMVAL -1 = number of values
from current row to end
block number - number
of values in block, 0 =
first block

Long variable
receving the result

Gets the number of non-
empty cells in the current
column of the data list.

 DC_NUMROW -1 = whole list
block number, 0 = first
block

Long variable
receving the result

Gets the number of rows in
the whole data list or a given
block.

 DC_NUMCOL not used, must be 0 Long variable
receving the result

Gets the number of rows
in the data list or statistics
table.

 DC_NUMCUSTCOL not used, must be 0 Long variable
receving the result

Gets the number of
custom columns that were
added using
IpDcAddColumn.

 DC_NUMBLOCK not used, must be 0 Long variable
receving the result

Gets the number of
blocks collected.

 IpDcGetStr

Page 2-243

 DC_STATS not used, must be 0 An array of at
least 7 singles
receiving Min,
Max, Mean, SD,
Sum, number of
samples and
number of blocks
in that order.

Gets the statistics for the
current column.

 DC_TYPE column number , 0= first
column

Long variable
receving the result
0 = empty
5 = text
other = numerical
value

Gets the type of data
contained in the given
column; sets the current
column.

Example Dim lVal&, lBlocks&, lColumns&
Dim i%, j%
Dim fStats(10) As Single

'get number of rows in data list
ret = IpDcGet(DC_NUMROW, -1, lVal)
'get number of rows in first block
ret = IpDcGet(DC_NUMROW, 0, lVal)
'get number of columns in data list
ret = IpDcGet(DC_NUMCOL, 0, lColumns)
'get number of blocks in data list
ret = IpDcGet(DC_NUMBLOCK, 0, lBlocks)

'Set current column to 2nd column,
'and get type of data it contains
ret = IpDcGet(DC_TYPE, 1, lVal)

'get number of values in first block
ret = IpDcGet(DC_NUMVAL, 0, lVal)

'get statistics for first column
ret = IpDcSet(DC_COL, 1)
ret = IpDcGet(DC_STATS, 0, fStats(0))

'get 10 values from second column,
'starting at fifth row
ret = IpDcSet(DC_COL, 1)
ret = IpDcSet(DC_ROW, 4)
ReDim fData(10) As Single
ret = IpDcGet(DC_DATA, 10, fData(0))

'get entire column
ret = IpDcSet(DC_ROW, 0)
ret = IpDcGet(DC_NUMVAL, -1, lVal)
ReDim fData(lVal) As Single
ret = IpDcGet(DC_DATA, lVal, fData(0))

See Also IpDcSet, IpDcGetStr

IpDcGetStr
Syntax IpDcGetStr (sCmd, sParam, retString)

Description This functions gets text from the data collector.

Parameters sCmd Integer The command ID. See table below.

IpDcGetStr

Page 2-244

 sParam Integer A parameter of the command. See table below.

 retString String The name of a fixed-length string.

 IpDcSaveData

Page 2-245

 sCmd sParam retString Description

 DC_CELL the maximum length of
retString.

A fixed-length
string receiving the
contents of the cell.
(at least <sParam>
characters)

Gets the text contents of the
cell at the current
row/column.

Return Value The number of characters returned.

Example Dim dataStr As String * 255

' read at most 100 characters from
' cell at 2nd column, 4th row
ret = IpDcSet(DC_COL, 1)
ret = IpDcSet(DC_ROW, 3)
ret = IpDcGetStr(DC_CELL, 100, dataStr)

Comments 1) The current column and the current row can be set via IpDcSet(DC_COL/DC_ROW...). The
current column can also be set via IpDcGet(DC_TYPE...).
(2) DC_CELL works with empty and numerical cells as well.

See Also IpDcSet, IpDcGet

IpDcSaveData
Syntax IpDcSaveData(FileName, sParam)

Description This function saves or exports collected data.

Parameters FileName String The name/path of the file where the data will be
saved. An empty string ("") if not saving to a file.

 sParam Integer What to save and where to save it:
S_STATS Export statistics, otherwise
 export data list.
S_X_AXIS Include row headers
S_Y_AXIS Include column headers
S_DDE Send to Excel via DDE
S_PRINTER Print
S_CLIPBOARD Copy to clipboard
S_APPEND Append to existing file

Example 'Save to file collect1.txt with column and row headers
ret = IpDcSaveData("c:\IPWIN7\collect1.txt", S_X_AXIS +
S_Y_AXIS)
'Copy statistics to clipboard (no headers)
ret = IpDcSaveData("", S_CLIPBOARD + S_STATS)
'Debug.print the data (no headers)
ret = IpDcSaveData("", S_DEBUG.PRINTER)

Page 2-246

IpDcSelect

Syntax IpDcSelect(SourceName, ItemName, sParam)

Description This function selects data items for collection.

Parameters SourceName String The name of the data source.

 ItemName String The name of the data item.

 sParam Integer The representation number (if multiple
representations).

Example 'collect total number of objects found
ret = IpDcSelect("Count_Size","Count",0)
'collect all object area values from Count/Size
ret = IpDcSelect("Count_Size","BLBM_AREA",0)
'collect object average area value
ret = IpDcSelect("Count_Size","BLBM_AREA",3)

Comments SouceName and ItemName should be spelled as they appear in Data Collector's lists, on the left
hand side of the Layout page.

 Names are not case sensitive.

This function can only succeed when the Data List page is empty. It can be called when the
Layout page is empty (i.e. before data sources are invoked).

See Also IpDcUnSelect

IpDcSet
Syntax IpDcSet(sAttribute, lValue)

Description This function sets an option or parameter in the Data Collector.

Parameters sAttribute Integer Indicates the new option or parameter to set.

 lValue Long The new value of the option/parameter:
DC_AUTO Auto collection off (0), on(1),
 conditional(2)
DC_AUTOMODE Auto collection options
DC_BREAK Insert empty line (1), do not
 insert (0)
DC_TOPLINE Add module name to column
 headers (1), do not add (0)
DC_LEFTCOL Row headers options
DC_COLWIDTH Column width in characters
(8 - 50)
DC_SIGNIF Number of significant digits
 (5 - 20)
DC_COL set the current column
 (0 = first column)
DC_ROW set the current row (0 = first row)

 IpDcShow

Page 2-247

Example ' Conditional auto-collection
ret = IpDcSet(DC_AUTO, 2)
' All conditional options on. Collect from single image
ret = IpDcSet(DC_AUTOMODE, 7)
' All row header options on
ret = IpDcSet(DC_LEFTCOL, 7)
' Insert empty line between blocks
ret = IpDcSet(DC_BREAK, 1)
' make tables columns 15 char. Wide
ret = IpDcSet(DC_COLWIDTH, 15)
' show 8 significant digits
ret = IpDcSet(DC_SIGNIF, 8)

Comments For more details on legal values for DC_AUTOMODE and DC_LEFTCOL, please record setting
these options via the Options page of Data Collector.

IpDcShow
Syntax IpDcShow(bShow)

Description This function shows or hides the data collector tool.

Parameters bShow Integer A value of 0 or 1-5, indicating whether to show or
hide the data collector tool tabbed dialog:
0 - hides the dialog
1 - 5 - shows the selected tab in the dialog

See Also IpDcSelect, IpDcUnSelect, IpDcSet, IpDcSaveData, IpDcSelect

IpDcUnSelect
Syntax IpDcUnSelect(SourceName, ItemName, sParam)

Description This function de-selects data items from the selected list on the Layout page of the Data
Collector.

Parameters SourceName String The name of the data source or <all>.

 ItemName String The name of the data item.

 sParam Integer The representation number (if multiple
representations).

Example 'stop collecting total number of objects found
ret = IpDcSelect("Count_Size","Object Count",0)
'de-select all data items
ret = IpDcUnSelect("<all>","",0)

Comments SouceName and ItemName should be spelled as they appear in Data Collector's lists, on the left
hand side of the Layout page.

 Names are not case sensitive.

This function can only succeed when the Data List page is empty. It can be called when the
Layout page is empty (i.e. before data sources are invoked).

See Also IpDcSelect

IpDcUpdate

Page 2-248

IpDcUpdate
Syntax IpDcUpdate(sUpdate)

Description This function collects or deletes data.

Parameters sUpdate Integer DC_FETCH = Collect Now
DC_RESET = Delete All
DC_RESETLAST = Delete last

Comments These commands are equivalent to pressing one of the buttons on the main page.

See Also IpDcSelect, IpDcUnSelect, IpDcShow

IpDCnvCalculateSA
Syntax IpDCnvCalculateSA()

Description This function calculates the spherical abberation values for the active image baed on the
current deconvolution settings.

Return Value Zero if successful, a negative error code if failed.

Comments This function can be used to calculate an empirical spherical aberration correction from the
active image and the current deconvolution settings. After completion, the spherical aberration
correction is updated and the new value will be applied to any subsequent deconvolutions, or
can be inquired using the DCNV_SPHERICALABERRATION command to the IpDCnvGet
function.

IpDCnvDeconvolve
Syntax IpDCnvDeconvolve

Description This function deconvolves the active image with the current settings.

Return Value The document ID of the workspace containing the deconvolved image sequence if successful,
a negative error code if failed.

See Also IpDCnvSet

 IpDCnvGet

Page 2-249

IpDCnvGet
Syntax IpDCnvGet (Attribute, Value)

Description This function gets the current values of the deconvolution attributes.

Parameters Attribute Integer Indicates the attribute to be examined. See list
below and Comments.

 Value any Value is the variable to receive the attribute’s
value. See Comments.

Return Value 0 if successful, a negative error code if failed.

Comments The Attribute parameter determines the type of data returned to the variable, and can be one of

the following:

Attribute Value Description

DCNV_TYPE Integer Type of deconvolution selected. Should
be one of the following:
0 = DCTYPE_NONEIGHBOR
1 = DCTYPE_NEAREST
2 = DCTYPE_INVERSE
3 = DCTYPE _BLIND_2D
4 = DCTYOE_BLIND_3D

Attribute Value Description

DCNV_NA Single Numerical aperture
DCNV_RI Single Refractive index
DCNV_WL Single Emission wavelength
DCNV_XSPACING Single X spacing between pixels, returned

from the spatial calibration if the image
is calibrated.

DCNV_YSPACING Single Y spacing between pixels.
DCNV_ZSPACING Single Z spacing between frames or images.
DCNV_BRIGHTFIELD Integer Is this set for brightfield processing?
DCNV_PHASEOBJECTS Integer Is this set for phase object processing?
DCNV_HAZEREMOVAL Integer Percentage of haze removal required.

IpDCnvGet

Page 2-250

Attribute Value Description

DCNV_SANOISE Integer Gets the SA noise level. Should be one
of the following:
0 = Auto
1 = Low
2 = Medium
3 = High

DCNV_PROCESSMONTAGE Integer Returns the montage overlap value in
pixels.

DCNV_USEACTIVEPORTION Integer Is this set to ignore set membership and
process the active portion of the
sequence instead?

DCNV_CONVERTTOFLOAT Integer Is this set to retain floating-point
results?

DCNV_MONTAGEOVERLAP Integer Is this set for montage overlap?
DCNV_NEIGHBORSPACING Integer Is the nearest neighbor spacing set?
DCNV_SPHERICALABERRAT
ION

Single Returns the SA correction value.

See Also IpDCnvSet, IpDCnvSetSng

 IpDCnvGet

Page 2-251

For 2D and 3D Blind deconvolution, the following constants may be used:

Attribute Value Description

DCNV_MODALITY Integer Microscope modalities. Should be one
of the following:
0 - Widefield Fluoresence
1 - Transmitted light Brightfield

DCNV_TOTAL_ITERATIONS Integer Number of total iterations for blind
deconvolution

DCNV_BSAVE_ITERATIONS Integer Allows you to save intermediate results,
toggles it on or off

DCNV_ SAVE_ITERATIONS Integer Indicates the interval for saving
intermediate iterations. Must be a factor
of the total number of iterations.

DCNV_RESULTS_ITER Integer Sets the iteration number on the
resulting deconvolution image

DCNV_IMAGEGUESS Integer Initial image guess calcuation method
for 3-D Blind deconvolution. Must be
one of the following:
0 = constant-value data
1 = original image input data

DCNV_GUARDBAND Integer Indicates the size in pixels of the
padding to add to the XY image border

DCNV_ GUARDBANDZ Integer Indicates the size in pixels of the
padding to add to the Z image border

DCNV_MONTAGEZ Integer Toggles subvolume deconvolution in
the Z dimension on or off

DCNV_ENABLEPSFCONS Integer Toggles the use of theoretical
constraints on PSF on or off

IpDCnvGet

Page 2-252

For 2D Blind deconvolution, the following constants may be used:

Attribute Value Description

DCNV_BUSEACCELERATION Integer Use acceleartion scheme for 2D-blind
deconvolution

DCNV_B1DDEBLUR Integer Deblur only in the horizontal direction
DCNV_BOBJSMOOTHING Integer Smooth initial object estimate flag
DCNV_BPIXELSATURATION Integer Image contains saturated pixels
DCNV_BREMOVESCANLINES Integer Remove the scan lines artifact
DCNV_BSUPPRESSNOISE Integer Toggles noise compensation on or off
DCNV_BSYMMETRICPSF Integer Forces PSF to be symmetric when

rotated 90 degrees
DCNV_IMAGEGUESS2D Integer Initial image guess calcuation method

for 2-D Blind deconvolution. Must be
one of the following:
0 = constant-value data
1 = original image input data

DCNV_NINTERNALPSFITERATI
ONS

Integer Number of PSF iterations per cycle

DCNV_SHGUARDBAND2D Integer Indicates the size in pixels of the
padding to add to the Z image border
for 2-D blind deconvolution

DCNV_BBACKGROUNDCORRE
CTION

Integer Correct background subtraction
minimum intensity value

DCNV_BLIVE2D Integer Toggles the live deconvolution preview
on or off

DCNV_BEDFAULTTMPPATH Integer Sets the temporary folder to the
Windows default.
0 = Off
1 = On
If this option is Off, the program uses
the folder defined by
DCNV_STMPPATH

 IpDCnvGetStr

Page 2-253

IpDCnvGetStr
Syntax IpDCnvGetStr(Attribute, Value)

Description This function gets the current values of the deconvolution attributes.

Parameters Attribute Integer DCNV_STMPPATH sets the folder for temporary
files of deconvolution. This path is used for saving
the images when DCNV_BDEFAULTTMPPATH
option is 0

 Value String Value is the variable to receive the attribute’s value.
See Comments.

Return Value 0 if successful, a negative error code if failed.

Comments This function is reserved for future expansion.

See Also IpDCnvSet, IpDCnvSetSng

IpDCnvSet
Syntax IpDCnvSet (Attribute, New Value)

Description This function sets the attribute to new values.

Parameters Attribute Integer Indicates the attribute to set. See list below and
Comments.

 New Value Integer New value for integer settings.

Return Value 0 if successful, a negative error code if failed.

Comments The Attribute parameter determines the attribute to set. This function is used only for Integer
attributes.

IpDCnvSet

Page 2-254

Attribute Parameter Type
DCNV_TYPE Integer, must be one of the following:

0 = DCTYPE_NONEIGHBORS
1 = DCTYPE_NEAREST
2 = DCTYPE_INVERSE
3 = DCTYPE_BLIND_2D
4 = DCTYPE_BLIND_3D

DCNV_BRIGHTFIELD Integer. If NewValue is non-zero, will be set for
brightfield processing. If NewValue is zero,
fluorescence is assumed.

DCNV_PHASEOBJECTS Integer. If NewValue is non-zero, will be set for
phase object processing.

DCNV_HAZEREMOVAL Integer. NewValue should be from 1-100 to set the
haze removal percentage. Not valid for
DCTYPE_INVERSE

DCNV_PROCESSMONTAGE Integer.If NewValue is non-zero, will be set for
montage processing. Valid only for
DCTYPE_INVERSE.

DCNV_USEACTIVEPORTION Integer. If NewValue is non-zero, will be set to
process active portion of image (override set and Z
stack information).

DCNV_MONTAGEOVERLAP Integer. Sets the montage overlap
DCNV_NEIGHBORSPACING Sets the nearest neighbor spacing.
DCNV_SANOISE Integer. Sets the SA noise level.

Should be one of the following:
0 = Auto
1 = Low
2 = Medium
3 = High
4 = Custom

DCNV_CONVERTTOFLOAT Integer. If NewValue is non-zero, the intermediate
floating-point results of the deconvolution will be
retained

See Also IpDCnvGet, IpDCnvSetSng

 IpDCnvSet

Page 2-255

For 2D and 3D Blind deconvolution, the following constants may be used:

Attribute Value Description

DCNV_MODALITY Integer Microscope modalities. Should be one
of the following:
0 – Widefield Fluoresence
1 –Transmitted light Brightfield

DCNV_TOTAL_ITERATIONS Integer Number of total iterations for blind
deconvolution

DCNV_BSAVE_ITERATIONS Integer Allows you to save intermediate results,
toggles it on or off

DCNV_ SAVE_ITERATIONS Integer Indicates the interval for saving
intermediate iterations. Must be a factor
of the total number of iterations.

DCNV_SUBPIXEL_XY Integer Sets the super-resolution value
DCNV_RESULTS_ITER Integer Sets the iteration number on the

resulting deconvolution image
DCNV_IMAGEGUESS Integer Initial image guess calcuation method

for 3-D Blind deconvolution. Must be
one of the following:
0 = constant-value data
1 = original image input data

DCNV_GUARDBAND Integer Indicates the size in pixels of the
padding to add to the XY image border

DCNV_ GUARDBANDZ Integer Indicates the size in pixels of the
padding to add to the Z image border

DCNV_MONTAGEZ Integer Toggles subvolume deconvolution in
the Z dimension on or off

DCNV_ENABLEPSFCONS Integer Toggles the use of theoretical
constraints on PSF on or off

Example ret=IpDCnvSet(DCNV_SUBPIXEL_XY, 1)

IpDCnvSet

Page 2-256

For 2D Blind deconvolution, the following constants may be used:

Attribute Value Description

DCNV_BUSEACCELERATION Integer Use acceleartion scheme for 2D-blind
deconvolution

DCNV_B1DDEBLUR Integer Deblur only in the horizontal direction
DCNV_BOBJSMOOTHING Integer Smooth initial object estimate flag
DCNV_BPIXELSATURATION Integer Image contains saturated pixels
DCNV_BREMOVESCANLINES Integer Remove the scan lines artifact
DCNV_BSUPPRESSNOISE Integer Toggles noise compensation on or off
DCNV_BSYMMETRICPSF Integer Forces PSF to be symmetric when

rotated 90 degrees
DCNV_IMAGEGUESS2D Integer Initial image guess calcuation method

for 2-D Blind deconvolution. Must be
one of the following:
0 = constant-value data
1 = original image input data

DCNV_NINTERNALPS
FITERATIONS

Integer Number of PSF iterations per cycle

DCNV_SHGUARDBAND2D Integer Indicates the size in pixels of the
padding to add to the Z image border
for 2-D blind deconvolution

DCNV_BBACKGROUND
CORRECTION

Integer Correct background subtraction
minimum intensity value

DCNV_BLIVE2D Integer Toggles the live deconvolution preview
on or off

DCNV_BEDFAULTTMPPATH Integer Sets the temporary folder to the
Windows default.
0 = Off
1 = On
If this option is Off, the program uses
the folder defined by
DCNV_STMPPATH

 IpDCnvSettings

Page 2-257

IpDCnvSettings
Syntax IpDCnvSettings(szSettings, bSave)

Description This function loads or saves a set of deconvolution settings

Parameters szSettings String Indicates the settings file

 bSave Long Indicates whether to load or save the file:
0 = load file
1 = save file

Return Value 0 if successful, a negative error code if failed.

Example ret = IpDCnvSettings (“sampleset.dcs”,0)

IpDCnvSetSng
Syntax IpDCnvSetSng (Attribute, New Value)

Description This function sets the deconvolution attributes to new values.

Parameters Attribute Integer Indicates the attribute to set. See list below and
Comments.

 New Value Single New value for single settings.

Return Value 0 if successful, a negative error code if failed.

Comments The Attribute parameter determines the attribute to set. This function is used only for string
attributes.

Attribute Parameter Type
DCNV_CUSTOMNOISE Sets the custom noise level. Note that

DCNV_SANOISE must be set to 4 before this value
can be set.

DCNV_NA Value should be a Single containing the new
numerical aperture.

DCNV_RI Refractive index.
DCNV_WL Emission wavelength
DCNV_XSPACING X spacing. Cannot be set if the image is calibrated.
DCNV_YSPACING Y spacing. Cannot be set if the image is calibrated.

Attribute Parameter Type
DCNV_ZSPACING Z spacing.
DCNV_SPHERICAL
ABERRATION

Sets the spherical aberration.

Example ret = IpDCnvSet(DCNV_SANOISE,4)’custom level
ret = IpDCnvSetSng(DNCV_CUSTOMNOISE, gNoiseLevel)

IpDCnvSetSng

Page 2-258

See Also IpDCnvGetStr

For 3D Blind deconvolution, the following constants may be used:

Attribute Parameter Type
DCNV_PSFSTREETCHFACTOR Stretch factor to apply to the calculated PSF
DCNV_PSFCENTRALRADIUS Radius in pixels of the initial PSF hourglass “waist”

For 2D Blind deconvolution, the following constants may be used:

Attribute Parameter Type
DCNV_FPERCENTSATURATION Percentage of the max intensity for pixels to be

considered saturated

 IpDCnvSetStr

Page 2-259

IpDCnvSetStr
Syntax IpDCnvSetStr (Attribute, New Value)

Description This function sets the attribute to new values.

Parameters Attribute Integer DCNV_STMPPATH sets the folder for temporary
files of deconvolution. This path is used for saving
the images when DCNV_BDEFAULTTMPPATH
option is 0

 New Value String New value for integer settings.

Return
Value

0 if successful, a negative error code if failed.

Comments This function is reserved for future expansion.

See Also IpDCnvGet, IpDCnvSetSng

IpDCnvShow
Syntax IpDConvShow(Show)

Description This function shows or hides the deconvolution dialog.

Parameters Show Integer Shows or hides the deconvolution
dialog:
DCNV_HIDE Hides the dialog
DCNV_SHOW Shows the dialog

Return Value 0 if successful, a negative error code if failed.

IpDCnvResultsShow
Syntax IpDCnvResultsShow(Show)

Description This function shows or hides the deconvolution results dialog.

Parameters Show Integer Shows or hides the deconvolution
results dialog:
DCNV_HIDE Hides the dialog
DCNV_SHOW Shows the dialog

Return Value 0 if successful, a negative error code if failed.

IpDde

Page 2-260

IpDde
Syntax IpDde(Cmd, String1, String2)

Description This function gives access to the Dynamic Data Exchange protocol, used by many popular
Windows programs to exchange data. It complements the data export via DDE function found in
the Image-Pro data generating tools.

Parameters Cmd Integer Command ID.

 String1 LPSTR(C),
String(Basic)

First parameter of the command.

 String2 LPSTR(C),
String(Basic)

Second parameter of the command.

Comments The commands used with this function are listed in the table below.
The commands and formats shown with the examples of DDE_EXEC are specific to the
English-language version of Excel. To determine which commands and formats are supported
by a given program under DDE, consult the documentation for that product. For non-English
versions of Excel, record the command in an Excel macro and observe what kind of string it
generates. Any macro command can be sent to Excel using DDE if the command is enclosed in
brackets [].
Note that in the examples above, whenever a BASIC string containing quotes has to be
generated, that string must be split into its component parts. For instance, the string
 [SELECT("R1C9")]
 is generated by adding together five strings:
 "[SELECT(" chr$(34) "R1C9" chr$(34) and ")]" .
If the program called by DDE_OPEN resides in a directory in the system Path, Image-Pro will
attempt to start that program if it is not already running.

 IpDde

Page 2-261

Example q$ = chr$(34) ' ASCII code for quote.

' Open communication with sheet1 of Excel
ret = IpDde(DDE_OPEN, "excel", "sheet1")

' Put value 1.234 into cell on 2nd row and 3rd column.
ret = IpDde(DDE_PUT, "R2C3", "1.234")

'Get value back from Excel
Dim tmp$ as string * 100
Dim retval as single
ret = IpDde(DDE_GET, "R2C3", tmp$)
retval = val(tmp$)

' Execute commands in Excel:

' Open communication with Excel itself
ret = IpDde(DDE_OPEN, "excel", "system")

' Select sheet2
ret= IpDde(DDE_EXEC, "[ACTIVATE(" = q$ +"sheet2" + q$ + ")]", "")

Select cell in first row and 9th column
ret = IpDde(DDE_EXEC, "[SELECT(" + q$ + R1C9" + q$ + ")]", "")

'Paste contents of clipboard
ret = IpDde (DDE_EXEC, "[PASTE()]","")

' End communication
ret = IpDde (DDE_CLOSE, "", "")

IpDde commands are as follows:

Command String1 String2 Return Value Description

DDE_OPEN DDE server name,
usually the name of
the executable file
(e.g. Excel)

Topic name,
depending on the
program (e.g."
Sheet2" in Excel)

0 if successful,
negative number if
failed.

Initiates
communication
with the DDE
server program.

DDE_CLOSE Not used. Not used. None. Ends
communication
with the DDE
server.

DDE_PUT Item name. In
Excel, the
coordinates of a
cell.

A string containing
the data to be sent.

0 if successful,
negative number if
failed.

Sends a data item
to the DDE server.

DDE_GET Item name. In
Excel, the
coordinates of a
cell.

A string receivng
the data sent by the
DDE server.

0 if successful,
negative number if
failed.

Requests a data
item from the DDE
server.

IpDemoGetStr

Page 2-262

Command String1 String2 Return Value Description

DDE_SET Item name. In
Excel, the
coordinates of a cell

Must be one of the
following:
Row
Col
Row_Inc
Col_Inc
Topic

0 if successful,
negative number if
failed.

Sends a data item
to the DDE server.

DDE_EXEC Command to be
executed by the
DDE server.

Not used. 0 if successful,
negative number if
failed.

Sends a command
to be executed by
the DDE server.

IpDemoGetStr
Syntax IpDemoGetStr(Cmd, Param, OutVal)

Description Use this command to find the name of an IPP Demo Macro.

Parameters Cmd String See below

 Param Integer An integer specifying data with which Cmd will
operate.

 OutVal See below The address (name) of the variable that will receive
the requested data. Be sure this variable is of the
type required by Cmd. See Cmd description under
Comments, below.

Cmd VALUE DESCRIPTION Param VALUE OutVal TYPE

DEMO_ATTR_
LISTPATH

Use this command to
determine the name and
location of the folder holding
one or more .MPL files that
define the list of macrosd
disaplayed in the macro
editor.

The index of the
macro of interest,
from 0 to the
number of demo
macros, -1.

STRING

Return Value The name of the available macro

IpDemoSetStr
Syntax IpDemoSetStr(Cmd, Param, OutVal)

Description Use this command toset the name of an IPP Demo Macro.

Parameters Cmd String See below

 Param Integer An integer specifying data with which Cmd will
operate.

 IpDemoShow

Page 2-263

 OutVal See below The address (name) of the variable that will receive
the requested data. Be sure this variable is of the
type required by Cmd. See Cmd description under
Comments, below.

Cmd VALUE DESCRIPTION Param VALUE OutVal TYPE

DEMO_ATTR_
LISTPATH

Use this command to set the
name and location of the
folder holding one or more
.MPL files that define the list
of macrosd disaplayed in the
macro editor.

The index of the
macro of interest,
from 0 to the
number of demo
macros, -1.

STRING

Return Value The name of the available macro

 IpDemoShow
Syntax IpDemoShow(Show)

Description This function shows or hides the maro player.

Parameters Show Integer If non-zero, show the macro player.
If zero, hide the macro player

IpDocClick
Syntax IpDocClick(Message, CurPos)

Description This function prompts the user to point to an image and press the left mouse button. It will
write the position of the cursor to a variable that you specify.

Parameters Message String A string of text that is to be displayed in the message
box.

 CurPos POINTAPI The address (name) of the point-structure variable (of
IPBasic type, POINTAPI) that will receive the position of
the cursor when the user presses the left mouse button
in the image.

Return Value This function returns the Document ID of the image that was clicked, or IPCERR_NODOC if you
clicked outside of an image workspace. It will return IPCERR_CANCELLED if you clicked the
Continue button on the prompt dialog.

Example The following example asks the user to select two points in an image and then measures a profile
between those points.

IpDocClose

Page 2-264

 dim mypt1 as pointapi, mypt2 as pointapi
dim docid1 as integer, docid2 as integer
docid1 = IpDocClick("Select the 1st point", mypt1)
if docid1 >= 0 then
 docid2 = IpDocClick("Select the 2nd point", mypt2)
 if docid2 = docid1 then
 ret = IpProfCreate()
 ret = IpProfLineMove(mypt1.x, mypt1.y, mypt2.x, ypt2.y)
 end if
end if

Comments The coordinates returned in CurPos are actual image coordinates. They are not affected by zoom
and pan settings.
If -1 is returned, the contents of CurPos is not set and, therefore, might not be valid.

See Also IpBlbGet(GETHIT), IpDocGet

IpDocClose
Syntax IpDocClose()

Description This function closes the active image window.

See Also IpAppCloseAll

IpDocCloseEx
Syntax IpDocCloseEx(docID)

Description This function closes the document by document ID.

Parameters docID Integer Identifies the document to be closed.

Comments The workspace identified by the document ID does not have to be active.

See Also IpDocGet, IpDocClose, IpDocFind, IpDocMove, IpDocSize

 IpDocCloseVri

Page 2-265

IpDocCloseVri
Syntax IpDocCloseVri(docInst)

Description This function closes a document instance.
Note - if you are an Image-Pro Software Development Kit (SDK) programmer, this function is
very similar to the HilImClose function found in your HIL library.

Parameters docInst Integer The handle (type integer in C) to the document
instance as returned by IpDocOpenVri or
IpDocOpenAoi.

Example The following example opens and then closes a document instance.
Dim docInst as integer
Dim aArea as RECT
docInst=IpDocOpenVri(DOCSEL_ACTIVE, IMA_RD, aArea)
.
.
.

ret=IpDocCloseVri(docInst)

See Also IpDocOpenVri, IpDocOpenAoi, IpDocGetLine, IpDocPutLine

IpDocFind
Syntax IpDocFind(document name)

Description This function finds a document by name

Parameters document name String Identifies the document to be found.

Return Value Returns the Document ID

See Also IpDocGet, IpDocClose, IpDocCloseEx, IpDocMove, IpDocSize

IpDocGet

Page 2-266

IpDocGet
Syntax IpDocGet(Cmd, Param, OutVal)

Description Use this function to get information relating to the current or specified image (document).

Parameters Cmd Integer A command ID, which specifies the type of information
you want to retrieve. See table below.

 Param Integer Parameter of the command. See table below.

 OutVal See below The name of the variable that will receive the
requested data. Be sure this variable is of the type
required by Cmd. See Cmd description under
Comments, below.

Example The following examples get information about the active document.
Dim DocId as integer, hVri as integer

1. The following statement gets the active document ID.
ret = IpDocGet(GETACTDOC, 0, DocId)

2. The following statement gets the window handle of the active document, where
DocId was obtained as shown in the first example, above.

 dim WndHandle as long
ret = IpDocGet(GETDOCWND, DocId, WndHandle)
 'or:
ret = IpDocGet(GETDOCWND, DOCSEL_ACTIVE, WndHandle)

3. The following example gets the Vri of the active document , where
 DocId was obtained as shown in the first example, above.
ret = IpDocGet(GETDOCVRI, DocId, hVri)
 'or:
ret = IpDocGet(GETDOCWND, DOCSEL_ACTIVE, hvri)

4. The following example gets the list of documents displayed.
DocList(30) as integer
Dim numdocs as integer
numdocs = IpDocGet(GETDOCLST, 30, DocList(0))

5. The following example gets information about the active document.
Dim dInfo as IPDOCINFO
ret = IpDocGet(GETDOCINFO, DOCSEL_ACTIVE, dInfo)

6. The following example gets information about the instance associated with the
 active document.
Dim iInfo as IPDOCINFO
Dim docInst as long
docInst = IpDocOpenAoi(DOCSEL_ACTIVE, IMA_RD)
ret = IpDocGet(GETINSTINFO, DOCSEL_ACTIVE, imInfo)

 IpDocGet

Page 2-267

Comments When passing an array to Image-Pro from a BASIC program, be sure to pass the first element of the
array by reference (See GETDOCLST statement in example, above).
In the following table, everywhere a Document ID is passed in Param, DOCSEL_ACTIVE can be
passed instead, to designate the active document.
DOC_POS_X and DOC_POS_Y are the same kinds of coordinates that can be used with the
IpDocMove function to position a workspace with the larger Image-Pro work area.

Command Description PARAM (type) OutVal (type) Return Value

GETACTDOC This command gets the active
Document ID. The ID number
is written to OutVal.

Not used by
GETACTDOC. Must
be set to 0.

Address of the
integer receving the
doc ID. (Integer)

None.

GETDOCVRI This command gets the image
bitmap handle of the
document specified in Param.
The VRI handle is written to
OutVal.

Document ID, or
DOCSEL_ACTIVE to
designate the active
image. (integer)

Address of the
integer variable
receving the VRI
handle. (Integer)

None.

GETDOCWND This command gets the
window handle of the
document. The window
handle is written to OutVal.

Document ID, or
DOCSEL_ACTIVE to
designate the active
image. (integer)

Address of a window
handle (Long)

None.

GETDOCLST This command gets the list of
open documents. The
Document IDs are written to
OutVal().

The maximum
number of Ids
allocated in OutVal
(i.e., the size of the
array).

An array of
intergers receiving
the list of
documents
(Integer)

Number of doc Ids
returned.

GETNUMDOC This command gets the
number of open documents.
This number is written to
OutVal.

Not used by
GETNUMDOC. Must
be set to 0.

Address of
interger (Integer)

None.

GETDOCINFO This command gets document
size and class information.
The requested information is
written to OutVal.

Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

Address of
IPDOCINFO
structure.

0 if successful

GETINSTINFO This command gets instance
size and class information.
The requested information is
written to OutVal.

Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

Address of
IPDOCINFO
structure.

0 if successful

INF_DPIX Get document horizontal DPI Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

Address of Long 0 if successful

IpDocGet

Page 2-268

Command Description PARAM (type) OutVal (type) Return Value

INF_DPIY Get document vertical DPI Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

Address of Long 0 if successful

INF_DATE Get document date Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

Address of Long 0 if successful

INF_IS_MODIFIED Indicates if the specified
image has been modified

Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

Address of Long 0 if successful

INF_RANGE This command gets the
single-point range of the
specified image workspace.
It is returned for all image
types, and can be useful in
determining the dynamic
range (range of pixel values)
of the specified image.

Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

An array of 2
singles, the first
being the
minimum intensity
value, and the
second being the
maximum.

0 if successful

INF_XPOSITION
INF_YPOSITION
INF_ZPOSITION

These commands get the
image's absolute position
when captured, if known.
The IPDOCPOS structure
indicates whether the
position is known.

Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

IPDOCPOS
structure to receive
the position
information.

0 if successful

INF_XSCROLL This command gets the
current horizontal scroll
position.

Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

A Long to receive
the position.

0 if successful

INF_YSCROLL This command gets the
current vertical scroll
position.

Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

A Long to receive
the position.

0 if successful

INF_ZOOMFACTOR This command gets the
current Zoom factor. Zoom
factors are
(10),
 (25),
 (50),
100
(200),
(400),
(800) and
(1600).

Document ID, or
DOCSEL_ACTIVE to
designate the active
image.

A Long to receive
the Zoom factor

0 if successful

 IpDocGet

Page 2-269

DOC_POS_X Gets the X position of the
specified image in the
workspace on your screen

Document ID, or
DOCSEL_ACTIVE
to designate the
active image

Address of
Integer

0 if successful

DOC_POS_Y Gets the Y position of the
specified image in the
workspace on your screen

Document ID, or
DOCSEL_ACTIVE
to designate the
active image

Address of
Integer

0 if successful

The following table describes the IPDOCINFO structure:

C DEFINITION BASIC DEFINITION DESCRIPTION

short Width; Width As Integer Width of document (or document
instance)

short Height; Height As Integer Height of document (or document
instance)

short iClass; iClass As Integer Class of document, as follows
IMC_BILEVEL - 1bpp (not supported)
IMC_GRAY - 8bpp
IMC_GRAY12 - 12bpp
IMC_GRAY16 - 16bpp
IMC_PALETTE - 8bpp
IMC_RGB - 24bpp
IMC_RGB36 - 36 bpp
IMC_RGB48 - 48bpp
IMC_SINGLE - 32bpp

short Bpp; Bpp As Integer Bits per pixel of document (bpp). See
above.

RECT Extent; Extent As RECT For a document the left and top values
are always 0. The right and bottom
values are Width-1 and Height-1.
For an instance, RECT will be the extent
of the area that was opened for read/write
(see IpDocOpenVri).

See Also IpDocOpenAoi, IpDocOpenVri, IpDocGetStr, IpDocGetPosition

IpDocGetArea

Page 2-270

IpDocGetArea
Syntax IpDocGetArea(DocID, rArea, ImageBuffer, gMode)

Description This function reads a rectangular area from an Image-Pro image bitmap into a user-defined
array. There is no Image-Pro command equivalent to this function; it is one that must be
manually written with the macro editor.
Currently, this function cannot be used with Bilevel images. If you want to obtain, and
manipulate a block of data from a Bilevel image, convert it first to Gray Scale.
Note - Because of array size limitation in IPBasic (64K), this function is intended to be used
with a Visual Basic program.

Parameters DocID Integer An integer representing the document's ID, or
DOCSEL_ACTIVE to designate the active image.

 rArea RECT A rectangle specifying the area of the document to be
read.

 ImageBuffer See below The address (name) of the array variable that will
receive the requested data. The type and size of this
array is dependent upon the source image's class.
See ImageBuffer table under Comments, below.

 gMode Integer A value of 0 or CPROG specifying the manner in which
the image data are to be written to the ImageBuffer.
Where:
 0 - writes the data in BASIC mode
 CPROG - writes the data in C mode
See Comments, below, for more about gMode.

Return Value This function returns a 0 if successful.

Example The following example obtains a block of 8-bit Gray Scale image data and inverts its pixel
values.

Dim i as integer
Dim j as integer
Dim Reg as RECT
Reg.left = 100
Reg.top = 100
Reg.right = 200

Reg.bottom= 150

Redim ImBuf(Reg.left to Reg.right,Reg.top to Reg.bottom) as
integer
ret=IpDocGetArea(DOCSEL_ACTIVE,Reg,ImBuf(Reg.left,Reg.top),0)
for j=Reg.top to Reg.bottom
Debug.print j
for i=Reg.left to Reg.right
 ImBuf(i,j)=255-ImBuf(i,j)
next i

next j

ret = IpDocPutArea(DOCSEL_ACTIVE, Reg,
ImBuf(Reg.left,Reg.top), 0)

 IpDocGetArea

Page 2-271

The following example reads an entire 8-bit Gray Scale image.
Dim iInfo as IPDOCINFO
ret=IpDocGet(GETDOCINFO, DOCSEL_ACTIVE, iInfo)
Redim ImBuf(1 to iInfo.Width,1 to iInfo.Height) as integer
ret=IpDocGetArea(DOCSEL_ACTIVE,iInfo.Extent,ImBuf(1,1),0)
' refresh the display of the active document.
ret=IpAppUpdateDoc(DOCSEL_ACTIVE)

Comments The gMode parameter determines how IMC_GRAY, IMC_PALETTE and IMC_RGB data are
written to your array. These image classes use 8 bits to represent each pixel (or color channel).
BASIC, however, does not have an 8-bit data type (the 16-bit integer type is the smallest numeric
data unit). So, when these image data are written in BASIC mode (i.e., gMode = 0), each pixel
(or color channel) is converted to 16-bits. Pixel values do not change (0 to 255), but the storage
requirement is twice that of the source image data. If you are going to manipulate the image data
with a BASIC program, you must set gMode to 0.
In a C program, 8-bit pixels can be directly manipulated in an array of the BYTE (8-bit) data type.
Therefore, if you are extracting data to an array that will be manipulated by C, set gMode to
CPROG so that the data are written without the 8- to 16-bit conversion. This will result in faster
processing times and greatly reduced storage requirements.
The ImageBuffer table, below, describes the data types and storage requirements of each mode.

If the Image
Class is... ImageBuffer size must be

If gMode
is...

ImageBuffer Data
Type must be

IMC_GRAY (rArea width, rArea height) 0 Integer
 CPROG BYTE
IMC_PALETTE (rArea width, rArea height) 0 Integer
 CPROG BYTE
IMC_RGB (3 * rArea.width, rArea height) 0 Integer
 CPROG BYTE
IMC_RGB36 (3 * rArea.width, rArea height) 0 Integer
 CPROG short
IMC_RGB48 (3 * rArea.width, rArea height) 0 Integer
 CPROG short
IMC_GRAY12 (rArea.width, rArea height) 0 Integer
 CPROG short
IMC_GRAY16 (rArea width, rArea height) 0 Integer
 CPROG short
IMC_SINGLE (rArea width, rArea height) 0 Single

 CPROG single

IMC_BILEVEL This class is not supported by
IPP 4.0 OR HIGHER.

 Bilevel image files are converted
to grayscale automatically.

IpDocGetAreaSize

Page 2-272

 Remember, a True Color image (i.e., IMC_RGB) will require 3 times as many elements per line
as a Gray Scale (IMC_GRAY) image does, because each pixel is comprised of a 3-byte “chunk”
of Red, Green and Blue values.
Also, BASIC arrays are different from the C arrays used in Image-Pro in that they include a
header containing information about the array itself. To emulate a C array when calling an
Auto-Pro function, a BASIC program should pass the address of the first element of the array
(i.e. pass the first element “by reference”). See the call to IpDocGetArea in the example,
above.

See Also IpDocPutArea, IpDocGetLine, IpDocPutLine, IpDocOpenVri, IpDocClose, IpAoiGet

IpDocGetAreaSize
Syntax IpDocGetAreaSize(DocID, Area, Mode, Size)

Description This function returns the size required to get the specified area.

Parameters DocID Integer An integer representing the document's ID, or
DOCSEL_ACTIVE to designate the active image.

 Area RECT A rectangle specifying the area of the document to be
read. To get the size of a line, set Area, top equal to
Area, bottom.

 Mode Integer A value of 0 or CPROG specifying the manner in which
the image data are to be written to the ImageBuffer.
Where:
 0 - writes the data in BASIC mode
 CPROG - writes the data in C mode
See Comments, below, for more about gMode.

 Size Long A long variable to receive the size required.

Return Value This function returns a 0 if successful, an error code if failed.

See Also IpDocGetArea

 IpDocGetLine

Page 2-273

IpDocGetLine
Syntax IpDocGetLine(docInst, LineNum, LineBuffer)

Description This function reads a line from a document bitmap into a user-defined buffer. There is no
Image-Pro command equivalent to this function; it is one that must be manually written with
the macro editor.
Before calling IpDocGetLine, you must open the document for read and/or write access
using IpDocOpenVri or IpDocOpenAoi.

Parameters docInst Integer

The handle (type short in C) to the document
instance as returned by IpDocOpenVri or
IpDocOpenAoi.

 LineNum Integer The number of the line (in the instance) that is to
be read, where first line (i.e., the uppermost line)
in the instance is line 0, the next line is line 1,
and so forth.

 LineBuffer See below The address (name) of a one-dimensional array
variable that will receive the requested data.
The type and size of this array is dependent
upon the source image's class. See LineBuffer
table under Comments, below.

Return Value 0 if successful. Non-0, otherwise.

Example The following example inverts the red channel in the AOI of the active RGB image.
Dim i as integer
Dim j as integer
Dim imInfo as IPDOCINFO
Dim docInst as long

docInst=IpDocOpenAoi(DOCSEL_ACTIVE,IMA_RDWR)
if docInst=0 then GoTo erroropen

ret=IpDocGet(GETINSTINFO,docInst,imInfo)
Redim LineBuf(1 to imInfo.Width * 3) as integer

for j=1 to imInfo.Height
 ret=IpDocGetLine(docInst,j-1,LineBuf(1))

 for i=1 to imInfo.Width * 3 step 3
 LineBuf(i) = 255-LineBuf(i)
 next i

 ret=IpDocPutLine(docInst,j-1,LineBuf(1),1)
next j

' close the instance.
ret=IpDocCloseVri(docInst)

' refresh the display of the active document.
ret=IpAppUpdateDoc(DOCSEL_ACTIVE)

IpDocGetLine

Page 2-274

Comments The table, below, describes the data type and storage requirements of LineBuffer, for each
image class.

If the Image
Class is...

LineBuffer size must be... If your
program is...

LineBuffer data type
must be

IMC_GRAY Instance width BASIC Integer
 C BYTE

IMC_PALETTE Instance width BASIC Integer
 C BYTE

IMC_RGB 3 * Instance width BASIC Integer
 C BYTE

IMC_RGB36 3 * Instance width BASIC Integer
 C short

IMC_RBG48 3 * Instance width BASIC Integer
 C short

IMC_GRAY12 Instance width BASIC Integer
 C short

IMC_GRAY16 Instance width BASIC Integer
 C short
IMC_SINGLE Instance width BASIC Single

 C single

IMC_BILEVEL Instance width
Not supported in IPP
4.0 OR HIGHER

BASIC Integer

 C BYTE

 Remember, a True Color image (i.e., IMC_RGB) will require 3 times as many elements per line
as a Gray Scale (IMC_GRAY) image does, because each pixel is comprised of a 3-byte “chunk”
of Red, Green and Blue values.
Also, BASIC arrays are different from the C arrays used in Image-Pro in that they include a
header containing information about the array itself. To emulate a C array when calling an
Auto-Pro function, a BASIC program should pass the address of the first element of the array
(i.e. pass the first element “by reference”). See the call to IpDocGetLine in the example
above.

See Also IpDocOpenVri, IpDocOpenAoi, IpDocPutLine, IpDocGetArea

 IpDocGetPropDate

Page 2-275

IpDocGetPropDate
Syntax IpDocGetPropDate(DocID, PropertyID, Frame, DocProperty)

Description This function gets the current value of a property. Used for properties represented a date.

Parameters DocId Integer

The document ID of the image, or
DOCSEL_ACTIVE to edit the active image.

 PropertyID Integer The ID of the property to get, must be one of the
following:
DOCPROP_TIME = Capture time
DOCPROP_TIMEPOINT = Time point

 Frame Long The index of the frame to edit, or
DOC_ACTIVEFRAME to get the property of the
active (displayed) frame. For DOCPROP_TIME
only, the DOC_ENTIREIMAGE property can be
used to get the image time as a Date (see also
the INF_DATE command to IpDocGet, which
returns the image time as a string).

 DocProperty Date A date variable to receive the current value of
the specified property.

See Also IpDocSetPropDate

IpDocGetPropDbl

Page 2-276

IpDocGetPropDbl
Syntax IpDocGetPropDbl(DocID, PropertyID, Frame, DocProperty)

Description This function gets the current value of a property. Used for properties represented by double-
precision single-point values.

Parameters DocId Integer

The document ID of the image, or
DOCSEL_ACTIVE to edit the active image.

 PropertyID Integer The ID of the property to get, must be one of the
following:
DOCPROP_XPOSITION = Position of the image
along the X axis, in the current calibration units.
DOCPROP_YPOSITION = Position of the image
along the X axis, in the current calibration units.
DOCPROP_ZPOSITION = Position of the image
along the Z axis, in the microns.
DOCPROP_EMWAVELENGTH = The emissions
wavelength in nm.
DOCPROP_EXWAVELENGTH = the excitation
wavelength in nm.
DOCPROP_REFINDEX = Refractive index.
DOCPROP_NUMAPERTURE = Numeric
aperture.

 DOCPROP_MAGNIFICATION = Magnification of
the object in use when the image was captured.

DOCPROP_EXPOSURE = Exposure time in
seconds used when the image was captured.

DOCPROP_GAIN = Digital gain setting used when
the image was captured.

DOCPROP_GAMMA = Digital gamma setting
used when the image was captured.

DOCPROP_OFFSET = Digital offset setting used
when the image was captured.

 Frame Long The index of the frame to edit, or
DOC_ACTIVEFRAME to get the property of the
active (displayed) frame.

 DocProperty Double A double variable to receive the current value of
the specified property.

See Also IpDocSetPropDbl

 IpDocGetPropLong

Page 2-277

IpDocGetPropLong
Syntax IpDocGetPropLong(DocID, PropertyID, Frame, DocProperty)

Description This function gets the current value of a property. Used for properties represented by double-
precision single-point values.

Parameters DocId Integer

The document ID of the image, or
DOCSEL_ACTIVE to edit the active image.

 PropertyID Long The ID of the property to get, must be one of the
following:
DOCPROP_BIN_X = The digital binning used
along the horizontal axis when the image was
captured.
DOCPROP_BIN_Y = The digital binning used
along the vertical axis when the image was
captured.
DOCPROP_CAPTRECT_L = The left coordinate
of the capture rectangle used when the image
was captured.
DOCPROP_CAPTRECT_R = The right
coordinate of the capture rectangle used when
the image was captured.
DOCPROP_CAPTRECT_T = The top coordinate
of the capture rectangle used when the image
was captured.

 DOCPROP_CAPTRECT_B = The bottom
coordinate of the capture rectangle used when
the image was captured.
DOCPROP_CHIPCOORD_L = The left
coordinate of the camera sensor area used when
the image was captured.
DOCPROP_CHIPCOORD_R = The right
coordinate of the camera sensor area used when
the image was captured.
DOCPROP_CHIPCOORD_T = The top
coordinate of the camera sensor area used when
the image was captured.
DOCPROP_CHIPCOORD_B = The bottom
coordinate of the camera sensor area used when
the image was captured.

 DOCPROP_NATIVE_BITDEPTH = The native
bit depth of the capture device used if the image
has been captured in Image-Pro; typically 8, 1,
12, 14, or 16.
DOCPROP_DISPLAY_TINT = Turns the
pseudocolor or tint display off or on, sets that
option, and redisplays the image.

 Frame Long The index of the frame to edit, or
DOC_ACTIVEFRAME to get the property of the
active (displayed) frame.

 DocProperty Long A double variable to receive the current value of
the specified property.

IpDocGetPropStr

Page 2-278

Comments The DOCPROP_CHIPCOORD properties will only be present when the image was captured by a
digital camera that uses a combination of binning and different sensor areas to support different
capture resolutions. The coordinates are reported in relation to the sensor size at the current
binning.

See Also IpDocSetPropLong

IpDocGetPropStr
Syntax IpDocGetPropStr(DocID, PropertyID, Frame, DocProperty)

Description This function gets the current value of a property. Used for properties represented by a string.

Parameters DocId Integer

The document ID of the image, or
DOCSEL_ACTIVE to edit the active image.

 PropertyID Integer The ID of the property to get, must be one of the
following:
DOCPROP_CHANNELNAME = Channel name.
DOCPROP_SITELABEL = Site label (i.e. Well
Position or user-defined position).
DOCPROP_CAPTDRIVERNAME = Name of
the capture driver used in acquisition
DOCPROP_CAPTCAMERANAME = Name of
the camera used in acquisition
DOCPROP_CAPTCAMERAID = Camera ID of
the camera used in acquisition
DOCPROP_CAPTDRIVERFEATURES =
Description of camera features
DOCPROP_CAPTDRIVERVERSION =
Version of the capture driver used in
acquisition
DOCPROP_TIMEPHASELABEL = Name of the
time phase in which the current time point
belongs

 Frame Long The index of the frame to edit, or
DOC_ACTIVEFRAME to get the property of the
active (displayed) frame.

 DocProperty String A fixed-length string to receive the current value
of the specified property.

See Also IpDocSetPropStr

 IpDocGetPosition

Page 2-279

IpDocGetPosition
Syntax IpDocGetPosition(DocID, PositionID, Frame, DocPosition)

Description This function gets the position of the specified frame in the specified image.

Parameters DocId Integer

Indicates the image of interest.
DOCSEL_ACTIVE can be used to inquire about
the active image.

 PositionId Integer Indicates the axis of interest. Must be one of the
following:
INF_XPOSITION Absolute position along X
 axis in calibrated units
INF_YPOSITION Absolute position along Y
 axis in calibrated units
INF_ZPOSITION Absolute position along Z
 axis in microns

 Frame Long Indicates the frame of interest, which must be
between 0 and the number of frames in the
image or composite – 1, or the value –1 which
specifies the active frame.

 DocPosition IPDOCPOS DocPosition is the IPDOCPOS variable that will
receive the position information.

Comments The IsKnown element will indicate whether the desired position information is known for the
image. The Position element will indicate the position value.

Note that the Z-axis position is always expresed in microns, regardless of the current spatial
calibration.

The IPDOCPOS type is defined as follows. Note that IpDocGetPosition is the only function
that uses IPDOCPOS. This function uses the structure because it needs to inidcate in the
return value if the function is set, and if so, what it is set to.

IPDOCPOS Gets the image position
information.

Is known as Interger If non-zerio, IsKnown indicats the positon is
known. If zero, position is unknown

 Position as Single Position along the specified axis.

Return Value 0 if successful. Non-0, otherwise.

Example Dim posX As IPDOCPOS, posY As IPDOCPOS
ret = IpDocGetPosition(DOCSEL_ACTIVE, INF_XPOSITION, 0, posX)
ret = IpDocGetPosition(DOCSEL_ACTIVE, INF_YPOSITION, 0, posY)
If (posX.IsKnown = 0 Or posY.IsKnown = 0) Then
 MsgBox("X/Y position is not known.")
Else
 MsgBox("Position X , Y: " & CStr(posX.Position) & ", "
 & CStr(posY.Position))
End If

See Also IpDocSetPosition, IPDOCPOS

IpDocGetStr

Page 2-280

IpDocGetStr
Syntax IpDocGetStr(Cmd, Param, OutVal)

Description Use this function to get string information relating to the current or specified image
(document).

Parameters Cmd Integer A command ID, which specifies the type of information
you want to retrieve. See table below.

 Param Integer Parameter of the command. See table below.

 OutVal String The name of the fixed-length string variable that will
receive the requested data.

Example The following example gets information about the active document.

The following example gets the description of the active document.
Dim descript as string *255
ret = IpDocGetStr(INF_DESCRIPTION, DOCSEL_ACTIVE, descript)

Comments In the following table, everywhere a Document ID is passed in Param, DOCSEL_ACTIVE
can be passed instead, to designate the active document.
When passing a string to get the document title, description, date, etc. make sure the string is
defined with a fixed size long enough to contain the results.

INF_ARTIST Get document artist name. Document ID Name of fixed-length
string variable.

256 characters

INF_DATE Get document date. Document ID Name of fixed-length
string variable.

256 characters

INF_TITLE Get document title. Document ID Name of fixed-length
string variable.

256 characters

INF_DESCRIPTION Get document description. Document ID Name of fixed-length
string variable.

4096 characters

INF_FILENAME Get entire file name Document ID Name of fixed-length
string variable.

256 characters

INF_NAME Get document name, or image
file name and path.

Document ID Name of fixed-length
string variable.

256 characters

INF_SUBJECT Get document subject. Document ID Name of fixed-length
string variable.

256 characters

See Also IpDocGet

 IpDocMaximize

Page 2-281

IpDocMaximize
Syntax IpDocMaximize()

Description This function maximizes (enlarges to maximum size) the active image window. Equivalent to
clicking the Maximize button on the image window's Control bar.

See Also IpDocMinimize, IpDocRestore, IpAppMaximize

IpDocMinimize
Syntax IpDocMinimize()

Description This function minimizes (reduces to an icon) the active image window. Equivalent to clicking
the Minimize button on the image window's Control bar.

See Also IpDocMaximize, IpDocRestore, IpAppMinimize

IpDocMove
Syntax IpDocMove(X, Y)

Description This function moves the active image window to the specified position within the Image-Pro
imaging area. Equivalent to dragging the active image to a new position with the mouse.

Parameters X Integer An integer specifying the x-coordinate of the pixel-
position to which the upper-left corner of the image
window is to be moved.

 Y Integer An integer specifying the y-coordinate of the pixel-
position to which the upper-left corner of the image
window is to be moved.

Example ret = IpDocMove(0,0)

This statement will move the active image window such that it is positioned in the upper-left
corner of the imaging area.

IpDocMove

Page 2-282

Comments The origin (i.e., 0, 0) of the coordinate system referenced by the x and y parameters of this
function is the pixel in the upper-left corner of the imaging area, not the upper-left corner of the
screen. See diagram below.

See Also IpDocMaximize, IpDocMinimize, IpDocRestore

Origin of the imaging
area

 IpDocOpenAoi

Page 2-283

IpDocOpenAoi
Syntax IpDocOpenAoi(docID, oMode)

Description This function opens an image bitmap for direct read and/or write operations (you must Open a
document before using the IpDocGetLine or IpDocPutLine functions). If the document
has an active AOI, only the rectangular area bounding the AOI will be opened. Otherwise, the
entire document is opened.
Note - if you are an Image-Pro Software Development Kit (SDK) programmer, this function is
very similar to the AOIImOpen function found in your HAIL library.

Parameters docID Integer An integer representing the document's ID, or
DOCSEL_ACTIVE to designate the active image.

 oMode Integer An enumerated integer specifying the mode in which
the instance is to be opened. Where:
IMA_RD - specifies read-only mode
IMA_RDWR - specifies read/write mode
Additionally, the CPROG flag can be added to this
expression to signify that the calling program is written
in C. See Comments, below.

Return Value An image instance (Integer in BASIC, HANDLE in C), or 0 if the open failed.
Note - if you are an Image-Pro Software Development Kit (SDK) programmer, this is the same
kind of value returned by the HilImOpen function in your HIL library.

Example The following example opens the active image (or AOI) in read-only mode.
Dim docInst as integer

docInst = IpDocOpenAoi(DOCSEL_ACTIVE,IMA_RD)
if docInst<>0 then
 ' Process image data w/IpDocGetLine & IpDocPutLine
 .
 .
 .
 ' Close instance
 ret = IpDocCloseVri(docInst)
end if

Comments Use this function instead of IpDocOpenVri when the area inside an AOI must be processed.
This allows you to modify the AOI with IpDocPutLine , even if it is non-rectangular.
If you are calling this function from a C program, be sure to add the CPROG flag to oMode (i.e.,
IMA_RD+CRPOG or IMA_RDWR+CPROG). This reduces the processing and storage
requirements significantly, by retaining the 8-bit structure of the IMC_GRAY, IMC_PALETTE
and IMC_RGB image types. Because BASIC does not have an 8-bit data type (the 16-bit,
Integer type is the smallest, numeric data unit), image data must be converted to 16-bit integers in
order to be accessed directly (the pixel values do not change, but the storage requirement is twice
that of the source image data). In a C program, the 8-bit pixels are directly accessible via the
BYTE (8-bit) data type. Therefore, if you are calling IpDocOpenAoi from a C program, add
CPROG to the oMode expression; if you calling it from a BASIC program, leave this flag off.
The instance must be closed with IpDocCloseVri when it is no longer in use.

See Also IpDocOpenVri, IpDocCloseVri, IpDocGetLine, IpDocPutLine, IpAoiGet

IpDocOpenVri

Page 2-284

IpDocOpenVri
Syntax IpDocOpenVri(DocID, oMode, rArea)

Description This function opens an image bitmap for direct read and/or write operations (for example, you
must open the document before using the IpDocGetLine or IpDocPutLine functions).
If you want to automatically open an instance based upon the active AOI, use
IpDocOpenAoi instead of this function.
Note - if you are an Image-Pro Software Development Kit (SDK) programmer, this function is
very similar to the HilImOpen function found in your HIL library.

Parameters DocID Integer An integer representing the document's ID, or
DOCSEL_ACTIVE to designate the active image.

 oMode Integer An enumerated integer specifying the mode in which
the instance is to be opened. Where:
IMA_RD - specifies read-only mode
IMA_RDWR - specifies read/write mode
Additionally, the CPROG flag can be added to this
expression to signify that the calling program is written
in C. See Comments, below.

 rArea RECT Image coordinates defining the area to be opened,
which may be the entire image.

Return Value An image instance (Integer in BASIC, HANDLE in C), or 0 if the open failed.
Note - if you are an Image-Pro Software Development Kit (SDK) programmer, this is the same
kind of value returned by the HilImOpen function in your HIL library.

Example The following example opens the entire active image in read-only mode.
Dim docInst as Long
Dim iInfo as IPDOCINFO
ret=IpDocGet(GETDOCINFO,DOCSEL_ACTIVE,iInfo)
docInst=IpDocOpenVri(DOCSEL_ACTIVE,IMA_RD,iInfo.Extent)
if docInst <> 0 then
' Process image data w/IpDocGetLine & IpDocPutLine
 .
 .
 .
' Close instance
ret=IpDocCloseVri(docInst)
end if

Comments Use IpDocOpenAoi instead of this function when the area inside an AOI must be processed.
This allows you to modify the AOI with IpDocPutLine , even if it is non-rectangular.
If you are calling this function from a C program, be sure to add the CPROG flag to oMode
(i.e., IMA_RD+CRPOG or IMA_RDWR+CPROG). This reduces the processing

 IpDocPutArea

Page 2-285

 and storage requirements significantly by retaining the 8-bit structure of the IMC_GRAY,
IMC_PALETTE and IMC_RGB image types. Because BASIC does not have an 8-bit data type
(the 16-bit, Integer type is the smallest, numeric data unit), image data must be converted to 16-
bit integers in order to be accessed directly (the pixel values do not change, but the storage
requirement is twice that of the source image data). In a C program, the 8-bit pixels are directly
accessible via the BYTE (8-bit) data type. Therefore, if you are calling IpDocOpenVri from a
C program, add CPROG to the oMode expression; if you calling it from a BASIC program, leave
this flag off.
The instance must be closed with IpDocCloseVri when it is no longer in use.

See Also IpDocCloseVri, IpDocGetLine, IpDocPutLine, IpDocOpenAoi, IpAoiGet

IpDocPutArea
Syntax IpDocPutArea(DocID, rArea, ImageBuffer, pMode)

Description This function writes a user-defined array of image data to an Image-Pro image. There is no
Image-Pro command equivalent to this function; it is one that must be manually written with
the macro editor.
Currently, this function cannot be used with Bilevel images. If you want to write to a Bilevel
image, convert it first to Gray Scale.

Parameters DocID Integer An integer representing the document's ID, or
DOCSEL_ACTIVE to designate the active image.

 rArea RECT A rectangle specifying the area of the document to be
modified.

 ImageBuffer See below The address (name) of the array variable containing the
data to be written to rArea. The type and size of this
array is dependent upon the source image's class. See
ImageBuffer table under Comments, below.

 pMode Integer A value of 0 or CPROG specifying the manner in which
the image data are formatted in the ImageBuffer.
Where:
 0 - reads the data in BASIC mode
 CPROG - reads the data in C mode
See Comments, below, for more about pMode.

Return Value 0 if successful.

Example The following example inverts the pixel values in an area of an 8-bit Gray Scale image.

Dim i as integer
Dim j as integer
Dim Reg as RECT
Reg.left=100
Reg.top=100
Reg.right=200
Reg.bottom=150

Redim ImBuf(Reg.left to Reg.right,Reg.top to Reg.bottom) as integer
ret=IpDocGetArea(DOCSEL_ACTIVE,Reg,ImBuf(Reg.left,Reg.top),0)
for j=Reg.top to Reg.bottom
 for i=Reg.left to Reg.right
 ImBuf(i, j)=255-ImBuf(i,j)
 next i

IpDocPutArea

Page 2-286

next j
ret=IpDocPutArea(DOCSEL_ACTIVE,Reg,ImBuf(Reg.left,Reg.top),0)
' refresh the display of the active document.
ret = IpAppUpdateDoc(DOCSEL_ACTIVE)

Comments The pMode parameter specifies how IMC_GRAY, IMC_PALETTE and IMC_RGB data are
formatted in your ImageBuffer. These image classes use 8 bits to represent each pixel (or color
channel). BASIC, however, does not have an 8-bit data type. The 16-bit Integer type is its
smallest, numeric data unit. So, in a BASIC program, ImageBuffer contains a 16-bit value, which
must be converted to 8-bits before being written to the image (note that the pixel values, 0 - 255,
are not changed; the unused, high-order bits are merely stripped away). If you are writing image
data from a BASIC program, you must set pMode to 0 ensure this conversion is performed.
In a C program, 8-bit image pixels can be represented by an array of the BYTE (8-bit) data type.
Therefore, if you are writing data from a C program, you must set pMode to CPROG to ensure
that the data are written without any 8- to 16-bit conversion (C programs are able to process
images faster and with less memory because of this).
The ImageBuffer table, below, describes the data types and storage requirements of each mode.

If the Image
Class is... ImageBuffer size must be

If pMode
is...

ImageBuffer Data
Type must be

IMC_GRAY (rArea width, rArea height) 0 Integer
 CPROG BYTE

IMC_PALETTE (rArea width, rArea height) 0 Integer
 CPROG BYTE

IMC_RGB (3 * rArea.width, rArea height) 0 Integer
 CPROG BYTE

IMC_RGB36 (3 * rArea.width, rArea height) 0 Integer
 CPROG short

IMC_RGB48 (3 * rArea.width, rArea height) 0 Integer
 CPROG short

IMC_GRAY12 (rArea.width, rArea height) 0 Integer
 CPROG short
IMC_GRAY16 (rArea.width, rArea height) 0 Integer
 CPROG short
IMC_SINGLE (rArea width, rArea height) 0 Single

 CPROG single

IMC_BILEVEL This class is not supported by
Image-Pro Plus v. 4.0 or higher.

 Bilevel image files are converted
to grayscale automatically.

 IpDocPutLine

Page 2-287

 Remember, a True Color image (i.e., IMC_RGB) will require 3 times as many elements per line as
a Gray Scale (IMC_GRAY) image does, because each pixel is comprised of a 3-byte “chunk” of
Red, Green and Blue values.
Also, BASIC arrays are different from the C arrays used in Image-Pro in that they include a
header containing information about the array itself. To emulate a C array when calling an Auto-
Pro function, a BASIC program should pass the address of the first element of the array (i.e. pass
the first element “by reference”). See the call to IpDocPutArea in the example above.

See Also IpDocGetArea, IpDocGetLine, IpDocPutLine, IpDocOpenVri, IpDocClose

IpDocPutLine
Syntax IpDocPutLine(docInst, LineNum, LineBuffer, bAoi)

Description This function writes a line of bitmap data to an image. There is no Image-Pro command
equivalent to this function; it is one that must be manually written with the macro editor.
Before calling IpDocGetLine, you must open the document for read/write access using
IpDocOpenVri or IpDocOpenAoi.

Parameters docInst Integer The handle (type short in C) to the document
instance as returned by IpDocOpenVri or
IpDocOpenAoi.

 LineNum Integer The number of the line (in the instance) to which
the data are to be written, where first line (i.e., the
uppermost line) in the instance is line 0, the next
line is line 1, and so forth.

 LineBuffer See below The address (name) of the one-dimensional array
variable that contains the bitmap data. The type
and size of this array is dependent upon the source
image's class. See LineBuffer table under
Comments, below.

 bAoi Integer An integer value of 0 or 1 specifying whether all
pixels in the instance are to be modified, or just
those encompassed by the active AOI. Where:
0 - modifies all pixels
1 - modifies only AOI pixels
This parameter is applied only when an instance
has been opened with IpDocOpenAoi. It is
ignored when an instance is opened with
IpDocOpenVri. When this is the case, set bAoi
to 0.

Return Value 0 if successful. Non-0 otherwise.

IpDocPutLine

Page 2-288

Example The following example inverts the red channel values within the AOI of the active RGB image.

Dim i as integer
Dim j as integer
Dim imInfo as IPDOCINFO
Dim docInst as integer

docInst=IpDocOpenAoi(DOCSEL_ACTIVE, IMA_RDWR)
if docInst=0 then GoTo erroropen

ret=IpDocGet(GETINSTINFO, docInst, imInfo)
Redim LineBuf(1 to imInfo.Width * 3) as integer

for j=1 to imInfo.Height
 ret=IpDocGetLine(docInst,j-1,LineBuf(1))

 for i=1 to imInfo.Width * 3 step 3
 LineBuf(i)=255-LineBuf(i)
 next i

 ret=IpDocPutLine(docInst,j - 1,LineBuf(1),1)
next j

' close the instance.
ret=IpDocCloseVri(docInst)

' refresh the display of the active document.
ret=IpAppUpdateDoc(DOCSEL_ACTIVE)

Comments The table, below, describes the data type and storage requirements of LineBuffer, for each
image class.

If the Image
Class is...

LineBuffer size must be... If your
program is...

LineBuffer data type
must be

IMC_GRAY Instance width BASIC Integer
 C BYTE

IMC_PALETTE Instance width BASIC Integer
 C BYTE

IMC_RGB 3 * Instance width BASIC Integer
 C BYTE

IMC_RGB36 3 * Instance width BASIC Integer
 C short

IMC_RBG48 3 * Instance width BASIC Integer
 C short

IMC_GRAY12 Instance width BASIC Integer
 C short
IMC_GRAY16 Instance width BASIC Integer
 C short
IMC_SINGLE Instance width BASIC Single
 C single
IMC_BILEVEL Instance width

Not supported in IPP
4.0 OR HIGHER

BASIC Integer

 C BYTE

Page 2-289

 Remember, a True Color image (i.e., IMC_RGB) will require 3 times as many elements per line as

a Gray Scale (IMC_GRAY) image does because each pixel is comprised of a 3-byte “chunk” of
Red, Green and Blue values.
Also, BASIC arrays are different from the C arrays used in Image-Pro in that they include a
header containing information about the array itself. To emulate a C array when calling an Auto-
Pro function, a BASIC program should pass the address of the first element of the array (i.e. pass
the first element “by reference”). See the call to IpDocPutLine in the example above.

See Also IpDocOpenVri, IpDocOpenAoi, IpDocPutLine, IpDocGetArea, IpAoiGet

IpDocRestore
Syntax IpDocRestore()

Description This function returns the selected image window to its previous screen position and size, from a
minimized or maximized state. Equivalent to clicking the Restore button on a maximized
window or double-clicking the icon of a minimized window.

See Also IpDocMaximize, IpDocMinimize, IpAppRestore

IpDocSetPropDate

Page 2-290

IpDocSetPropDate
Syntax IpDocSetPropDate(DocID, PropertyID, Frame, DocProperty)

Description This function sets the current value of a property. Used for properties represented a date.

Parameters DocId Integer

The document ID of the image, or
DOCSEL_ACTIVE to edit the active image.

 PropertyID Integer The ID of the property to set, must be one of the
following:
DOCPROP_TIME = Capture time
DOCPROP_TIMEPOINT = Time point
DOCPROP_MAGNIFICATION = Gets or sets the
objective magnification image property.

 Frame Long The index of the frame to edit, or
DOC_ACTIVEFRAME to get the property of the
active (displayed) frame. For DOCPROP_TIME
only, the DOC_ENTIREIMAGE property can be
used to set the image time as a Date (see also
the INF_DATE command to IpDocGet, which
returns the image time as a string).

 DocProperty Date A date variable to receive the current value of
the specified property.

See Also IpDocGetPropDate

 IpDocSetPropDbl

Page 2-291

IpDocSetPropDbl
Syntax IpDocSetPropDbl(DocID, PropertyID, Frame, DocProperty)

Description This function sets the current value of a property. Used for properties represented by double-
precision single-point values.

Parameters DocId Integer

The document ID of the image, or
DOCSEL_ACTIVE to edit the active image.

 PropertyID Integer The ID of the property to set, must be one of the
following:
DOCPROP_XPOSITION = Position of the image
along the X axis, in the current calibration units.
DOCPROP_YPOSITION = Position of the image
along the X axis, in the current calibration units.
DOCPROP_ZPOSITION = Position of the image
along the Z axis, in the microns.
DOCPROP_EMWAVELENGTH= The emissions
wavelength in nm.
DOCPROP_EXWAVELENGTH = the excitation
wavelength in nm.
DOCPROP_REFINDEX = Refractive index.
DOCPROP_NUMAPERTURE = Numeric
aperture.

 DOCPROP_MAGNIFICATION = Magnification of
the object in use when the image was captured.
DOCPROP_EXPOSURE = Exposure time in
seconds used when the image was captured.
DOCPROP_GAIN = Digital gain setting used
when the image was captured.
DOCPROP_GAMMA = Digital gamma setting
used when the image was captured.
DOCPROP_OFFSET = Digital offset setting
used when the image was captured.

 Frame Long The index of the frame to edit;
DOC_ACTIVEFRAME to set the property of
each frame in the active portion of the image;
DOC_ENTIREIMAGE to set the same property
value for each frame of the entire image.

 DocProperty Double The new value for the specified property.

See Also IpDocGetPropDbl

IpDocSetPropLong

Page 2-292

IpDocSetPropLong
Syntax IpDocSetPropLong(DocID, PropertyID, Frame, DocProperty)

Description This function sets the current value of a property. Used for properties represented by double-
precision single-point values.

Parameters DocId Integer

The document ID of the image, or
DOCSEL_ACTIVE to edit the active image.

 PropertyID Long The ID of the property to get, must be one of the
following:
DOCPROP_BIN_X = The digital binning used
along the horizontal axis when the image was
captured.
DOCPROP_BIN_Y = The digital binning used
along the vertical axis when the image was
captured.
DOCPROP_CAPTRECT_L = The left coordinate
of the capture rectangle used when the image
was captured.
DOCPROP_CAPTRECT_R = The right
coordinate of the capture rectangle used when
the image was captured.
DOCPROP_CAPTRECT_T = The top coordinate
of the capture rectangle used when the image
was captured.

 DOCPROP_CAPTRECT_B = The bottom
coordinate of the capture rectangle used when
the image was captured.
DOCPROP_CHIPCOORD_L = The left
coordinate of the camera sensor area used when
the image was captured.
DOCPROP_CHIPCOORD_R = The right
coordinate of the camera sensor area used when
the image was captured.
DOCPROP_CHIPCOORD_T = The top
coordinate of the camera sensor area used when
the image was captured.
DOCPROP_CHIPCOORD_B = The bottom
coordinate of the camera sensor area used when
the image was captured.
DOCPROP_DISPLAY_TINT = Turns the
pseudocolor or tint display off or on, sets that
option, and redisplays the image.

 Frame Long The index of the frame to edit, or
DOC_ACTIVEFRAME to get the property of the
active (displayed) frame.

 DocProperty Long The new value for the specified property.

 IpDocSetPropStr

Page 2-293

Comments The DOCPROP_CHIPCOORD properties will only be present when the image was captured by a
digital camera that uses a combination of binning and different sensor areas to support different
capture resolutions. The coordinates are reported in relation to the sensor size at the current
binning.

See Also IpDocSetPropLong

IpDocSetPropStr
Syntax IpDocSetPropStr(DocID, PropertyID, Frame, DocProperty)

Description This function sets the current value of a property. Used for properties represented by a string.

Parameters DocId Integer

The document ID of the image, or
DOCSEL_ACTIVE to edit the active image.

 PropertyID Integer The ID of the property to set, must be one of the
following:
DOCPROP_CHANNELNAME = Channel name.
DOCPROP_SITELABEL = Site label (i.e. Well
Position or user-defined position).
DOCPROP_CAPTUREDRIVERNAME = The
driver name and module name of the capture
device used to capture the image, in the form
“Driver name (module name)”.
DOCPROP_CAPTCAMERANAME = The name
of the specific camera used to capture the
image.
DOCPROP_CAPTCAMERAID = The serial
number or ID of the specific camera used to
capture the image.
DOCPROP_CAPTDRIVERFEATURES = A
string listing the special features of the driver
used to capture the image.
DOCPROP_CAPTDRIVERVERSION = The
version of the driver used to capture the image.

 Frame Long The index of the frame to edit;
DOC_ACTIVEFRAME to set the property of
each frame in the active portion of the image;
DOC_ENTIREIMAGE to set the same property
value for each frame of the entire image.

 DocProperty String A string constant or non-fixed-length string to
receive the current value of the specified
property.

See Also IpDocGetPropStr

Page 2-294

IpDocSetPosition
Syntax IpDocSetPosition(DocID, PositionID, Frame, Position)

Description This function sets the position of the specified frame in the specified image.

Parameters DocId Integer

Indicates the image of interest.
DOCSEL_ACTIVE can be used to inquire about
the active image.

 PositionId Integer Indicates the axis of interest. Must be one of the
following:
INF_XPOSITION Absolute position along X
 axis in calibrated units
INF_YPOSITION Absolute position along Y
 axis in calibrated units
INF_ZPOSITION Absolute position along Z
 axis in microns

 Frame Long Indicates the frame of interest, which must be
between 0 and the number of frames in the
image or composite – 1, or the value –1 which
specifies the active frame.

 Position Double This is the new position value.

Comments Note that the Z-axis position is always expresed in microns, regardless of the current spatial
calibration. IpDocSetPosition uses a Single type. This function needs only the single position
value to indicate the position, after which IpDocGetPosition will return that the position has been
set.

Return Value 0 if successful, a negative error code if failed.

See Also IpDocGetPosition, IPDOCPOS

 IpDocSize

Page 2-295

IpDocSize
Syntax IpDocSize(Width, Height)

Description This function changes the size of the active image window to the specified width and height.

Parameters Width Integer An integer specifying the width, in pixels, at which you
want the image window displayed.

 Height Integer An integer specifying the height, in pixels, at which you
want the image window displayed.

Example ret = IpDocSize(200, 300)

This statement will resize the active image window to 200 by 300 pixels.

Comments The image window must be in the “restored” or maximized state when this function is performed.
Sizing a minimized image may produce unexpected results.

See Also IpAppRestore, IpAppMove

IpDrGet
Syntax IpDrGet (sCmd, sParam, lpParam)

Description This functions gets the values for the display range, inverse contrast, range rest, gamma, and
other display range attributes.

Parameters sCmd Integer Defines the attribute to get. See table below.

 sParam Integer Depends on the value of sCmd. See table below.

 lpParam Any Depends on the value of sCmd. See table below.

 sCmd sParam lpParam Description

 DR_RANGE 0 Array of two longs Gets the start and end of the
range

 DR_INV 0 integer variable:
1 = not inversed
0 = inverse

Gets the inverse flag

 DR_GAMMA 0 single point
variable

Gets the gamma value

 DR_FRANGE 0 array of two
singles

Gets the display range

 DR_FRANGE 1 array of two
singles

Gets the single point
range

IpDrSet

Page 2-296

Comments For details about DR_FRANGE, single point images, and single point ranges, see IpDrSet.

Example ' get display range
ret = IpDrGet(DR_RANGE, 0, ipLArray(0))
Debug.print "Display range: " + Str$(ipLarray(0)) + " to: " +
Str$(iplArray(1))

' get gamma
dim fGamma as single
ret = IpDrGet(DR_GAMMA, 0, fGamma)
Debug.print "Gamma: " + Str$(fGamma)

' get inverse status
dim sInverse as single
ret = IpDrGet(DR_INV, 0, sInverse)
If sInverse = 0 Then Debug.print "Not inversed" Else
Debug.print "Inversed"

dim fArray(2) as single

' get display range of single point image
' (alternate way)
ret = IpDrGet(DR_FRANGE, 0, fArray(0))
Debug.print "Single display range: " + Str$(fArray(0)) + " to:
" + Str$(fArray(1))

' get single point range
ret = IpDrGet(DR_FRANGE, 1, fArray(0))
Debug.print "Single point range: " + Str$(fArray(0)) + " to: "
+ Str$(fArray(1))

See Also IpDrSet

IpDrSet
Syntax IpDrSet (sCmd, sParam, lpParam)

Description This functions sets the values for the display range, inverse contrast, range reset, gamma, and
other display range attributes

Parameters sCmd Integer Defines the attribute to set. See table below.

 sParam Integer Depends on the value of sCmd. See table below.

 lpParam Array Depends on the value of sCmd. See table below.

 sCmd sParam lpParam Description

 DR_RANGE 0 Array of two longs

Sets the start and end of
the range

 DR_RANGE -1 Not used Resets range

 DR_BEST 0 Not used. Sets optimum range

 IpDrSet

Page 2-297

 sCmd sParam lpParam Description

 DR_INV 0 Not used. No inversion

 DR_INV 1 Not used. Inverse image contrast

 DR_INV 2 Not used. Toggle inversion on/off

 DR_GAMMA 0 single point variable Sets the gamma value

 DR_FRANGE 0 array of two singles Sets the start and end of the

range

 DR_FRANGE -1 Not used Resets range

 DR_FRANGE 1 array of two singles Sets the single point range

 DR_RANGE_RESET -1 Not used Resets only the display
range of the active image

Comments DR_FRANGE is the same as DR_RANGE for all images except single point images (see
discussion on single point images below). DR_FRANGE with sParam=1 is only valid with a
single point image and can be used to set the dynamic range of that image. DR_FRANGE with
sParam=0 can be used to set the display range of a single point image by passing real single point
intensity values instead of a fixed point index as is recorded.

Single point images: 32 bit single point images don't have fixed lowest and highest intensity.
Instead, they have a user-definable "single point range" that is used to set the intensity levels of
pure black and pure white. This range is equivalent to the [0, 255] range of an 8 bit gray scale
image or the [0, 65535] range of a 16 bit image. The single point range of a single point image is
used mainly for display, but also to calculate the bounds of intensity histograms. The display
range of a single point image defines a sub-set of its single point range used for display only. The
single point range of a single point image can be set via DR_FRANGE with sParam = 1 or via the
interface (see Image Information dialog).

Example ' set display range
ipLArray(0) = 51
ipLArray(1) = 200
ret = IpDrSet(DR_RANGE, 0, ipLArray(0))

' set the optimal range
ret = IpDrSet(DR_BEST, 0, IPNULL)

' inverse the contrast
ret = IpDrSet(DR_INV, 1, IPNULL)

' reset the display range and inverse flag
ret = IpDrSet(DR_RANGE, -1, IPNULL)

' set gamma
dim fGamma as single
fGamma = 0.4
ret = IpDrSet(DR_GAMMA, 0, fGamma)

See Also IpDrGet

IpDrShow

Page 2-298

IpDrShow
Syntax IpDrShow(bShow)

Description This function displays or hides the display range tool.

Parameters bShow Integer A value of 0 or 1 specifying whether the dialog is
to be displayed or suppressed. Where:
0 - hides the dialog
1 - shows the dialog

See Also IpDrGet, IpDrSet

IpDraw
Syntax IpDraw(Points, Numpoints, Attrib)

Description Draws a line, polygon, or points (markers)

Parameters Points POINTAPI The name and first element of an array containing the
vertices of the line.

 Numpoints Integer Number of points to be drawn

 Attrib Integer Specifies attributes of the object, or line: Valid values
are:
ATT_CONTROLS : For a polyline, highlights all
verticies of the polyline.
ATT_NOCOPY : Prevents the points of the line from
being copied into Image-Pro’s local memory space.

Return Value Returns the new drawing ID

See Also IpAnotAttr, IpDrawText, IpDrawClear, IpGetLine, IpDrawClearDoc, IpDrawGet, IpDrawSet,
IpAnotLine, IpAnotBox, IpAnotEllipse

Comments This function is no longer supported in Image-Pro Plus . Use the IpAn Auto-Pro functions
instead.

 IpDrawClear
Syntax IpDrawClear(Objid)

Description Erases the drawing.

Parameters Objid Integer Identifies the drawing to be erased.

See Also IpDraw, IpDrawText, IpGetLine, IpDrawClearDoc, IpDrawGet, IpDrawSet, IpAnotLine,
IpAnotBox, IpAnotAttr,IpAnotEllipse

Comments This function is no longer supported in Image-Pro Plus . Use the IpAn Auto-Pro functions
instead.

 IpDrawClearDoc

Page 2-299

IpDrawClearDoc
Syntax IpAnotEllipse(Cocid)

Description Erases all drawings or object from the image docid.

Parameters Docid Integer Identifies the document containing the objects to be
erased.

See Also IpDraw, IpDrawText, IpGetLine, IpDrawClear, IpDrawGet, IpDrawSet, IpAnotLine,
IpAnotBox, IpAnotAttr,IpAnotEllipse

Comments This function is no longer supported in Image-Pro Plus . Use the IpAn Auto-Pro functions
instead.

IpDrawGet
Syntax IpDrawGet(Command, Objid, IpParam)

Description Gets status, position, and other parameters for a given drawing or object.

Parameters Command Integer Identifies data to retrieve. Valid values are:
GETCURPOS: Returns the cursor position at the point
where the mouse button was last down.
GETNUMPTS: Returns the number of points in the
object
GETPOINTS: Retrieves the object’s points
GETSTATUS: Returns a non-zero value if the object
has been changed, and sets the object’s status to
zero.
GETEDITPOINT: Returns the currently selected point
of the object.

 Objid Integer Identifies the object

 IpParam Integer Results are returned in this variable.

See Also IpDraw, IpDrawText, IpDrawClear, IpGetLine, IpDrawClearDoc, IpDrawSet, IpAnotLine,
IpAnotBox, IpAnotAttr,IpAnotEllipse

Comments This function is no longer supported in Image-Pro Plus. Use the IpAn Auto-Pro functions
instead.

IpDrawSet

Page 2-300

IpDrawSet
Syntax IpDrawSet(Command, Objid, IpParam)

Description Sets status, position, and other parameters for a given drawing or object.

Parameters Command Integer Idenfies the parameter to set.

 Objid Integer Identifies the object

 IpParam Integer Idenfities other parameters for the given object.

See Also IpDraw, IpDrawText, IpDrawClear, IpGetLine, IpDrawClearDoc, IpDrawGet, IpAnotLine,
IpAnotBox,IpAnotAttr, IpAnotEllipse

Comments This function is no longer supported in Image-Pro Plus. Use the IpAn Auto-Pro functions
instead.

IpDrawText
Syntax IpDrawText(Text, Pos,Attrib)

Description Draws text contained in text, at a location pos.

Parameters Text String Contains text to be drawn

 Pos POINTAPI Indicates point where text will be drawn.

 Attrib Integer Color of text

Return Value Returns the new drawing ID.

See Also IpDraw, IpDrawClear, IpGetLine, IpDrawClearDoc, IpDrawGet, IpDrawSet, IpAnotLine,
IpAnotBox, IpAnotAttr, IpAnotEllipse

Comments This function is no longer supported in Image-Pro Plus. Use the IpAn Auto-Pro functions
instead.

 IpDyeAdd

Page 2-301

IpDyeAdd
Syntax IpDyeAdd (Dye,Wavelength, ExWavelength)

Description This function creates a new dye file which is then added to the current set of dyes.

Parameters Dye String A string specifying the name of the new dye.

 Wavelength Long Specifies the dye’s emission wavelength.

 ExWavelength Long Specifies the dye’s excitation wavelength.

Comments IpDyeAdd will create a a new dye file in the current dye location (see the DYE_PATH command
for IpDyeGetStr and IpDyeSetStr). The new file will overwrite any existing dye files
with the same name. The name may include the .IPD extension, or if it does not the extension
will be added automatically. The dye’s hue is determined automatically by conversion from the
emission wavelength.

IpDyeAddTint
Syntax IpDyeAddTint (Dye,Wavelength, ExWavelength, Tint)

Description This function creates a new dye file which is then added to the current set of dyes.

Parameters Dye String A string specifying the name of the new dye.

 Wavelength Long Specifies the dye’s emission wavelength.

 ExWavelength Long Specifies the dye’s excitation wavelength.

 Tint Long RGB color specifies the dye’s display color

Comments IpDyeAddTint will create a dye file in the current dye location (see the DYE_PATH command
for IpDyeGetStr and IpDyeSetStr). The new file will overwrite any existing dye files with the
same name. The name may include the “.IPD” extension, or if it does not the extension will be
added automatically. The dye’s display color is determined by the Tint parameter, which typically
will use the RGB function to specify the red, green and blue values for the color.

IpDyeApply

Page 2-302

IpDyeApply
Syntax IpDyeApply (Dye,ApplyTo, ApplyTint)

Description This function applies the dye characteristics to the active image.

Parameters Dye String A string specifying the name of an existing Image-
Pro dye.

 Apply to Integer Determines the portion of the image where the dye
will be applied. Should be on eof the following:
APPLYTO_IMAGE = Entire image
APPLYTO_FRAME = Active frame only
APPLYTO_PORTION = Active portion only

 ApplyTint Integer If non-zero, the dye tint is applied to the image

IpDyeDelete
Syntax IpDyeDelete (Dye)

Description This function removes the spcecified dye.

Parameters Dye String A string specifying the name of an existing
Image-Pro dye.

IpDyeEdit
Syntax IpDyeEdit (Dye, New Dye)

Description This function displays the Edit Dye dialog, and lets the user edit a dye.

Parameters Dye String A string specifying the name of an existing Image-
Pro dye file

 NewDye String A fixed-length string to which the dye file name is
returned.

Return Value The name of the new dye file, or IPCEERR_EMPTY if you cancel editing the dye.

Comments The newDye parameter should be a fixed-length string, typically fixed at 255 characters, which
will return the final name of the dye after editing (the user can change the dye name while
editing). IpDyeEdit returns IPCERR_EMPTY if the user cancels editing the dye. Note:
IpDyeEdit inherently requires user interaction prior to continuation of the macro script.

 IpDyeGet

Page 2-303

IpDyeGet
Syntax IpDyeGet(DyeFile, Command, Value)

Description This function returns information about a specific dye.

Parameters DyeFile String A string specifying the full path for the selected dye.

 Command Integer Command should be one of the following:
DYE_WAVELENGTH = Return the dye emission
wavelength (in nm)
DYE_HUE = Return the dye hue (0 Red – 240)
DYE_RGB_TINT = Return the dye tint as a color
reference
DYE_NUMDYES = Return the number of dyes in
the current location
DYE_EXWAVELENGTH = Return the dye
excitation wavelength (in nm)

 Value Long A long variable which will receive the specified dye

parameter

See Also IpDyeGetSng, IpDyeGetStr

IpDyeGetStr
Syntax IpDyeGetStr (DyeFile, Command, Index Value)

Description This function gets information about the current dye management settings.

Parameters DyeFile String Not used.

 Command Integer Should be one of the following:
DYE_PATH = Returns the current path for dye
files
DYE_LIST = return the name of the specificed Dye

 Index Integer Index of the specified dye for the DYE_LIST
command.

 Value String A fixed-length string to receive the current dye file
location or the specified dye name.

See Also IpDyeGetLong, IpDyeGetSng

IpDyeSelect

Page 2-304

IpDyeSelect
Syntax IpDyeSelect(DyeFile)

Description This function displays the Edit Dye List dialog and let the user select a dye.

Parameters DyeFile String A fixed-length string to which the name of the
selected dye is returned..

Return Value IpDyeSelect returns IPCERR_EMPTY if the user cancels selecting a dye. Note:
IpDyeSelect inherently requires user interaction prior to continuation of the macro script.

Example This function can be used in conjunction with IpPcApplyDyeTint to let the user select a dye and
apply the dye’s tint to the active workspace:
Dim strDyeFile as String * 255
ret = IpDyeSelect(strDyeFile)
if (ret <> IPCERR_EMPTY) then
 *9IpPcApplyDyeTint (strDyeFile)
end if

IpDyeSetStr
Syntax IpDyeSetStr (DyeFile, Command,Value)

Description This function sets the dye management settings.

Parameters DyeFile String Not used.

 Command Integer Should be the following:
DYE_PATH = return the current dye location

 Value String A string containing the new dye file location.

 IpEDFAdd

Page 2-305

IpEDFAdd
Syntax IpEDFAdd(DocId)

Description This function adds all the frames of the specified image to the current multi-plane focus
stack.

Parameters DocId Integer Specifies the image to add to the existing EDF stack.
Note that the images must be of the same image
type and size. A document ID of DOCSEL_ACTIVE
can be used to add the active image. A document ID
of DOCSEL_ALL can be used to add all images.

Return Value 0 if successful, a negative error code if failed.

Comments This function can be used to add the first image as well as subsequent images, however using
IpEDFNew for the first image will assure that the stack does not contain any unwanted images
from previous stacks.

See Also IpEDFNew

IpEDFCreate
Syntax IpEDFCreate(Type)

Description This function creates the extended depth of field image

Parameters Type Integer Determines the type of Extended Depth of Field
image that will be created from the current stack.
Must be one of the following:
EDF_COMPOSITE Creates a composite image from
the best-focus areas selected from multiple input
frames.
EDF_BEST_FOCUS Returns a new image using the
single frame having the largest amount of in-focus
area.

Return Value Document ID of the new image if successful, a negative error code if failed.

Comments Use IpEDFNew and IpEDFAdd to build the image list that will be used as the stack of pre-
focus images. If the topographic option is selected, use the IpEDFTopoMap function to create
the topographic map.The in-focus material is determined by the current analysis criteria.

See Also IpEDFNew, IpEDFGet

IpEDFGet

Page 2-306

IpEDFGet
Syntax IpEDFGet(Attribute, Value, Frame)

Description This function gets an attribute of an Extended Depth of Field image.

Parameters Attribute Integer Attribute indicates the sequence gallery attribute to
get, from the following:
EDF_NORMALIZE Indicates whether the frame
intensities should be normalized prior to focus
analysis.
EDF_CRITERIA Indicates the criteria used to
analyze the frames for in-focus material. (See below
for constants.)
EDF_TOPO_MAP Indicates whether a topographic
map image should be created.
EDF_ TOPO_CALIBRATED Indicates whether the
topographic map image should be given an intensity
calibration that gives each pixel a value
corresponding to the Z position of the plane that it
was extracted from.
EDF_ORDER Indicates whether the image list
will be used from top to bottom (EDF_TOPDOWN)
or bottom to top (EDF_BOTTOMUP).
EDF_DEFAULT_FRAME Returns the default plane
document ID (in Value) and frame number (in
Frame).

EDF_TS_MAP Determines whether to use the
topographic map output (if non-zero) or the
composite output (when zero)
EDF_TS_GALLERY Determines whether to
generate a sequence gallery output (if non-zero)
EDF_SURFACE_PLOT Determines whether to
generate a surface plot. Ignored if the topographic
map option is not set.

 Value Integer This is an integer variable in your script that will
receive the requested attribute value.

 Frame Long This is a long variable in your script that will receive
the requested attribute value; used in
EDF_DEFAULT_FRAME only. Can be set to
IPNULL for other attributes.

Return Value 0 if successful, a negative error code if failed.

 IpEDFGetConf

Page 2-307

Comments The following constants will be used with EDF_CRITERIA attribute to indicate the type of
focus analysis:

 EDF_MAX_LOCALCONTRAST: Pixels will be examined in a local
neighborhood around the target pixel and the degree of local contrast
determined for each plane. The pixel from the plane with the greatest
local contrast will be selected.
EDF_MAX_INTENSITY: Pixels in the same location on each plane will
be examined and the pixel with the highest intensity will be selected.
EDF_MIN_INTENSITY: Pixels in the same location on each plane will be
examined and the pixel with the lowest intensity will be selected.
EDF_MAX_DEPTHCONTRAST: Pixels in the same location on each
plane will be compared to the mean intensity of all pixels at that position,
and the pixel with the greatest contrast from that mean intensity will be
selected.
EDF_HDF_SMALL: High frequency emphasis for small edges
EDF_HDF_MEDIUM: High-frequency emphasis for medium edges.
EDF_HEF_LARGE:High-frequency emphasis for large edges.

See Also IpEDFSet

IpEDFGetConf
Syntax IpEDFGetConf (ByRef Value)

Description This function returns the EDF confidence level for each plane.

Parameters Value Single Should be an array of Single with one element for
each focus plane.

Return Value 0 if successful, a negative error code if failed.

Comments This function can be used after IpEDFCreate to inquire the confidence levels. The
EDF_NUM_PLANES command can be used to get the number of planes for dimensioning the
array.

See Also IpEDFCreate

IpEDFNew

Page 2-308

IpEDFNew
Syntax IpEDFNew(DocId)

Description This function starts a new Extended Depth of Field stack with frames from the specified
image.

Parameters DOcId Integer Specifies the first image to add to a new EDF stack.
A document ID of DOCSEL_ACTIVE can be used to
add the active image. A document ID of
DOCSEL_ALL can be used to add all images.

Return Value 0 if successful, a negative error code if failed.

Comments This function guarantees that a new stack is started (any existing stack is discarded). Note that
the first image added to the stack determines the image type and size required of all subsequent
images added. Note also that all frames of the image will be added to the stack .

See Also IpEDFAdd

IpEDFRemove
Syntax IpEDFRemove(DocId)

Description This function removes the specified image from the current Extended Depth of Field stack.

Parameters DocId Integer Specifies the image to remove from the existing EDF
stack. A document ID of DOCSEL_ACTIVE can be
used to remove the active image. A document ID of
DOCSEL_ALL can be used to remove all images.

Return Value 0 if successful, a negative error code if failed.

See Also IpEDFAdd

 IpEDFSet

Page 2-309

IpEDFSet
Syntax IpEDFSet(Attribute, Value,Frame)

Description This function sets the Extended Depth of Field attributes

Parameters Attribute Integer Attribute indicates the sequence gallery attribute to
set, from the following:
EDF_NORMALIZE Indicates whether the frame
intensities should be normalized prior to focus
analysis.
EDF_CRITERIA Indicates the criteria used to
analyze the frames for in-focus material. (See below
for constants.)
EDF_TOPO_MAP Indicates whether a topographic
map image should be created.
EDF_ TOPO_CALIBRATED Indicates whether the
topographic map image should be given an intensity
calibration that gives each pixel a value
corresponding to the Z position of the plane that it
was extracted from.
EDF_ORDER Indicates whether the image list
will be used from top to bottom (EDF_TOPDOWN)
or bottom to top (EDF_BOTTOMUP).
EDF_DEFAULT_FRAME Sets the default plane
document ID (in Value) and frame number (in
Frame).
EDF_TS_MAP Determines whether to use the
topographic map output (if non-zero) or the
composite output (when zero)
EDF_TS_GALLERY Determines whether to
generate a sequence gallery output (if non-zero)
EDF_SURFACE_PLOT Determines whether to
generate a surface plot. Ignored if the topographic
map option is not set.
EDF_ANALYZE_ONLY Not valid in this function,
used only as an additional parameter with
IpEDFCreate.

 Value Integer The value that the attribute will be set to.

 Frame Long This is a long value used in
EDF_DEFAULT_FRAME to specify a fame number.
Otherwise unused and set to 0

Return Value 0 if successful, a negative error code if failed.

IpEDFShow

Page 2-310

Comments The EDFTopoMap attribute will affect only the way the EDF operates from the dialog. To
create a topographic map from a macro, use IpEDFTopoMap.

The following constants will be used with EDF_CRITERIA attribute to indicate the type of
focus analysis:
 EDF_MAX_LOCALCONTRAST: Pixels will be examined in a local neighborhood
around the target pixel and the degree of local contrast determined for each plane. The pixel
from the plane with the greatest local contrast will be selected.
EDF_MAX_INTENSITY: Pixels in the same location on each plane will be examined and
the pixel with the highest intensity will be selected.
EDF_MIN_INTENSITY: Pixels in the same location on each plane will be examined and
the pixel with the lowest intensity will be selected.
EDF_MAX_DEPTHCONTRAST: Pixels in the same location on each plane will be
compared to the mean intensity of all pixels at that position, and the pixel with the greatest
contrast from that mean intensity will be selected

See Also IpEDFGet, IpEDFTopoMap

IpEDFShow
Syntax IpEDFShow(Show)

Description This function shows or hides the Extended Depth of Field dialog box.

Parameters Show Integer An integer value of 0 or 1 indicating whether to show
or hide the Extended Depth of Field dialog
0 - Hide the Extended Depth of Field dialog.
1 - Show the Extended Depth of Field dialog

Return Value 0 if successful, a negative error code if failed.

See Also IpEDFNew,IpEDFAdd, IpEDFCreate, IpEDFTopoMap, IpEDFGet, IPEDFSet

IpEDFTestStrips
Syntax IpEDFTestStips()

Description This function generates EDF test strips using the current settings.

Return Value DocId of the new test strip sequence if successful, a negative error code if failed.

Comments If the EDF_TS_GALLERY option is selected, a second workspace is generated by this
function. That workspace will the active workspace after the operation, so the IpDocGet
function can be used to get the document ID of the sequence gallery workspace.

See Also IpEDFAdd, IpEDFCreate, IPEDFNew

 IpEDFTopoMap

Page 2-311

IpEDFTopoMap
Syntax IpEDFTopoMap()

Description This function creates the Extended Depth of Field topographic map image.

Return Value DocId of the new image if successful, a negative error code if failed.

Comments If the topographic map option is selected, use the IpEDFTopoMap function to create the
topographic map image.
A new option for the topographic map automatically shows a surface plot of the topographic
map using the EDF composite image as the surface texture. For this option to work from a
macro script, the IpEDFCreate function must be called first, followed by the IpEDFTopoMap
function, and the new EDF_SURFACE_PLOT option must be set.

See Also IpEDFAdd, IpEDFCreate, IPEDFNew

IpFftForward
Syntax IpFftForward(DisplayType, bFullFft)

Description This function performs an FFT transform of the active image or AOI. Equivalent to the FFT
command's Forward button and the Forward FFT Options dialog box.

Parameters DisplayType See below A value which specifies the way in which the transform
results will be displayed. Must be one of the following:

FFT_PHASE
FFT_SPECTRUM
FFT_SPECTRUM32
FFT_PHASE32
FFT_SPECPHAS32

See definitions under Comments, below.

 bFullFft Integer An integer value of 0 or 1 specifying whether the
process will produce a full- or half-set of FFT data.
Where:

 0 - Generates a half-set of FFT data.

1 - Generates a full set of FFT data.

Return Value This function returns the Document ID of the FFT image, which will be an integer greater than
0. A negative return value indicates an error. If you are using FFT_SPECPHAS32, the return
value is the image ID of the spectrum image. The phase image ID is one less than the ID of the
spectrum image.

Example ret = IpFftForward(FFT_SPECTRUM, 0)
This statement will perform an FFT transform and display the results in spectrum form. Only a
half-set of data will be generated.

IpFftHiPass

Page 2-312

Comments The following table describes the values allowed in the DisplayType parameter:

Display Type Value DESCRIPTION

FFT_PHASE Integer Displays the phase of the FFT.

FFT_SPECTRUM Integer Displays FFT data in the
traditional “cloud of points”
form.

FFT_SPECTRUM32 Single point Amplitude

FFT_PHASE32 Single point Phase

FFT_SPCPHAS32 Single point Amplitude + phase, two images.

See Also IpFftInverse

IpFftHiPass
Syntax IpFftHiPass(Type, Transition, PreserveNil)

Description This function filters the FFT data to allow only the frequencies outside the specified range to
remain in the image. Equivalent to applying the Hi Pass option from the Filter group box in
the FFT dialog box.

Parameters Type Integer An enumerated integer specifying the way in which
frequencies within the selected range will be treated.
Must be one of the following:

FFT_HANNING
FFT_NOTCH

See definitions under Comments, below.

 Transition Integer An integer representing a percentage, from 0 to 50
(inclusive), specifying the rate at which the selected
frequencies will be attenuated. The closer this value is
to 0, the more closely the result will resemble the
results of the FFT_NOTCH Type.

 PreserveNil Integer An integer value of 0 or 1 specifying whether the zero
frequency component is to be preserved. Where:
 0 - Preserves the Zero Frequency
Component
 1 - Does not preserve the Zero Frequency

Component

Example ipRect.left = 66
ipRect.right = 189
ipRect.top = 58
ipRect.bottom = 196
ret = IpAoiCreateBox(ipRect)
ret = IpFftHiPass(FFT_HANNING, 30, 1)

 This set of statements will attenuate all frequencies within the AOI defined by ipRect. A
transition value of 30% will be applied during frequency attenuation. The Zero Frequency
Component will not be preserved.

Page 2-313

Comments Before calling the IpFftHiPass function, you must define ipRect such that it describes an AOI
encompassing the selected frequencies (see example above).
The following table describes the values allowed in the Type parameter:

VALUE DESCRIPTION
FFT_NOTCH Sets the selected frequencies to NULL.

Equivalent to selecting the “Rectangle”
option in the “Inverse/Filter” dialog box.

FFT_HANNING Attenuates the selected frequencies at the
rate specified by Transition. Equivalent to
selecting the “Hanning” option in the
“Inverse/Filter” dialog box.

 The Transition value is ignored when the FFT_NOTCH Type is specified. Set it to 0.

See Also IpFftLoPass, IpFftSpikeCut

IpFftInverse
Syntax IpFftInverse(DocId, PreserveData)

Description This function performs an inverse transform of the active FFT image window. Equivalent to
the FFT command's Inverse button and the options in the Inverse/Filter Options dialog box.

Parameters DocId Integer An integer specifying the ID of the image into which the
inverse transform results are to be written, or one of the
following:
 FFT_NEWIMAGE
 FFT_SOURCE
 FFT_NEWSINGLE
Where, FFT_NEWIMAGE writes the result to a new
image window, and FFT_SOURCE writes the result
back to the image from which the FFT was generated.
FFT_NEWSINGLE will generate a new single point
image.

 PreserveData Integer A value of 0 or 1 specifying whether the FFT data will
be cleared from the FFT window when the inverse
transform is complete. Where:
 0 - Clears the data from the FFT window.
 1 - Keeps the data in the FFT window.

Return Value This function returns the Document ID of the resulting image, which will be an integer greater
than 0. A negative return value indicates an error.

Example ret = IpFftInverse(FFT_NEWIMAGE, 1)

This statement will perform an inverse transformation and write the results into a new

IpFftLoad

Page 2-314

 image window. Data in the FFT window will be preserved so that it can be filtered again
without having to do a forward FFT.

See Also IpFftForward

IpFftLoad
Syntax IpFftLoad(FileName)

Description This function loads FFT data from a file into an image window. Equivalent to the Load button
in the FFT dialog box.

Parameters FileName String A string specifying the name of the file from which the
FFT data will be read.

Return Value This function returns the Document ID of the FFT image, which will be an integer greater than
0. A negative return value indicates an error.

Example

ret = IpFftLoad("C:\IPWIN\DNOISE.FFT")

This statement will load the DNOISE.FFT file from the \IPWIN directory on drive C: .

See Also IpFftSave

IpFftLoPass
Syntax IpFftLoPass(Type, Transition)

Description This function filters the FFT data to allow only the frequencies within the specified range to
remain in the image. Equivalent to applying the Lo Pass option from the Filter group box in the
FFT dialog box.

Parameters Type Integer An enumerated integer specifying the way in which
frequencies outside the selected range are to be
treated. Must be one of the following:

FFT_HANNING
FFT_NOTCH

See definitions under Comments, below.

 Transition Integer An integer representing a percentage, from 0 to 50
(inclusive), specifying the rate at which the selected
frequencies will be attenuated. The closer this value is
to 0, the more closely the result will resemble the
results of the FFT_NOTCH Type.

Example ipRect.left = 66
ipRect.right = 189
ipRect.top = 58
ipRect.bottom = 196
ret = IpAoiCreateBox(ipRect)
ret = IpFftLoPass(FFT_HANNING, 30)

This set of statements will attenuate all frequencies outside of the AOI defined by ipRect. A
transition value of 30% will be applied during frequency attenuation.

 IpFftLoPass

Page 2-315

Comments Before calling the IpFftLoPass function, you must define ipRect such that it describes an
AOI encompassing the selected frequencies (see example above).
The following table describes values allowed in the Type parameter:

VALUE DESCRIPTION

FFT_NOTCH Sets the selected frequencies to NULL.
Equivalent to selecting the Rectangle
option in the Inverse/Filter dialog box.

FFT_HANNING Attenuates the selected frequencies at the
rate specified by Transition. Equivalent to
selecting the Hanning option in the
Inverse/Filter dialog box.

 The Transition value is ignored when the FFT_NOTCH Type is specified. Set it to 0.

See Also IpFftHiPass, IpFftSpikeCut

IpFftSave

Page 2-316

IpFftSave
Syntax IpFftSave(FileName)

Description This function saves the current FFT data to a file. Equivalent to the Save button in the FFT
dialog box.

Parameters FileName String A string specifying the name of the file to which the
FFT data will be written.

Example ret = IpFftSave("C:\IPWIN7\DNOISE.FFT")

This statement will save the FFT data to the DNOISE.FFT file in the \IPWIN directory on the
C: drive.

Comments If the specified file name already exists, it will be automatically overwritten.
See Appendix B in the Image-Pro Reference Manual for a description of the FFT file format.

See Also IpFftLoad

IpFftShow
Syntax IpFftShow(bShow)

Description This function shows or hides the FFT dialog box. Equivalent to selecting the FFT command to
open the window or clicking its close button to close it.

Parameters bShow Integer An integer value of 0 or 1 specifying whether the FFT
window is to be shown. Where:
 0 - Closes the window if it is already open.
 1 - Opens the window.

Example ret = IpFftShow(1)
ret = IpFftForward(FFT_SPECTRUM, 0)

This set of statements opens the FFT window and produces an FFT spectrum.

Comments The FFT window does not have to be open during an FFT operation. Its disposition, visible or
hidden, is entirely your choice. You will want to display the window if your users need to
make a choice within it. But, if your objective is simply to filter a spectrum in a predefined
way, you needn’t display the FFT window.

 IpFftSpikeBoost

Page 2-317

IpFftSpikeBoost
Syntax IpFftSpikeBoost(Type, Transition, Symmetrical)

Description This function accentuates the selected frequencies in a set of FFT data. Equivalent to applying
the Spike Boost option from the Filter group box in the FFT dialog box.

Parameters Type Integer An enumerated integer specifying the way in which the
selected frequencies will be treated. Must be one of
the following:

FFT_HANNING
FFT_NOTCH

See definitions under Comments, below.

 Transition Integer An integer representing a percentage, from 0 to 50
(inclusive), specifying the rate at which the selected
frequencies will be attenuated. The closer this value is
to 0, the more closely the result will resemble the
results of the FFT_NOTCH Type.

 Symmetrical Integer An integer value of 0 or 1 specifying whether both
halves of the FFT data set will be affected by the
frequency filter. Where:
 0 - Disables Symmetrical editing.

1 - Enables Symmetrical editing.

 Example ipRect.left = 66
ipRect.top = 58
ipRect.right = 189
ipRect.bottom = 196
ret = IpAoiCreateBox(ipRect)
ret = IpFftSpikeBoost(FFT_HANNING, 30, 0)

 This set of statements will accentuate all frequencies within the AOI defined by ipRect (i.e.,
66,58 and 189,196). A transition value of 30% will be applied during frequency accentuation.
Symmetrical editing is disabled.

Comments Before calling the IpFftSpikeBoost function, you must define ipRect such that it describes an
AOI encompassing the selected frequencies (see example above).
The following table describes the values allowed in the Type parameter:

VALUE DESCRIPTION

FFT_NOTCH Sets the selected frequencies to NULL. Equivalent
to selecting the “Rectangle” option in the
“Inverse/Filter” dialog box.

FFT_HANNING Accentuates the selected frequencies at the rate
specified by Transition. Equivalent to selecting the
“Hanning” option in the “Inverse/Filter” dialog box.

 The Transition value is ignored when the FFT_NOTCH Type is specified. Set it to 0.

See Also IpFftHiPass, IpFftLoPass

IpFftSpikeCut

Page 2-318

IpFftSpikeCut
Syntax IpFftSpikeCut(Type, Transition, Symmetrical)

Description This function removes or attenuates the selected frequencies in a set of FFT data. Equivalent to
applying the Spike Cut option from the Filter group box in the FFT dialog box.

Parameters Type Integer An enumerated integer specifying the way in which the
selected frequencies will be treated. Must be one of
the following:

FFT_HANNING
FFT_NOTCH

See definitions under Comments, below.

 Transition Integer An integer representing a percentage, from 0 to 50
(inclusive), specifying the rate at which the selected
frequencies will be attenuated. The closer this value is
to 0, the more closely the result will resemble the
results of the FFT_NOTCH Type.

 Symmetrical Integer An integer value of 0 or 1 specifying whether both
halves of the FFT data set will be affected by the
frequency filter. Where:
 0 - Disables Symmetrical editing.

1 - Enables Symmetrical editing.

Example ipRect.left = 66
ipRect.top = 58
ipRect.right = 189
ipRect.bottom = 196
ret = IpAoiCreateBox(ipRect)
ret = IpFftSpikeCut(FFT_HANNING, 30, 0)

This set of statements will attenuate all frequencies within the AOI defined by ipRect (i.e.,
66,58 and 189,196). A transition value of 30% will be applied during frequency attenuation.
Symmetrical editing is disabled.

Comments Before calling the IpFftSpikeCut function, you must define ipRect such that it describes
an AOI encompassing the selected frequencies (see example above).
The following table describes the values allowed in the Type parameter:

VALUE DESCRIPTION

FFT_NOTCH Sets the selected frequencies to NULL. Equivalent
to selecting the “Rectangle” option in the
“Inverse/Filter” dialog box.

FFT_HANNING Attenuates the selected frequencies at the rate
specified by Transition. Equivalent to selecting the
“Hanning” option in the “Inverse/Filter” dialog box.

 The Transition value is ignored when the FFT_NOTCH Type is specified. Set it to 0.

See Also IpFftHiPass, IpFftLoPass

 IpFftTag

Page 2-319

IpFftTag
Syntax IpFftTag(DocID, Type, Source Class)

Description This function specifies that the active image and another image make up a pair of spectrum and
phase FFT images.

Parameters Doc ID Integer Document ID of the second image.

 Type Integer The component that the active image represents
(FFT_SPECTRUM or FFT_PHASE).

 Source Class Integer The image class of the source image that generated
the FFT image.

Return Value 0 if successful, an error code if failed.

IpFlt3DApplytoBuffer
Syntax IpFlt3DApplytoBuffer (ImSizeX, ImSizeY, ImSizeZ, FltBuffer, FltParams, szKernName)

Description This function applys the 3D filter to the memory buffer.

Parameters ImSizeX Long Size of the memory buffer in the X direction

 ImSizeY Long Size of the memory buffer in the Y direction

 ImSizeZ Long Size of the memory buffer in the Z direction

 p_FltBuffer Any Pointer to a floating point buffer to be filtered

 pFltParams Any Pointer to an array of doubles containing the filter
parameters

 szKernName String Kernel name (path and extension not required). This
parameter must be specified for
CONV_3D_KERNEL and MORPH_ED_XXX filter
types. For other filters, this parameter must be an
empty string

Return Value 0 if successful, a negative error code if failed.

Example Please see Appendix A.

IpFlt3DApplytoFrames

Page 2-320

IpFlt3DApplytoFrames
Syntax IpFlt3DApplytoFrames (NFrames, FramesArray, pRect, FltParams, KernName)

Description This function applys the 3D filter to the selected frames

Parameters sNFrames Integer Number of frames to filter

 FramesArray Any Pointer to the array of long containing the list of
frames to filter. The array contains pairs of long
values, the first value specifies Vri (IMHANDLE) of
image and the second the frame number. The size
of the array must be 2* sNFrames. Example:
FramesArray(0) – Vri 1
FramesArray(1) – frame number 1
FramesArray(2) – Vri 2
FramesArray(3) – frame number 2

 pRect RECT Rectangle on the image where the filter will be
applied. If the value is NULL whole image is filtered.

 pFltParams Any Pointer to an array of doubles containing the filter
parameters. The array has the following structure:
FltParams (0) – FilterType, can be one of the
following:
CONV_3D_LOPASS
CONV_3D_HIPASS
CONV_3D_GAUSS
CONV_3D_HIGAUSS
CONV_3D_EDGEPL
CONV_3D_EDGEMN
CONV_3D_MEDIAN
CONV_3D_RANK
CONV_3D_KERNEL
MORPH_3D_ERODE
MORPH_3D_DILATE
MORPH_3D_OPEN
MORPH_3D_CLOSE

 MORPH_3D_DISTMAP
MORPH_3D_WATERSHED
MORPH_3D_THINNING
MORPH_3D_PRUNING
MORPH_3D_BRANCH
MORPH_3D_REDUCE
MORPH_3D_VECTORIZE

 IpFlt3DApplytoFrames

Page 2-321

Parameters pFltParams,
con’t

Any FltParams (1) – number of passes
FltParams (2) – SizeX
FltParams (3) – SizeY
FltParams (4) – SizeZ
FltParams (5) – Strength
FltParams (6) – Rank (used only for
CONV_3D_RANK filter)
FltParams (7) – Filter Color Images in HSI space,
 1= on, 0 = off
FltParams (8) – use Morphological Kernel (used
only with MORPH_3D_XXXX types), 1= on, 0 = off
FltParams (9) – threshold absolute value (not
percents) used with thinning, watershed, etc.
FltParams (10) – the Stop After options. Used in
Thinning, Watershed, Pruning filters (1-On, 0-Off).
FltParams (11) – Iterations number,
Used in Thinning, Watershed, Pruning filters. With
Gray watershed the parameter defines Pre-flooding
level.
FltParams (12) – Gray Watershed option. Used
only with Watershed (1-On, 0-Off).
FltParams (13) – BranchEnd flags, can be a
combination (sum) of the following constants:
 BR_SINGLE_POINT
 BR_END_POINT
 BR_SKELETON
 BR_TRIPLE_BR
 BR_4_PLUS
 BR_ALL – is the sum of All flags

 For MORPH_3D_VECTORIZE the parameter
contains vectorization mode flags. See
IpFlt3DVectorize for details.
FltParams (14) – preserve long branches option.
Used only with Pruning (1-On, 0-Off).

 szKernName String Kernel name (path and extension not required).
This parameter must be specified for
CONV_3D_KERNEL and MORPH_ED_XXX filter
types. For other filters, this parameter must be an
empty string

Return Value 0 if successful, a negative error code if failed.

Example Please see Appendix A.

IpFlt3DBranchEnd

Page 2-322

IpFlt3DBranchEnd
Syntax IpFlt3DBranchEnd (Threshold, ElemType)

Description This function applies the 3D Thinning filter to the active volume, and identifies 3D
morphological end-points or branches of the resulting skeleton.

Parameters dThreshold Double Threshold value, absolute level.

 sElemType Integer the types of morphological features to be extracted.
Every element on the output image has different
gray level. Can be a combination (sum) of the
following flags:

 Type Gray level
BR_SINGLE_POINT 10
BR_END_POINT 20
BR_SKELETON 30
BR_TRIPLE_BR 40
BR_4_PLUS 50 and more
All the flags are combined in BR_ALL

Return Value 0 if successful, a negative error code if failed.

Example ‘extract single points, skeleton, end points, triple branches,
and 4+ branches from the current image
ret = IpFlt3DBranchEnd(153.0,
BR_SINGLE_POINT+BR_END_POINT+BR_SKELETON+BR_TRIPLE_BR+BR_4_PLUS
)
’the same operation as above
ret = IpFlt3DBranchEnd(153.0, BR_ALL)

 IpFlt3DConv

Page 2-323

IpFlt3DConv
Syntax IpFlt3DConv (FilterType, SizeX, SizeY, SizeZ, Passes, Strength)

Description This function applys the 3D filter to the active image.

Parameters sFilterType Integer Selectes the filter type, should be one of the
following:
 CONV_3D_LOPASS
 CONV_3D_HIPASS
 CONV_3D_GAUSS
 CONV_3D_HIGAUSS
 CONV_3D_EDGEPL
 CONV_3D_EDGEMN

 aSizeX Integer Filter size along the X axis

 aSizeY Integer Filter size along the Y axis

 aSizeZ Integer Filter size along the Z axis

 sPasses Integer Number of passes

 sStrength Integer Strength (10 is the maxiumum)

Return Value 0 if successful, a negative error code if failed.

Example ‘apply lopass 3D filter

ret = IpFlt3DConvApply(CONV_3D_LOPASS,5,5,5,1,10)

IpFlt3DData

Page 2-324

IpFlt3DData
Syntax IpFlt3DData (lAttr, lOption, pData)

Description This function sets or gets the data used with 3D filtering.

Parameters lAttr Long See table below

 lOption Integer See table below

 pData Any See table below

lAttr lOption pData Description

FLT3D_DIST_SCALE_SET Not used, should be 0 Pointer to the array of
doubles[3] with scale values.
pData(0) – voxel size in X
direction.
pData(1) – voxel size in Y
direction.
pData(2) – voxel size in Z
direction.

Sets the distance scale (voxel
size) used for distance
transform and other distance
map- based filters (binary
watershed, thinning, reduce)

FLT3D_DIST_SCALE_GET Not used, should be 0 Pointer to the array of
doubles[3] with scale values.
pData(0) – voxel size in X
direction.
pData(1) – voxel size in Y
direction.
pData(2) – voxel size in Z
direction.

Gets the distance scale (voxel
size) used for distance
transform

Example ‘set voxel size for distance transform
Sub SetDist()
 Dim DistScale(3) As Double
 DistScale(0)=2
 DistScale(1)=3
 DistScale(2)=10
 ret = IpFlt3DData(FLT3D_DIST_SCALE_SET,0,DistScale(0))
End Sub

‘get voxel size used for distance transform
Sub GetDist()
 Dim DistScale(3) As Double
 ret = IpFlt3DData(FLT3D_DIST_SCALE_GET,0,DistScale(0))
 Debug.Print "SizeX = " & DistScale(0)
 Debug.Print "SizeY = " & DistScale(1)
 Debug.Print "SizeZ = " & DistScale(2)

End Sub

 IpFlt3DDistance

Page 2-325

IpFlt3DDistance
Syntax IpFlt3DDistance (Threshold)

Description This function creates a floating-point 3D distance map on the active volume.

Parameters dThreshold Double Threshold value, absolute level.

Return Value ID of the new distance map if successful, a negative error code if failed.

Example ’create distance map with threshold 153
ret = IpFlt3DDistance(153.0)

IpFlt3DGet
Syntax IpFlt3DGet (Attribute, Data)

Description This function gets the 3D filter parameters

Parameters sAttribute Integer Parameter attribute to get
FLT3D_HSI_FILTRATION gets the ‘filter color
images in HIS space’ option
FLT3D_USEACTIVEPORTION sets the ‘use active
portion’ option.

 lpData Long Pointer to a long value that receives the value

Return Value 0 if successful, a negative error code if failed.

Example ‘get the HSI options
Dim lHSI as Long
ret=IpFlt3DGet(FLT3D_HSI_FILTRATION, lHSI)

IpFlt3DKernel
Syntax IpFlt3DKernel (KernName, Passes)

Description This function applies a convolution kernel filter to the active image.

Parameters szKernName String Kernel name. An extension and/or path is not
required.

 sPasses Integer Number of passes

Return Value 0 if successful, a negative error code if failed.

Example ‘apply Sobel 3D filter
ret=IpFlt3DKernel (Sobel 3D,1)

IpFlt3DMorph

Page 2-326

IpFlt3DMorph
Syntax IpFlt3DMorph (FilterType, SizeX, SizeY, SizeZ, Passes)

Description This function applies the free size morphological filter to the active image.

Parameters sFilterType Integer Selectes the filter type, should be one of the
following:
 MORPH_3D_ERODE
 MORPH_3D_DILATE
 MORPH_3D_OPEN
 MORPH_3D_CLOSE

 aSizeX Integer Filter size along the X axis

 aSizeY Integer Filter size along the Y axis

 aSizeZ Integer Filter size along the Z axis

 sPasses Integer Number of passes

Return Value 0 if successful, a negative error code if failed.

Example ‘apply Erode filter of size 7x7x7 10 times

ret = IpFlt3DMorph (MORPH_3D_ERODE,7,7,7,10)

IpFlt3DMorphKernel
Syntax IpFlt3DMorphKernel (FilterType, KernName, Passes)

Description This function applies the morphological kernel filter to the active image.

Parameters sFilterType Integer Selectes the filter type, should be one of the
following:
 MORPH_3D_ERODE
 MORPH_3D_DILATE
 MORPH_ED_OPEN
 MORPH_3D_CLOSE

 sKernName String Kernel name. An extension and/or path is not
required

 sPasses Integer Number of passes

Return Value 0 if successful, a negative error code if failed.

Example ‘apply Erode filter of size 7x7x7 10 times
ret = IpFlt3DMorph (MORPH_3D_ERODE,7,7,7,10)

 IpFlt3DPrune

Page 2-327

IpFlt3DPrune
Syntax IpFlt3DPrune (Threshold, Iterations,RetainLongBranches)

Description This function applies the 3D Thinning filter to the active volume.

Parameters dThreshold Double Threshold value, absolute level.

 sIterations Integer Branch length in pixels to be removed. -1 for
unlimited pruning

 sRetainLong
Branches

Integer Preserve long branches option.
1 = branches longer than those specified by
sIterations are not filtered.
0 = all branches are filtered.

Return Value 0 if successful, a negative error code if failed.

Example ‘apply unlimited pruning to an image with Threshold 120
ret = IpFlt3DPrune(120.0,-1)

IpFlt3DRank
Syntax IpFlt3DRank (SizeX, SizeY, SizeZ, Passes, Rank)

Description This function applies the 3D rank filter to the active image.

Parameters sSizeX Integer Filter size along the X axis

 sSizeY Integer Filter size along the Y axis

 sSizeZ Integer Filter size along the Z axis

 sPasses Integer Number of passes

 sRank Integer Rank percentage value

Return Value 0 if successful, a negative error code if failed.

Example ‘apply median filter
ret = IpFlt3DRank (5,5,5,1,50)
‘apply dilate filter
ret = IpFlt3DRank (5,5,5,1,100)
‘apply erode filter
ret = IpFlt3DRank (5,5,5,1,0)

IpFlt3DReduce

Page 2-328

IpFlt3DReduce
Syntax IpFlt3DReduce (Threshold)

Description This function applies the 3D Reduce filter to the active volume.

Parameters dThreshold Double Threshold value, absolute level.

Return Value 0 if successful, a negative error code if failed.

Example ‘apply Reduce filter
ret = IpFlt3DPrune(130.0)

IpFlt3DSet
Syntax IpFlt3DSet (Attribute, lParam)

Description This function sets the 3D filter parameters

Parameters sAttribute Integer Parameter attribute to set:
FLT3D_HSI_FILTRATION sets the ‘filter color
images in HIS space’ option
FLT3D_USEACTIVEPORTION sets the ‘use active
portion’ option.

 lParam Long 0 = off
1 = on

Return Value 0 if successful, a negative error code if failed.

Example ‘set the HSI options
Dim lHSI as Long
ret=IpFlt3DSet(FLT3D_HSI_FILTRATION, lHSI)

IpFlt3DShow
Syntax IpFlt3DShow (bShow)

Description This function hides or shows the 3D filters dialog.

Parameters bShow Integer 0 = hide the dialog
1 = show the dialog

Return Value 0 if successful, a negative error code if failed.

Example ‘show dialog
IpFlt3DShow (1)

 IpFlt3DThin

Page 2-329

IpFlt3DThin
Syntax IpFlt3DThin (Threshold, Iterations)

Description This function applies the 3D Thinning filter to the active volume.

Parameters dThreshold Double Threshold value, absolute level.

 sIterations Integer The number of iteration for limited thinning. -1 for
unlimited thinning.

Return Value 0 if successful, a negative error code if failed.

Example ‘apply unlimited thinning to an image with Threshold 153

ret = IpFlt3DThin(153.0,-1)

IpFlt3DVectGet
Syntax IpFlt3DVectGet (lAttr, lOption)

Description This function gets the vectorization values.

Parameters lAttr Long See table below.

 lOption Integer See table below.

Return Value See table below.

Comments Run this function after running IpFlt3DVectorize.

lAttr lOption Description

V3D_NUM_VECT Not used, should be 0 Returns the number of branches in the skeleton. Branches are
skeleton lines where any pixel does not have more that 2
neighbors in 3x3x3 26-connected neighborhood.

V3D_NUM_BRPT Not used, should be 0 Returns the number of branch points that have 3 or more pixels in
26-connected neighborhood. The branch points usually have 3 or
more branches connected to it.

V3D_NUM_SNGL Not used, should be 0 Returns the number of single pixels that do not have any
neighbors in 26-connected neighborhood. The function can be
used to get coordinates of points after the Reduce filter has been
applied.

V3D_VECT_LEN VectID: the ID of the
branch vector, should be
between 0 and the value
returned by the function
with V3D_NUM_VECT
attribute

Returns the number of pixels in a branch

IpFlt3DVectGet

Page 2-330

lAttr lOption Description

V3D_BRPT_VOLUME BranchPointID: the ID of
the branch point, should be
between 0 and the value
returned by the function
with the V3D_NUM_BRPT
attribute.

Returns the number of pixels in a branch point. Branch point may
include 1 or more pixels, especially if the skeleton is produced by
limited thinning, so the branch point can be a blob.

V3D_VECT_START_BR_
IND

VectID: the ID of the
branch vector, should be
between 0 and the value
returned by the function
with the
V3D_NUM_VECT
attribute

Returns the branch point index (BranchPointID) of the start point
of the vector. The value can be used to build a connection
diagram of branches. The function returns -1 if there are no
branch points are connected to this end of the vector (true end-
point) or -2 if the branch is a closed ring.

V3D_VECT_END_BR_IND VectID: the ID of the
branch vector, should be
between 0 and the value
returned by the function
with the
V3D_NUM_VECT
attribute

Returns the branch point index (BranchPointID) of the end point
of the vector. The value can be used to build a connection
diagram of branches. The function returns -1 if there are no
branch points are connected to this end of the vector (true end-
point) or -2 if the branch is a closed ring.

See Also IpFlt3DVectorize, IpFlt3DVectGetData

 IpFlt3DVectGetData

Page 2-331

IpFlt3DVectGetData
Syntax IpFlt3DVectGetData (lAttr, lOption)

Description This function gets the vectorization data.

Parameters lAttr Long See table below.

 lOption Integer See table below.

 pData Any See table below.

Return Value See table below.

Comments Run this function after running IpFlt3DVectorize.

lAttr lOption pData Description

V3D_VECT_POINTS VectID: the ID of the
branch vector, should be
between 0 and the value
returned by the function
with the
V3D_NUM_VECT
attribute

Pointer to the array of doubles
that receives the coordinates.
The array size has to be big
enough to accommodate all
values. The number of element
has to be not less than
3*NumberOfPoints returned
by V3D_VECT_LEN.

The coordinates are passes as
triplets of X, then Y and then
Z coordinates. For example:
pData(0) – x coordinate of the
first pixel.
pData(1) – y coordinate of the
first pixel.
pData(2) – z coordinate of the
first pixel./
pData(3) - x coordinate of the
second pixel

Retrieves the coordinates of
the branch poly-line points

V3D_BRPT_CENTER BranchPointID – the ID of
the branch point, should be
between 0 and the value
returned by the function
with V3D_NUM_BRPT
attribute.

Pointer to the array of 3
doubles that receives the
coordinate.
pData(0) – x coordinate of the
center.
pData(1) – y coordinate of the
center.
pData(2) – z coordinate of the
center.

Retrieves the coordinate of the
branch-point center. If the
Volume of Branch-Point is
more than 1 the center of mass
of the branch point is returned.

IpFlt3DVectGetData

Page 2-332

lAttr lOption pData Description

V3D_SNGL_CENTER SnglPointID – the ID of the
single point, should be
between 0 and the value
returned by the function
with V3D_NUM_SNGL
attribute

Pointer to the array of 3
doubles that receives the
coordinate.
pData(0) – x coordinate of the
center.
pData(1) – y coordinate of the
center.
pData(2) – z coordinate of the
center.

Retrieves the coordinate of a
single point.

V3D_BRPT_DIAMETER BranchPointID – the ID of
the branch point, should be
between 0 and the value
returned by the function
with V3D_NUM_BRPT
attribute

Pointer to a double that
receives the diameter.

Retrieves the diameter of a 3+
branch point. The diameter is
based on the value of the
distance map image at the
coordinate of the branch point.
The last distance map created
by thinning or distance map
operation with active
V3D_SAVE_DIST_MAP_SE
T option is used. (see also
FLT3D_DIST_SCALE_SET
to set calibrated voxel size).

V3D_SNGL_DIAMETER SnglPointID – the ID of the
single point, should be
between 0 and the value
returned by the function
with V3D_NUM_SNGL
attribute

Pointer to a double that
receives the diameter.

Retrieves the diameter of a
single point.

V3D_VECT_DIAMETER BranchPointID – the ID of
the branch point, should be
between 0 and the value
returned by the function
with V3D_NUM_BRPT
attribute

Pointer to a double that
receives the diameter

Retrieves the average diameter
of a vector. The branch
diameter is calculated as
average diameter of all points
in the branch. See
V3D_BRPT_DIAMETER for
more info.

V3D_POINT_DIAMETER Point address, which is
calculated as X + Y*Width
+ Z*Width*Height, where
Width and Height define
image size

Pointer to a double that
receives the diameter.

Tetrieves the diameter of an
arbitrary point defined by its
linear coordinate. See
V3D_BRPT_DIAMETER for
more info.

 IpFlt3DVectorize

Page 2-333

IpFlt3DVectorize
Syntax IpFlt3DVectorize (lMode, dThreshold)

Description This function vectorizes the active image.

Parameters lMode Long Defines the type of vectorization. The following flags
can be used:
V3D_FIND_SKEL - extract vectors of skeleton
V3D_FIND_BR_POINTS - extract triple and 4+
branch points
V3D_FIND_SNGL_POINTS - extract single points
The above flags can be used in combination (e.g.
V3D_FIND_SKEL + V3D_FIND_BR_POINTS to
extract skeleton and branch points)
V3D_FIND_ALL- is the combination of the above
flags.
V3D_OPTIMIZE - optimize the poly-lines removing
the pixels that lie on a straight line. This function can
be used after running vectorization with
V3D_FIND_X flags.
V3D_SAVE_DIST_MAP – sets the distance map
saving mode. When the flag is set, running a
Thinning or Distance filter creates a distance map in
the vectorization environment which will then provide
information about point and vector diameters.
V3D_RESET - resets the internal buffers of the
module. Use this function to free up memory when
vectorization data is no longer needed.

 dThreshold Integer Absolute level of threshold value for V3D_FIND_X
operations. For V3D_OPTIMIZE and V3D_RESET
this parameter is not used and should be 0

Return Value 0 if successful, a negative error code if failed.

Comments The active image has to be a skeleton produced by an unlimited or limited thinning filter. The
function converts skeleton lines into poly-lines and returns the coordinates and connectivity of
3+ branch points and single points.

See also IpFlt3DVectorGet, IpFlt3DVectorGetData

IpFlt3DWatershed
Syntax IpFlt3DWatershed (Threshold, Iterations, GrayWatershed)

Description This function runs the 3D watershed separation filter on the active volume.

Parameters dThreshold Double Threshold value, absolute level. This parameter is
ignored with Gray Watershed.

 sIterations Integer The number of iteration for limited watershed. -1 for
unlimited watershed. For Gray watershed the
parameter defines the Preflooding level.

IpFltBranchEnd

Page 2-334

 sGrayWatershed Integer Turns Gray Watershed option on or off:
1 = on
0 = off

Return Value 0 if successful, a negative error code if failed.

Example ‘apply binary watershed to an image with Threshold 128
ret = IpFlt3DWatershed(128.0,-1,0)
‘apply limiter binary watershed with 6 iterations
ret = IpFlt3DWatershed(128.0,6,0)
‘apply gray watershed with preflooding level of 10
ret = IpFlt3DWatershed(128.000061,10,1)

IpFltBranchEnd
Syntax IpFltBranchEnd(Threshold,Classify)

Description This function applies the branch/endpoint filter with threshold and rank to the active image or
AOI.

Parameters Threshold Integer Threshold (0-100) at which to binarize the image
prior to skeletonization.

 Classify Integer This parameter calssifies points by determining how
many separate branches extend from that point. Sum
of:
 BR_SKEL = 16;skeletal points of
connectivity = 2
 BR_END = 32; end points of connectivity =
1
 BR_BRANCH3 = 64; branch points of
 connectivity = 3
 BR_BRANCHN = 128; branch points of
 connectivity = 4 or more

Example ret = IpFltBranchEnd(22,64)

 This statement uses a threshold of 10 while applying the trip branches option.

Comments The resulting image may require contrast adjustment for the results to be visible.

 IpFltClose

Page 2-335

IpFltClose
Syntax IpFltClose(Shape, Passes)

Description This function applies the closing filter to the active image or AOI. Equivalent to selecting the
Close option within the Filter command window.

Parameters Shape Integer An enumerated integer specifying the shape and size
of the filtering kernel. Must be one of the following:

MORPHO_2x2SQUARE
MORPHO_3x1ROW
MORPHO_1x3COLUMN
MORPHO_3x3CROSS
MORPHO_5x5OCTAGON
MORPHO_7x7OCTAGON
MORPHO_11x11OCTAGON

See definitions under Comments, below.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltClose(MORPHO_2x2SQUARE, 3)

This statement will filter the image data using a 2 x 2 square closing filter. The filter will be
applied 3 times.

Comments The following table describes the values allowed in the Shape parameter: These values are
equivalent to the options presented by the Filtering window's Options group box when a
morphological filter is selected.

VALUE DESCRIPTION

MORPHO_2x2SQUARE Applies a 2 x 2 square filtering kernel.
MORPHO_3x1ROW Applies a 3 x 1 horizontal filtering kernel.
MORPHO_1x3COLUMN Applies a 1 x 3 vertical filtering kernel.
MORPHO_3x3CROSS Applies a 3 x 3 cross filtering kernel.
MORPHO_5x5OCTAGON Applies a 5 x 5 octagonal filtering kernel.
MORPHO_7x7OCTAGON Applies a 7 x 7 octagonal filtering kernel.
MORPHO_11x11OCTAGON Applies a 11 x 11 octagonal filtering kernel.

See Also IpFltOpen, IpFltErode, IpFltDilate

IpFltConvolveKernel

Page 2-336

IpFltConvolveKernel
Syntax IpFltConvolveKernel(KernelName, Strength, Passes)

Description This function filters the image data using the convolution filter contained in the specified file.
Equivalent to selecting the Other option within the Filter command window.

Parameters KernelName String A string specifying the file in which the kernel
coefficients are contained. Must be one of the
following:

SCULPT.3X3
TOPHAT.3X3
TOPHAT.5X5
TOPHAT.7X7
WELL.3X3
WELL.5X5
WELL.7X7
HORZEDGE.3X3
HORZEDGE.5X5
HORZEDGE.7X7
VERTEDGE.3X3
VERTEDGE.5X5
VERTEDGE.7X7
HIGAUSS.7X7
HIGAUSS.9X9
LAPLACE.3X3
LAPLACE.5X5
LAPLACE.7X7

 Strength Integer An integer between 1 and 10 (inclusive) specifying the
amount of the filtered result that is to be applied to the
image. A value of 10 indicates that the full result
(100%) is to be applied. Lesser values apply the result
at reduced strengths.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltConvolveKernel("VERTEDGE.7x7", 10, 1)

This statement will filter the image data using the kernel contained in the file VERTEDGE.7x7.
This filter will be applied one time at full strength (10).

Comments See Appendix B in the Image-Pro Reference Manual for a description of a kernel file.

 IpFltDespeckle

Page 2-337

IpFltDespeckle
Syntax IpFltDespeckle(Size, Strength, Passes)

Description This function applies the Despeckle filter to the active image or AOI. Equivalent to selecting the
Despeckle option within the Filter command window.

Parameters Size Integer An integer value of 3, 5 or 7 specifying the size of the
kernel to be applied during the filtering operation.
Convolution kernels are always square, so this value
specifies both length and width (e.g., 3 x 3).

 Strength Integer An integer between 1 and 10 (inclusive) specifying the
amount of the filtered result to be applied to the image.
A value of 10 indicates that the full result (100%) is to
be applied. Lesser values apply the result at reduced
strengths.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltDespeckle (5, 8, 2)

This statement will filter the image data using the 5 x 5 kernel. The results will be applied at
reduced strength (8). The filter will be applied twice.

IpFltDilate
Syntax IpFltDilate(Shape, Passes)

Description This function applies the Dilation filter to the active image or AOI. Equivalent to selecting the
Dilate option within the Filter command window.

Parameters Shape Integer An enumerated integer specifying the shape and size
of the filtering kernel. Must be one of the following:

MORPHO_2x2SQUARE
MORPHO_3x1ROW
MORPHO_1x3COLUMN
MORPHO_3x3CROSS
MORPHO_5x5OCTAGON
MORPHO_7x7OCTAGON
MORPHO_11x11OCTAGON

See definitions under Comments, below.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltDilate(MORPHO_1x3COLUMN, 2)

This statement will filter the image data using a 1 x 3 vertical dilation filter. The filter will be
applied 2 times.

Comments The following table describes the values allowed in the Shape parameter: These values are
equivalent to the options presented within the Filtering window's Options group box when a
morphological filter is selected.

IpFltDistance

Page 2-338

VALUE DESCRIPTION

MORPHO_2x2SQUARE Applies a 2 x 2 square filtering kernel.
MORPHO_3x1ROW Applies a 3 x 1 horizontal filtering kernel.
MORPHO_1x3COLUMN Applies a 1 x 3 vertical filtering kernel.
MORPHO_3x3CROSS Applies a 3 x 3 cross filtering kernel.
MORPHO_5x5OCTAGON Applies a 5 x 5 octagonal filtering kernel.
MORPHO_7x7OCTAGON Applies a 7 x 7 octagonal filtering kernel.
MORPHO_11x11OCTAGON Applies a 11 x 11 octagonal filtering kernel.

See Also IpFltOpen, IpFltErode, IpFltClose

IpFltDistance
Syntax IpFltDistance (Threshold, Mode)

Description This function applies the distance filter to the active image or AOI.

Parameters Threshold Integer An integer value between 1 and 100 inclusive that
indicates at what percentage of intensity to apply the
filter.

 Mode Integer Indicates the type of distance mapping to perform.
Must be one of the following:
DISTANCE_SQUARE - 0 =current square distance
DISTANCE_DIAGONAL - 1 = current diagonal distance
DISTANCE_EUCLIDIAN - 2 = Euclidian distance,
integer

Example ret = IpFltDistance(10,0)

This statement uses a threshold of 10 while applying the square option.

Comments All returned images will have their distances normalized, so that a white 4-connected to black
background will have a distance of 1.

 IpFltErode

Page 2-339

IpFltErode
Syntax IpFltErode(Shape, Passes)

Description This function applies the Erosion filter to the active image or AOI. Equivalent to selecting the
Erode option within the Filter command window.

Parameters Shape Integer An enumerated integer specifying the shape and size
of the filtering kernel. Must be one of the following:

MORPHO_2x2SQUARE
MORPHO_3x1ROW
MORPHO_1x3COLUMN
MORPHO_3x3CROSS
MORPHO_5x5OCTAGON
MORPHO_7x7OCTAGON
MORPHO_11x11OCTAGON

See definitions under Comments, below.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image
data.

Example ret = IpFltErode(MORPHO_3x1ROW, 2)

This statement will filter the image data using a 3 x 1 horizontal erosion filter. The filter will
be applied 2 times.

Comments The following table describes the values allowed in the Shape parameter. These values are
equivalent to the options presented within the Filtering window's Options group box when a
morphological filter is selected.

VALUE DESCRIPTION

MORPHO_2x2SQUARE Applies a 2 x 2 square filtering kernel.

MORPHO_3x1ROW Applies a 3 x 1 horizontal filtering kernel.

MORPHO_1x3COLUMN Applies a 1 x 3 vertical filtering kernel.

MORPHO_3x3CROSS Applies a 3 x 3 cross filtering kernel.

MORPHO_5x5OCTAGON Applies a 5 x 5 octagonal filtering kernel.

MORPHO_7x7OCTAGON Applies a 7 x 7 octagonal filtering kernel.

MORPHO_11x11OCTAGON Applies a 11 x 11 octagonal filtering kernel.

See Also IpFltOpen, IpFltDilate, IpFltClose

IpFltExtractBkgnd

Page 2-340

IpFltExtractBkgnd
Syntax IpFltExtractBkgnd(BrightOnDark, ObjectSize)

Description This function extracts the background from the active image or AOI. Equivalent to selecting
the Background option within the Filter command window.

Parameters BrightOnDark Integer An integer value of 0 or 1 specifying whether the objects
are dark or light. Where:
0 - Specifies dark objects on a bright
background. Equivalent to the “Bright” background
selection in the “Option” group box.

 1 - Specifies bright objects on a dark
background. Equivalent to the “Dark” background
selection in the “Option” group box.

 ObjectSize Integer An integer between 7 and 100 (inclusive) that
describes the size of the objects in the image, in
pixels.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

Example ret = IpFltExtractBkgnd(0, 25)

This statement will extract the background from an image containing dark objects that are
smaller than 25 pixels in diameter.

See Also IpFltFlatten

 IpFltFlatten

Page 2-341

IpFltFlatten
Syntax IpFltFlatten(BrightOnDark, ObjectSize)

Description This function flattens the background of the active image or AOI. Equivalent to selecting the
Flatten option within the Filter command window.

Parameters BrightOnDark Integer An integer value of 0 or 1 specifying whether the objects
are dark or light. Where:
0 - Specifies dark objects on a bright
 background. Equivalent to the “Bright”
 background selection in the “Option”
 group box.
1 - Specifies bright objects on a dark
 background. Equivalent to the “Dark”
 background selection in the “Option”
 group box.

 ObjectSize Integer An integer between 7 and 100 (inclusive) that
describes the size of the objects in the image, in
pixels.

Example ret = IpFltFlatten(1, 40)

This statement will flatten the background of an image containing bright objects that are
smaller than 40 pixels in diameter.

See Also IpFltExtractBkgnd

IpFltGauss
Syntax IpFltGauss(Size, Strength, Passes)

Description This function applies the Gauss filter to the active image or AOI. Equivalent to selecting the
Gauss option within the Filter command window. Use this filter to soften an image by
eliminating high-frequency information using a Gauss function. This has the effect of blurring
sharp edges. The operation of the Gauss filter is similar to the LoPass filter, but it degrades the
image less than the LoPass filter.

Parameters Size Integer An integer value of 3, 5 or 7, which specifies the size of
the kernel to be applied during the filtering operation.

 Strength Integer An integer between 1 and 10 (inclusive) specifying the
amount of the filtered result to be applied to the image.
A value of 10 indicates that the full result (100%) is to
be applied. Lesser values apply the result at reduced
strengths.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltGauss(5, 8, 2)

This statement will filter the image data using the 5 x 5 kernel. The results will be applied at
reduced strength (8). The filter will be applied twice.

IpFltHiPass

Page 2-342

IpFltHiPass
Syntax IpFltHiPass(Size, Strength, Passes)

Description This function applies the HiPass filter to the active image or AOI. Equivalent to selecting the
HiPass option within the Filter command window.

Parameters Size Integer An integer value of 3, 5 or 7 specifying the size of the
kernel to be applied during the filtering operation.
Convolution kernels are always square, so this value
specifies both length and width (e.g., 3 x 3).

 Strength Integer An integer between 1 and 10 (inclusive) specifying the
amount of the filtered result to be applied to the image.
A value of 10 indicates that the full result (100%) is to
be applied. Lesser values apply the result at reduced
strengths.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltHiPass(5, 8, 2)

This statement will filter the image data using the 5 x 5 kernel. The results will be applied at
reduced strength (8). The filter will be applied twice.

IpFltLaplacian
Syntax IpFltLaplacian(Size, Strength, Passes)

Description This function applies the Laplacian filter to the active image or AOI. Equivalent to selecting
the Laplacian option within the Filter command window.

Parameters Size Integer An integer value of 3, 5 or 7 specifying the size of the
kernel to be applied during the filtering operation.

 Strength Integer An integer between 1 and 10 (inclusive) specifying the
amount of the filtered result to be applied to the image.
A value of 10 indicates that the full result (100%) is to
be applied. Lesser values apply the result at reduced
strengths.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltLaplacian(5, 8, 2)

This statement will filter the image data using the 5 x 5 kernel. The results will be applied at
reduced strength (8). The filter will be applied twice.

IpFltLocHistEq
Syntax IpFltLocHistEq(WindowSize, StepSize, EqualType, StdDev)

Description This function applies local histogram equalization techniques to the image and adjusts the
image intensities accordingly. The effect is to bring out image details that might not be
discernable using global enhancements such as Best Fit or global Histogram Equalization.

IpFltLoPass

Page 2-343

Parameters WindowSize

Integer The size of the window upon which to calculate the
local histogram. Smaller windows will track smaller
details more effectively, while larger windows will
provide a smoother overall effect

 StepSize

Integer The distance over which a particular histogram will be
applied before recalculation. This parameter is limited
to a maximum of WindowSize. Smaller values provide
closer tracking of local effects, while larger values are
more efficient.

 EqualType Integer The type of histogram equalization to apply. The values
are as follows:
LOCEQ_LINEAR - 1: See Global Histogram
Equalization.
LOCEQ_BELL - 2: See Global Histogram Equalization
LOCEQ_LOG - 3: See Global Histogram Equalization
LOCEQ_EXP - 4: See Global Histogram Equalization
LOCEQ_BESTFIT - 5: See Global Histogram
Equalization
LOCEQ_STDDEV - 6: The image values at +/- the
StdDev parameter will be stretched to the maximum
and minimum intensities. This provides an effect akin
to the BESTFIT method, but with much less sensitivity
to outlying values

 StdDev single Only used if EQ_STDDEV is specified, this single point
value specifies the number of standard deviations +/-
that are stretched to maximum and minimum
intensities. For a normal distribution of intensities in a
random image a value of 1.0 includes 67% of the
values, 2.0 includes 95%, and 3.0 includes 99%. This
parameter is limited to a range of 0.1 to 5.0.

Example ret = IpFltLocHistEq(30, 5, 6, 1.5)

Comments LHE is accessed via the Filter dialog. Functionally, it belongs to the same group as Hipass and
Sharpen.

IpFltLoPass
Syntax IpFltLoPass(Size, Strength, Passes)

Description This function applies the LoPass filter to the active image or AOI. Equivalent to selecting the
LoPass option within the Filter command window.

Parameters Size Integer An integer value of 3, 5 or 7, which specifies the size of
the kernel to be applied during the filtering operation.

IpFltMedian

Page 2-344

 Strength Integer An integer between 1 and 10 (inclusive) specifying the
amount of the filtered result to be applied to the image.
A value of 10 indicates that the full result (100%) is to
be applied. Lesser values apply the result at reduced
strengths.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltLoPass(5, 8, 2)

This statement will filter the image data using the 5 x 5 kernel. The results will be applied at
reduced strength (8). The filter will be applied twice.

IpFltMedian
Syntax IpFltMedian(Size, Passes)

Description This function applies the Median filter to the active image or AOI. Equivalent to selecting the
Median option within the Filter command window.

Parameters Size Integer An integer value of 3, 5 or 7 specifying the size of the
kernel to be applied during the filtering operation.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image
data.

Example ret = IpFltMedian(5, 2)

This statement will filter the image data using the 5 x 5 kernel. The filter will be applied twice.

See Also IpFltLoPass

 IpFltOpen

Page 2-345

IpFltOpen
Syntax IpFltOpen(Shape, Passes)

Description This function applies the Opening filter to the active image or AOI. Equivalent to selecting the
Open option within the Filter command window.

Parameters Shape Integer An enumerated integer specifying the shape and size
of the filtering kernel. Must be one of the following:

MORPHO_2x2SQUARE
MORPHO_3x1ROW
MORPHO_1x3COLUMN
MORPHO_3x3CROSS
MORPHO_5x5OCTAGON
MORPHO_7x7OCTAGON
MORPHO_11x11OCTAGON

See definitions under Comments, below.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltOpen(MORPHO_3x3CROSS, 5)

This statement will filter the image data using a 3 x 3 cross opening filter. The filter will be
applied 5 times.

Comments The following table describes the values allowed in the Shape parameter: These values are
equivalent to the options presented within the Filtering window's Options group box when a
morphological filter is selected.

VALUE DESCRIPTION

MORPHO_2x2SQUARE Applies a 2 x 2 square filtering kernel.
MORPHO_3x1ROW Applies a 3 x 1 horizontal filtering kernel.
MORPHO_1x3COLUMN Applies a 1 x 3 vertical filtering kernel.
MORPHO_3x3CROSS Applies a 3 x 3 cross filtering kernel.
MORPHO_5x5OCTAGON Applies a 5 x 5 octagonal filtering kernel.
MORPHO_7x7OCTAGON Applies a 7 x 7 octagonal filtering kernel.
MORPHO_11x11OCTAGON Applies a 11 x 11 octagonal filtering kernel.

See Also IpFltClose, IpFltDilate, IpFltErode

IpFltPhase

Page 2-346

IpFltPhase
Syntax IpFltPhase()

Description This function applies the Phase filter to the active image or AOI. Equivalent to selecting the
Phase option within the Filter command window.

Example ret = IpFltPhase()

IpFltPrune
Syntax IpFltPrune(Threshold, Passes)

Description This function applies the pruing filter to the active image or AOI.

Parameters Threshold Integer An integer value between 1 and 100 inclusive that
describes the intensity of the filter

 Passes Integer An integer between 1 and 65535 (inclusive) that
describes the number of passes. Enter -1 to disable the
number of passes

Example ret = IpFltPrune (50,2)

Comments This statement applies the Prune filter with a 50% threshold. The filter is applied twice.

IpFltRank
Syntax IpFltRank (Size, Threshold,Rank, Passes)

Description This function applies the rank filter with threshold and rank to the active image or AOI.

Parameters Size Integer An integer value of 3, 5 or 7 specifying the size of the
kernel to be applied during the filtering operation.

 Threshold Single An integer value between 0 and 100 inclusive
specifying the absolute difference in values between
the center pixel and the pixel replacement. This value
must be multiplied by the dynamic range of the image
class to get the absolute gray value.

 Rank Integer An integer value between 0 and 100 (inclusive)
specifying which pixel in the sorted pixel values array
will be used to replace the center pixel. A value of 0
means the lowest pixel value, and a value of 100
means the highest pixel value.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image
data.

Example ret = IpFltRank(3,70,50,1)

 IpFltReduce

Page 2-347

IpFltReduce
Syntax IpFltReduce(Threshold, Mode,)

Description This function applies the reducing filter to the active image or AOI.

Parameters Threshold Integer An integer value between 1 and 100 inclusive that
describes the intensity of the filter

 Mode Integer Indicates the type of reduction to perform. Must be one
of the following:

 Basic Grid looks like this:
01 02 03 04 05
06 07 08 09 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
FLT_4NEIGHBOR Use pixels 8, 12, 14, and 18 for filtering pixel 13. The distance to 13
will be the minimum of the values of these pixels plus the distance of 13 from that pixel,
calculated in floating point and rounded to an integer upon return. The neighborhood is
that of a small plus sign.
FLT_8NEIGHBOR Use pixels 7, 8, 9, 12, 14, 17, 18, and 19 for filtering pixel13. The
neighborhood evaluated is a small square.
REDUCE_16NEIGHBOR Use all of the FLT_8NEIGHBOR pixels, plus pixels 2, 4,6,
10, 16, 20, 22, and 24 to filter pixel 13. This includes all adjacent pixels in a small square
plus those a chess style 'knights-move' away - two pixels away and one over. This
provides the most accurate processing.

IpFltRoberts
Syntax IpFltRoberts()

Description This function applies the Roberts filter to the active image or AOI. Equivalent to selecting the
Roberts option within the Filter command window.

Example ret = IpFltRoberts()

IpFltRstrDilate
Syntax IpFltRstrDilate (DocMask, Threshold,Connect, Iterations)

Description This function applies the restricted dilation filter with threshold in those areas allowed by the
image mask.

Parameters DocMask Integer Document ID of the mask image

 Threshold Integer Number between 1 and 100 expressing the
percentage theshold for the mask image. This is
identical in operation to the threshold used in the
Thinning filter and other morphological operations.

 Connect Integer Must be one of the following:
0 = 4-connect
1 = 8-connect

IpFltRstrDilateShow

Page 2-348

 Iterations Integer Number of restricted dilation iterations.

Example ret = IpFltRstrDilate(3,70,1,50)

This statement selects the ID number of the mask and adjusts the threshold to 70. Eight-connect
is selected while the number of iterations is set at 50.

See Also IpFltRstrDilateShow

IpFltRstrDilateShow
Syntax IpFltRstrDilateShow (bShow)

Description This function displays or hides the restricted dilation filter dialog.

Parameters bShow Integer A value of 0 or 1 specifying whether the filter
dialog is to be displayed or suppressed. Where:
 0 - hides the dialog
 1 - shows the dialog

Example ret = IpFltRstrDilateShow(1)

See Also IpFltRstrDilate

IpFltSharpen
Syntax IpFltSharpen(Size, Strength, Passes)

Description This function applies the Sharpen filter to the active image or AOI. Equivalent to selecting the
Sharpen option within the Filter command window.

Parameters Size Integer An integer value of 3, 5 or 7 specifying the size of the
kernel to be applied during the filtering operation.

 Strength Integer An integer between 1 and 10 (inclusive) specifying the
amount of the filtered result to be applied to the image.
A value of 10 indicates that the full result (100%) is to
be applied. Lesser values apply the result at reduced
strengths.

 Passes Integer An integer between 1 and 100 (inclusive) specifying the
number of times the filter is to be applied to the image.

Example ret = IpFltSharpen(5, 8, 2)

This statement will filter the image data using the 5 x 5 kernel. The results will be applied at
reduced strength (8). The filter will be applied twice.

See Also IpFltHiPass

 IpFltShow

Page 2-349

IpFltShow
Syntax IpFltShow(bShow)

Description This function displays or hides the Filter dialog box. Equivalent to selecting the Filtering
command to open the window and clicking its Close button to close it.

Parameters bShow Integer An integer value of 0 or 1 specifying whether the
Filtering window is to be shown. Where:
 0 - Closes the window if it is already open.
 1 - Opens the window.

Example ret = IpFltShow(1)

ret = IpFltOpen(MORPHO_2x2SQUARE, 1)

ret = IpFltClose(MORPHO_7x7OCTAGON, 1)

ret = IpFltShow(0)

This set of statements will open the Filtering window, filter an image using the open and closing
filters, then close the Filtering window.

Comments The Filtering window does not have to be open during a filtering operation. Its disposition,
visible or hidden, is entirely your choice. You will want to display the window when your
users are required to make choices within it. However, if your objective is simply to filter an
image in a predefined way, you need not display the Filtering window.

IpFltSobel
Syntax IpFltSobel()

Description This function applies the Sobel filter to the active image or AOI. Equivalent to selecting the
Sobel option within the Filter command window.

Example ret = IpFltSobel

IpFltThin
Syntax IpFltThin(Threshold)

Description This function applies the Thinning filter to the active image or AOI. Equivalent to selecting
the Thinning option within the Filter command window.

Parameters Threshold Integer An integer between 1 and 100 (inclusive) specifying
the gray level at which the image should be binarized
before the filter is applied. This value represents a
percentage of the intensity range, e.g., a value of 50
specifies the intensity level at the 50% point in the
range.

Example ret = IpFltThin(25)

This statement will apply the Thinning filter to the image data, which is first binarized at the
25% gray level.

IpFltThinEx

Page 2-350

IpFltThinEx
Syntax IpFltThinEx(Threshold, Passes)

Desc
ription

This function applies the Thinning filter to the active image or AOI. Equivalent to selecting
the Thinning option within the Filter command window.

Parameters Threshold Integer An integer between 1 and 100 (inclusive) specifying the
gray level at which the image should be binarized before
the filter is applied. This value represents a percentage of
the intensity range, e.g., a value of 50 specifies the
intensity level at the 50% point in the range.

 Passes Integer An integer between 1 and 65535 (inclusive) that describes
the number of passes. Enter -1 to disable the number of
passes.

Example ret = IpFltThinEx(25,2)

This statement will apply the Thinning filter to the image data, which is first binarized at the
25% gray level. The filter will be applied twice.

IpFltUserErode
Syntax IpFltUserErode(KernelName,Passes)

Description This function applies a morphological erosion filter to the active image or AOI with a user-
defined kernel.

Parameters KernelName String A string specifying a file name for the kernel filter.

 Passes Integer An integer between 1 and 65535 (inclusive).

Example ret = IpFltUserErode ("mykernel.3x3", 2)

Comments This statement will apply the erosion function using the kernel file, "mykernel.3x3". The filter
will be applied twice.

IpFltUserDilate
Syntax IpFltUserDilate(KernelName, Passes)

Description This function applies a morphological dilation filter with a user-defined kernel to active image
or AOI with a user-defined kernel.

Parameters KernelName String A string specifying a file name for the kernel filter.

 Passes Integer An integer between 1 and 65535 (inclusive).

Example ret = IpFltUserDilate ("mykernel.3x3", 2)

Comments This statement will apply the dilation function using the kernel file, "mykernel.3x3". The filter
will be applied twice.

 IpFltVariance

Page 2-351

IpFltVariance
Syntax IpFltVariance(SizeX, SizeY)

Description This function applies the Variance filter to the active image or AOI. Equivalent to selecting the
Variance option within the Filter command window.

Parameters SizeX Integer An integer specifying the size of the kernel in the X
direction.

 SizeY Integer An integer specifying the size of the kernel in the Y
direction.

Example ret = IpFltVariance(5, 5)

This statement will filter the image data using a 5 x 5 kernel.

IpFltWatershed
Syntax IpFltWatershed(Threshold)

Description This function applies the Watershed filter to the active image or AOI. Equivalent to selecting
the Watershed option within the Filter command window.

Parameters Threshold Integer An integer between 1 and 100 (inclusive) specifying the
gray level at which the image should be binarized
before the filter is applied. This value represents a
percentage of the intensity range, e.g., a value of 50
specifies the intensity level at the 50% point in the
range.

Example ret = IpFltWatershed(30)

This statement will apply the Watershed filter to the image data, which is first binarized at the
30% gray level.

IpFltWatershedEx
Syntax IpFltWatershedEx(Threshold, Passes)

Description This function applies the Watershed filter to the active image or AOI. Equivalent to selecting
the Watershed option within the Filter command window.

Parameters Threshold Integer An integer between 1 and 100 (inclusive) specifying the
gray level at which the image should be binarized
before the filter is applied. This value represents a
percentage of the intensity range, e.g., a value of 50
specifies the intensity level at the 50% point in the
range.

 Passes Integer An integer between 1 and 65535 (inclusive) that
describes the number of passes. Enter -1 to disable the
number of passes.

Example ret = IpFltWatershedEx(30,1)

This statement will apply the Watershed filter to the image data, which is first binarized at the
30% gray level. The filter will be applied once.

IpFsGet

Page 2-352

 IpFsGet
Syntax IpFsGet (File,Attribute,Data)

Description Indicates the file signature attribute that should be returned.

Parameters File String Indicates the full path of the file name to analyze.

 Attribute Integer Indicates the file signature attribute that should be
returned.

 Data Any Provides the user variable to receive the attribute.

Comments The Attribute parameter determines the type of data returned to the user’s variable, and can be
one of the following:
FS_SIGNATURE The current file signature is returned as a 128-bit number.
FS_COMPARE The 128-bit number provided is compared to the current signature.
 If they are identical, the return code will be 1, otherwise the function
 returns 0.

Return Value 0 if successful, a negative error code if failed. This command does not record.

See Also IpFsGetStr

IpFsGetStr
Syntax IpFsGetStr (File, Attribute, Signature)

Description Indicates the file signature attribute that should be returned.

Parameters File String Indicates the full path of the file name to analyze.

 Attribute Integer Determines the type of data to be returned. Must be
one of the following:
FS_SIGNATURE_STR The current file
 signature is returned as a string
FS_COMPARE_STR The provided string is
 compared to the current
 signature.

Parameters Signature String*40 Provides the user variable to receive the attribute.

Return Value When using FS_COMPARE_STR, returns 1 for identical signatures, otherwise returns 0.
Will return an error code if failed. This command does not record.

See Also IpFsGet

 IpFtpOpen
Syntax IpFtpOpen (Server, FileName)

Description This function opens the named file.

Parameters FileName String Name of the file (including server dirrectory if any)

 IpFtpSave

Page 2-353

 Server String Name or IP address of the Internet file server.

See Also IpFTPSaveAsShow, IpFTPServerShow,IpFTPOpenShow, IpFTPSaveDocAs, IpFTPSaveFileAs

 IpFtpSave
Syntax IpFtpSave (Server, FileName)

Description This function saves the specified document.

Parameters FileName String Name of the file (including server dirrectory if any)

 Server String Name or IP address of the Internet file server.

See Also IpFTPOpenShow, IpFTPSaveAsShow,IpFTPServerShow,IpFTPOpenFile, IpFTPSaveFileAs

IpGalAdd
Syntax IpGalAdd(FileName)

Description This function adds the specified image file to the active database. Equivalent to the Add
command on the Database window's File menu.

Parameters FileName String A string specifying the image files that are to be added
to the database. The first element in the string must be
a directory name, followed by one or more file names,
separated by spaces. See example below.

Example ret = IpGalNew("C\IPWIN\DATABASE\012194.MDB")

ret = IpGalAdd("C:\IMAGES\SLIDE1.TIF")

This pair of statements will create a database called 012194.MDB and add the TIF file called
Slide1 to it.

Comments The database file into which the images will be added must be open, and selected, before
invoking this function. Therefore, your macro must either open (IpGalOpen), create
(IpGalNew) or select (IpGalSetActive) a database before calling this function.

To save Count/Size data together with the active image, use IpGalAdd with an empty string:
IpGalAdd(“”)
The format of a file is determined by its extension.

See Also IpGalNew, IpGalOpen, IpGalSetActive

IpGalChangeDescription
Syntax IpGalChangeDescription(DescriptionType, Description)

Description This function writes Subject, Artist, Date and Comment information to the selected database
image. Equivalent to editing the Database Information group box within the Database
window's Info command.

IpGalClose

Page 2-354

Parameters DescriptionType Integer An enumerated integer specifying the description
field that is being changed. Must be one of the
following:
INF_ARTIST (in single-image layout only)
INF_DESCRIPTION
INF_SUBJECT
INF_DATE
See definitions under Comments, below.

 Description String The string that is to be assigned to the specified
field.

 Example ret = IpGalChangeDescription(INF_ARTIST,"Lab 1")
ret = IpGalChangeDescription(INF_DESCRIPTION,"Type 1 Camera")
ret = IpGalChangeDescription(INF_SUBJECT,"Control Cells")
ret = IpGalChangeDescription(INF_DATE,"01/01/1997 13:01:07")
ret = IpWsSave()

These statements will write the specified data (e.g., “Lab 1”) to the specified description fields
(e.g., INF_ARTIST) and then save the changes to the image file via the IpWsSave function.

Comments The following table describes the values allowed in the DescriptionType parameter:

 DescriptionType DESCRIPTION

 INF_ARTIST Indicates that the string specified in Description is to be
written into the “Artist” field. Equivalent to the “Artist” field
in the Info dialog box.

 INF_DESCRIPTION Indicates that the string specified in Description is to be
written into the “Comments” field. Equivalent to the
“Comments” field in the Info dialog box.

 INF_SUBJECT Indicate that the string specified in Description is to be written
into the “Subject” field. Equivalent to the “Subject” field in
the Info dialog box.

 INF_DATE Indicates that the string specified in Description is to be
written into the “Date” field. Equivalent to the “Date” field in
the Info dialog box.

 Once the description fields have been defined with the IpGalChangeDescription
statements, these fields must be saved to the image with the IpWsSave function.

See Also IpWsSave

IpGalClose
Syntax IpGalClose(FileName)

Description This function closes an open database file. Equivalent to the Close Database command on the
Database window's File menu.

Parameters FileName String A string specifying the name of the database file that is
to be closed

Return Value This function returns a 0 if the database file was successfully closed. A -1 if an error occurred.

 IpGalDelete

Page 2-355

Example ret = IpGalClose("C:\IPWIN\RESULTS.MDB")

This statement will close the database file called RESULTS.MDB in the \IPWIN directory on
the C: drive.

IpGalDelete
Syntax IpGalDelete(DatabaseName)

Description This function deletes the specified database file. Equivalent to the Delete Database command
on the Database window's File menu.

Parameters DatabaseName String A string specifying the name of the database file that
is to be deleted.

Example ret = IpGalDelete("C:\IPWIN\RESULTS.MDB")

This statement will delete the RESULTS.MDB database file from the \IPWIN directory on the
C: drive.

IpGalImageOpen
Syntax IpGalImageOpen(imageId)

Description This function opens the specified image in the active database. Equivalent to double-clicking
the database image with the left mouse button.

Parameters imageId Integer An integer specifying the position number of the image
to be opened (where 0 represents the image in the first
position in the database window — the one in the
upper-left corner), or one of the following negative
values:

 -1 - Specifies all images.
-2 - Specifies the last image.
-3 - Specifies all tagged images.

Return Value This function returns a 0 if the image file was successfully opened. A -2 if an error occurred.

Example ret = IpGalImageOpen(-1)

The statement above will open all images in the active database.

ret = IpGalImageOpen(0)

The statement above will open the first image displayed in the database.

ret = IpGalImageOpen(-2)

The statement above will open the last image displayed in the database.

See Also IpGalTag

IpGalNew

Page 2-356

IpGalNew
Syntax IpGalNew(FileName)

Description This function creates a new database file. Equivalent to the New Database command on the
Database window's File menu.

Parameters FileName String A string specifying the file name to be given to the
new database file.

Example ret = IpGalNew("C:\IPWIN\RESULTS.MDB")

This statement will create a new database file called RESULTS.MDB in the \IPWIN directory
on the C: drive.

Comments Use the IpGalAdd function to add image files to the database once it has been created with
IpGalNew.

See Also IpGalAdd, IpGalOpen

IpGalOpen
Syntax IpGalOpen(FileName)

Description This function opens an existing database file. Equivalent to the Open Database command on
the Database window's File menu.

Parameters FileName String A string specifying the name of the database file that
is to be opened.

Return Value This function returns a 0 if the database file was successfully opened. A -1 if an error
occurred.

Example ret = IpGalShow(1)

ret = IpGalOpen("C:\IPWIN\RESULTS.MDB")

This pair of statements will open and display the database file called RESULTS.MDB from the
\IPWIN directory on the C: drive.

Comments If you want your users to see the contents of the Database you are opening, be sure to precede this
function with the IpGalShow(1) statement.

IpGalRemove
Syntax IpGalRemove(FromDisk)

Description This function deletes the tagged images from a database file. Equivalent to the Delete Records
command on the Database window's Database menu.

Parameters FromDisk Integer An integer value of 0 or 1 specifying whether or not to
remove the image file(s) from disk in addition to
removing the image(s) from the Database. Where:
 0 - Does not delete the image file(s).
 1 - Deletes the image file(s).

 IpGalSetActive

Page 2-357

Example ret = IpGalTag(-2, 1)

ret = IpGalRemove(1)

This pair of statements will remove the last image from the database. The file associated with
this image will also be deleted from disk.

See Also IpGalTag

IpGalSetActive
Syntax IpGalSetActive(GalId)

Description This function makes the specified database the “active” database. It selects the database upon
which all subsequent database functions will operate.

Parameters GalId Integer
An integer between 10000 and 10003
(inclusive) specifying which of the open
galleries is to be made active. This value selects
the database based upon its position on the View
menu, where:
 10000 - Specifies the first database listed in the

menu.
 10001 - Specifies the second database listed in

the menu.
 10002 - Specifies the third database listed in the

menu.
 10003 - Specifies the fourth (last) database listed

in the menu.

Example ret = IpGalSetActive(10001)

This statement will activate the second database listed in the View menu.

IpGalShow
Syntax IpGalShow(bShow)

Description This function is used to open or close the Database window.

Parameters bShow Integer
An integer value of 0 or 1 specifying whether
the Database window is to be shown. Where:
 0 - Closes the window if it is already open.
 1 - Opens the window.

IpGalSort

Page 2-358

Example ret = IpGalShow(1)

ret = IpGalOpen("C:\IPWIN\CELLS.MDB")

ret = IpGalAdd("C:\IMAGES\SLIDE1.TIF")

ret = IpGalShow(0)

This set of statements will open the Database window, open and add an image to the
CELLS.MDB database file, then close the Database window.

Comments The Database window does not have to be open during execution of the database functions.
Its disposition, visible or hidden, is entirely your choice. You will want to display the window
when your users are required to make choices within it. However, if your objective is simply
to manipulate the contents of the database files, you need not display the Database window.

IpGalSort
Syntax IpGalSort(bByName, bAscending)

Description This function sorts the images in the active Database by the specified order. Equivalent to the
Sort command in the database Window menu.

Parameters bByName Integer An integer value of 0 or 1 specifying the characteristic
by which the images are to be sorted. Where:
0 - Sorts by image name.
1 - Sorts by image size.

 bAscending Integer An integer value of 0 or 1 specifying the order in which
the images are to be sorted. Where:
0 - Sorts in ascending order.
1 - Sorts in descending order.

Example ret = IpGalSort(1, 1)

This statement will sort the images in the active database in descending size order.

IpGalTag
Syntax IpGalTag(SlotNumber, bTag)

Description This function tags/untags the specified database image to select/de-select it as a candidate for
subsequent processing by the IpGalRemove or IpGalImageOpen functions. Equivalent
to clicking the database image with the <shift> key and the left mouse button.

Parameters SlotNumber Integer An integer specifying the position number of the image
to be tagged/untagged (where 0 represents the image
in the first position in the database window — the one
in the upper-left corner), or one of the following
negative values:
-1 = Specifies all images.
-2 = Specifies the last image.

 IpGalUpdate

Page 2-359

 bTag Integer An integer value of 0 or 1 specifying whether the image
is to be tagged or untagged. Where:
0 = Untags.
1 = Tags.

Example ret = IpGalTag(-1,0)

The statement above will untag all images in the active database.

ret = IpGalTag(0,1)

The statement above will tag the first image displayed in the database.

 ret = IpGalTag(-2,1)

The statement above will tag the last image displayed in the database.

See Also IpGalRemove, IpGalImageOpen

IpGalUpdate
Syntax IpGalUpdate()

Description This function reloads the contents of the active database with the most up-to-date versions of
its image files. Equivalent to the Update Thumbnail command on the Database window's
File menu.

IpGetLine
Syntax IpGetLine(Message,LinePts, Numpoints, Maxpoints, Attrib)

Description Ask the user to click on a line or polygon. The line or polygon is returned in LinePts and
numpoints; maxpoints indicates the maximum number of points that can be clicked in. The
function returns the new object id. A different message can be displayed for each point by
separating messages with ASCII character 10.

Parameters Message String
(Basic)

LPSTR (C)

The message relating to a point or points.

 LinePts POINTAPI Defines the line.

 Numpoints Integer Defines the polygon.

 Maxpoints Integer Maximum number of points that can be clicked in.

 Attrib Integer Other attributes of the line or polygon

IpGetConvertColor

Page 2-360

Example Dim lineid as integer, numpts as integer
Dim linePts(2) as POINTAPI
Dim message as string
message = "Click 1st point" + chr$(10) + "click 2nd point"
lineid = IpGetLine(message, linePts(0), numpts, 2, 0)

See Also IpDraw, IpDrawText, IpDrawClear, IpDrawGet, IpDrawClearDoc, IpDrawSet, IpAnotLine,
IpAnotBox, IpAnotAttr

Comments For all drawing or overlay functions, an “object” or “drawing” is a line, text, marker/point, or
polygon that can be moved.

IpGetConvertColor
Syntax IpGetConvertColor (RGBval, outLABval, ColMod, Class, Norm)

Description This function gets the color coordinates of RGB values

Parameters RGBval Single An array of RGB values,must be declared as
Dim RGBval(3) as single

 outLABval Single An array of return values,must be declared as
Dim outLABval(3) as single

 ColMod Integer Color Model, must be one of the following:
COLM_LAB
COLM_XYZ
COLM_RGB
COLM_YIQ
COLM_CMY

 Class Integer Image class, mut be IMC_RGB or IMC_RGB48

 Norm Integer Normalization; if Norm = 1 the output value is
normalized to the class range. For example, if the
class is IMC_RGB, the range is 0 to 255.

IpGridApply
Syntax IpGridApply (bApply)

Description This function applies or removes a grid to/from the active image.

Parameters bApply Integer 1 – Apply selected grid to current image
0 – Remove selected grid from current image

Return Value Returns IPCERR_NODOC if no grid is active.
Returns IPCERR_NODOC if no image is present.

See Also IpGridShow, IpGridCreateMask, IpGridSelect

 IpGridCreateMask

Page 2-361

IpGridCreateMask
Syntax IpGridCreateMask

Description This function creates a new mask.

Return Value Returns IPCERR_NODOC if no grid is active.
Returns IPCERR_NODOC if no image is present.
Returns DOCID on success.

See Also IpGridApply, IpGridShow, IpGridSelect

IpGridSelect
Syntax IpGridSelect(lpszFileName)

Description Selects a file of grid settings.

Parameters lpszFileName String Indicates the name of the grid file.

See Also IpGridApply, IpGridShow, IpGridCreateMask

IpGridShow
Syntax IpGridShow (bShow)

Description This function displays or hides the grid mask dialog.

Parameters bShow Integer A value of 0 or 1 specifying whether the grid mask
dialog is to be displayed or suppressed. Where:
0 - hides the dialog
1 - shows the dialog

See Also IpGridApply, IpGridCreateMask, IpGridSelect

IpHstCreate
Syntax IpHstCreate()

Description This function opens the Histogram window for the active image. Equivalent to selecting the
Histogram command.

Return Value This function returns the Histogram ID if successful. -1 is returned if an error occurred.

Comments An image must be open before calling this function. The newly created histogram window
becomes the “active” (i.e., selected) histogram as soon as it is created.

See Also IpHstMove, IpHstDestroy, IpHstSelect

IpHstDestroy

Page 2-362

IpHstDestroy
Syntax IpHstDestroy()

Description This function closes the active histogram window and clears any data associated with it.
Equivalent to selecting the Close command in the Histogram window's File menu.

Comments Note that this function operates upon the “active” histogram window (i.e., the one most recently
opened or selected). If the currently active histogram is not the one you want to use, you must
use IpHstSelect to explicitly select (make active) the appropriate window before calling
IpHstDestroy.

See Also IpHstCreate, IpHstSelect

 IpHstEqualize

Page 2-363

IpHstEqualize
Syntax IpHstEqualize(Method)

Description This function will redistribute the active image's histogram using the specified method.
Equivalent to selecting an equalization method with the Equalize command.

Parameters Method Integer An enumerated integer specifying the equalization
method to use. Must be one of the following types:
EQ_BESTFIT
EQ_BELL
EQ_LINEAR
EQ_LOGARITHMIC

EQ_EXPONENTIAL
See definitions under Comments, below.

Example ret = IpHstEqualize(EQ_BELL)

This statement will equalize the histogram using the “Bell” method.

Comments The following table describes the values allowed in the Method parameter:

 Method DESCRIPTION

 EQ_BESTFIT Assigns bottom 3% as Shadow point, upper 3% as Highlight
point and distributes the remainder evenly across the scale.
(Equivalent to BestLut in the Image menu.)

 EQ_BELL Distributes the histogram evenly around the center of the
intensity scale.

 EQ_LINEAR Distributes the histogram equally across the intensity scale.

 EQ_LOGARITHMIC Shifts the histogram to the lower-end of the intensity scale.

 EQ_EXPONENTIAL Shifts the histogram to the upper-end of the intensity scale.

Page 2-364

IpHstGet
Syntax IpHstGet(Cmd, Param, OutVal)

Description Use this function to get information relating to the selected histogram. There is no Image-Pro
command equivalent to this function; it is one that must be manually written with the macro
editor.

Parameters Cmd Integer A command ID, which specifies the type of information
you want to retrieve. Must be one of the following:

GETINDEX
GETLNUMPTS
GETNUMPTS

 GETVALUES
GETSTATS
GETRANGE

See definitions under Comments, below.

 Param Integer An integer specifying data with which Cmd will operate.
See definitions under Comments, below, for the values
required by each command

 OutVal See below The address (name) of the variable that will receive the
requested data. Be sure this variable is of the type
required by Cmd. See Cmd description under
Comments, below.

Return Value All commands listed below return 0 if successful. A negative error, otherwise.

Example The following example calculates the mean value in the active histogram.

Dim numbins As Integer
Dim hstSum As Single, totalPix as single, Mean as single
Dim i As Integer

ret=IpHstGet(GETNUMPTS,0,numbins)
Redim hstdat(numbins) As Single
ret=IpHstGet(GETVALUES,numbins,hstdat(0))

hstSum=0#
totalPix=0#

For i=0 To numbins - 1
 hstSum=hstSum + hstdat(i) * i
 totalPix=totalPix + hstdat(i)
Next i

If totalPix > 0# Then
 Mean=hstSum/totalPix
End If
.
.
.

The following example gets the mean value directly
.
.
.

Redim stats(10) As Single
ret = IpHstGet(GETSTATS, 0, stats(0))

 IpHstGet

Page 2-365

Mean = stats(0)
StdDev = stats(1)
Sum = stats(2)

The following example illustrates the use of GETLNUMPTS:
Sub HstPts()
Dim NumPts As Integer
Dim LNumPts As Long
ret = IpHstGet(GETNUMPTS, 0, NumPts)
If (ret < 0) Then
 MsgBox("Have to use GETLNUMPTS")
 ret = IpHstGet(GETLNUMPTS, 0, LNumPts)
 MsgBox("Ret = " + Str$(ret) + ", LNumPts = " +
Str$(LNumPts))
Else
 MsgBox("Ret = " + Str$(ret) + ", NumPts = " + Str$(NumPts))
End If
End Sub

Comments Note that this function operates upon the “active” histogram window (i.e., the one most recently
opened or selected). If the currently active histogram is not the one you want to use, you must
use IpHstSelect to explicitly select (make active) the appropriate window before calling
IpHstGet.
Histograms of RGB images contain 3 times as much data as an equivalent Gray Scale
histogram. The data are organized Red channel first, then Green, then Blue.
When passing an array to Image-Pro from a BASIC program, be sure to pass the first element
of the array by reference (See IpHstGet(GETSTATS) statement in example, above).

 For future extension, statistics and range arrays should be large enough to store at least 10
elements.
GETNUMPTS will return an error when the image class is 16-bit grayscale or 48-bit true color
(RGB). Therefore, use GETLNUMPTS which will return the number of points to a long
variable.
Cmd options are as follows:

IpHstGet

Page 2-366

Cmd VALUE DESCRIPTION

GETINDEX Use this command to determine the active histogram's ID. The ID will be
written to OutVal. This value can be used later to select this histogram with
IpHstSelect().

 Param VALUE OutVal TYPE

 Not used by GETINDEX. Must be set to 0. BASIC, Integer
C, LPSHORT

GETNUMPTS Use this command to determine the number of bins into which the histogram
is divided. This number will be written to OutVal.

 Param VALUE OutVal TYPE

 Not used by GETNUMPTS. Must be set to 0. BASIC, Integer
C, LPSHORT

GETLNUMPTS Use this command to determine the number of bins into which the histogram
is divided. This number will be written to OutVal.

 Param VALUE OutVal TYPE

 Not used by GETLNUMPTS. Must be set to 0. BASIC, Integer
C, LONG

GETVALUES Use this command to get the selected histogram's values. These values will
be written to the one-dimensional array you have specified in OutVal. For a
True Color histogram the entire Red channel histogram is written into the
array first, then the Green channel, then the Blue channel.

 Param VALUE OutVal TYPE

 An integer specifying the length of your
OutVal array. If you are getting data from a
True Color image, your array must be large
enough to hold 3 times the number of points in
the histogram.
Note - you can use GETNUMPTS to determine
the number of elements needed in this array.

BASIC , Single
C, LPSINGLE

Note - OutVal must
specify an array.

 IpHstGet

Page 2-367

Cmd VALUE DESCRIPTION

GETSTATS Use this command to get the statistical data associated with the selected
histogram. For True Color images, information will be obtained for the color
channel you specify in Param (see below).
This command writes the statistics to a 10-element array in OutVal, as
follows:

OutVal (0) - Mean value
OutVal (1) - Standard Deviation
OutVal (2) - Sum
OutVal (3) - Minimum gray level (X-MIN)
OutVal (4) - Maximum gray level (X-MAX)
OutVal (5) - Not Currently Used

 OutVal (6) - Not Currently Used
OutVal (7) - Not Currently Used
OutVal (8) - Not Currently Used
OutVal (9) - Not Currently Used

 Param VALUE OutVal TYPE

GETSTATS An integer specifying the color channel for
which statistics are to be obtained. Where:

0 - Red Channel
1 - Green Channel
2 - Blue Channel

This parameter is ignored if the image is not
True Color. When this is the case, just set
Param to 0.

BASIC, Single
C, single
Note - OutVal must
specify a 10-
element array.

GETRANGE Use this command to get the range information associated with the selected
histogram. For True Color images, information will be obtained for the color
channel you specify in Param (see below).
This command will write the range information to a 10-element array in
OutVal, as follows:

OutVal (0) - Start range (X1)
OutVal (1) - End range (X2)
OutVal (2) - Sum of histogram inside range (Area)
OutVal (3) - Sum, above, as a percent of total histogram (%)
OutVal (4) - Histogram value at start of range (X1)
OutVal (5) - Histogram value at end of range (X2)
OutVal (6) - Bin number at start of range (0-based)
OutVal (7) - Bin number at end of range (0-based)
OutVal (8) - Not Currently Used
OutVal (9) - Not Currently Used

IpHstMaximize

Page 2-368

Cmd VALUE DESCRIPTION

 Param VALUE OutVal TYPE

GETRANGE An integer specifying the color channel for
which range information is to be obtained.
Where:

0 - Red Channel
1 - Green Channel
2 - Blue Channel

This parameter is ignored if the image is not
True Color. When this is the case, just set
Param to 0.

BASIC, Single.
C, single
Note - OutVal must
specify a 10-
element array.

See Also IpHstCreate, IpHstSelect

IpHstMaximize
Syntax IpHstMaximize()

Description This function enlarges the active histogram window to full screen. Equivalent to clicking the
maximize button on the Histogram window Control bar.

Comments Note that this function operates upon the “active” histogram window (i.e., the one most recently
opened or selected). If the currently active histogram is not the one you want to use, you must
use IpHstSelect to explicitly select (make active) the appropriate window before calling
IpHstMaximize.

See Also IpHstMinimize, IpHstRestore, IpHstSelect

IpHstMinimize
Syntax IpHstMinimize()

Description This function reduces the active histogram window to an icon. Equivalent to clicking the
minimize button on the Histogram window Control bar.

Comments Note that this function operates upon the “active” histogram window (i.e., the one most recently
opened or selected). If the currently active histogram is not the one you want to use, you must
use IpHstSelect to explicitly select (make active) the appropriate window before calling
IpHstMinimize.

See Also IpHstMaximize, IpHstRestore, IpHstSelect

 IpHstMove

Page 2-369

IpHstMove
Syntax IpHstMove(x, y)

Description This function moves the active (i.e., selected) histogram window to the specified location.
Equivalent to dragging the Histogram window with the mouse.

Parameters x Integer An integer specifying the x-coordinate of the screen
position to which you want the upper-left corner of the
Histogram window moved.

 y Integer An integer specifying the y-coordinate of the screen
position to which you want the upper-left corner of the
Histogram window moved.

Example ret = IpHstMove(10, 40)

This statement will move the active histogram window 11 pixels to the right, and 41 pixels
down from the upper-left corner of the screen.

Comments The origin (0, 0) for the coordinate system used by the x and y parameters is the upper-left
corner of the screen.
Note that this function operates upon the “active” histogram window (i.e., the one most
recently opened or selected). If the currently active histogram is not the one you want to use,
you must use IpHstSelect to explicitly select (make active) the appropriate window before
calling IpHstMove.

See Also IpHstRestore, IpHstMaximize, IpHstMinimize, IpHstSelect

IpHstRestore
Syntax IpHstRestore()

Description This function returns the active histogram window to its previous screen position and size.
Equivalent to clicking the Restore button on a maximized histogram window, or double-
clicking the icon of a minimized histogram window.

Comments Note that this function operates upon the “active” histogram window (i.e., the one most recently
opened or selected). If the currently active histogram is not the one you want to use, you must
use IpHstSelect to explicitly select (make active) the appropriate window before calling
IpHstRestore.

See Also IpHstMinimize, IpHstMaximize,

IpHstSave

Page 2-370

IpHstSave
Syntax IpHstSave(FileName, SaveMode)

Description This function saves, or appends, the active histogram data or statistics to the specified file.
Equivalent to the Save Histogram, Append Histogram, Save Statistics, and Append
Statistics commands on the File menu in the Histogram command window.

Parameters FileName String A string specifying the name of the file to which the
histogram data will be written.
This parameter is ignored when data is stored to the
Clipboard. When this is the case, set Filename to an
empty string (i.e., "").

 SaveMode Integer An enumerated integer, or an expression involving the
addition of two or more enumerated integers,
specifying the type of data to be stored and the place to
which it is to be stored. Must contain one or more of
the following:
S_DATA or S_STATS
S_APPEND or S_CLIPBOARD
 or S_PRINT_TABLE
 or S_PRINT_ GRAPH
S_HEADER

S_LEGEND
S_X_AXIS
S_DDE

 See Comments, below, for a definition of each name.
See Example below for usage.

Example ret = IpHstSave("C:\IPWIN\HISTO.HST", S_DATA)

This statement will save the current histogram data to a file called HISTO.HST in the \IPWIN
directory on the C: drive. If the file already exists, it will be overwritten.

ret = IpHstSave("C:\IPWIN\HISTO.HST", S_STATS+S_APPEND)

This statement will append the current histogram statistics to a file called HISTO.HST in the
\IPWIN directory on the C: drive.

 ret = IpHstSave("C:\IPWIN\HISTO.HST", S_DATA+S_HEADER+S_LEGEND)

This statement will save the current histogram data to a file called HISTO.HST in the \IPWIN
directory on the C: drive. The header and legend information will be stored with the data. If
the file HISTO.HST already exists, it will be overwritten.

ret = IpHstSave("", S_CLIPBOARD)

This statement will save the current histogram data to the Clipboard (the function defaults to
S_DATA). Note that the FileName parameter specifies a zero-length string.

ret = IpHstSave("C:\IPWIN\HISTO.HST",S_APPEND+S_DATA+S_X_AXIS)

This statement will append the current histogram data to a file called HISTO.HST in the
\IPWIN directory on the C: drive. The X-axis data will be stored with the statistics.

Page 2-371

Comments Note that this function operates upon the “active” histogram window (i.e., the one most
recently opened or selected). If the currently active histogram is not the one you want to use,
you must use IpHstSelect to explicitly select (make active) the appropriate window before
calling IpHstSave.
The following options can be used in the expression comprising the SaveMode parameter.

USAGE Save Mode DESCRIPTION

Use one or
none...

S_DATA Specifies that histogram data is to be stored.

 S_STATS Specifies that histogram statistics are to be stored.

 Note - if neither S_DATA nor S_STATS is included
in the expression, S_DATA is assumed.

Use one or
none...

S_APPEND Specifies that the data/statistics are to be appended
to the specified file.

 S_CLIPBOARD Specifies that the data/statistics are to be saved to
the Clipboard. When this option is used, the
FileName parameter is ignored.

 S_PRINT_TABLE Specifies that the data in the table will be sent to
the print.

 S_PRINT_GRAPH Indicates that the graph displayed in the dialog box
will be sent to the printer.

 S_DDE Indicates that the graph or data will be sent to an
external program, such as Excel

 Note - if neither S_APPEND nor S_CLIPBOARD
is included in the expression, histogram
data/statistics are saved to a new file (if the file
already exists, it will be overwritten).

Use any, all
or none...

S_HEADER Specifies that the header is to be stored along with
the data/statistics.

 S_LEGEND Specifies that the legend is to be stored along with
the data/statistics.

 S_X_AXIS Specifies that the X-axis information is to be stored
along with the data/statistics.

See Also IpHstSelect

IpHstScale

Page 2-372

IpHstScale
Syntax IpHstScale(bVert, bAuto, From, End)

Description This function scales the X and Y axes of the active histogram to the specified points.
Equivalent to the Scaling command in the Histogram window.

Parameters bVert Integer An integer value of 0 or 1 that determines whether the
X- or Y-axis is to be scaled by this function. Where:
 0 - Specifies the X-axis.
 1 - Specifies the Y-axis.

 bAuto Integer An integer value of 0 or 1 that determines whether the
selected axis should be automatically scaled to
encompass the minimum and maximum values in its
range. Where:
 0 - Disables automatic scaling (scales the axis to

the specified From and End values)
 1 - Enables automatic
scaling (scales the axis to minimum and maximum
values)

 From Single A number specifying the beginning of the axis. This
value is ignored if bAuto is set to 1. When this is the
case, set From to 0.

 End Single A number specifying the end of the axis. This value is
ignored if bAuto is set to 1. When this is the case, set
End to 0.

Example ret = IpHstScale(1, 0, 0.0, 1000.0)

This statement will scale the Y-axis of the histogram from 0 to 1000.

Comments Note that this function operates upon the “active” histogram window (i.e., the one most recently
opened or selected). If the currently active histogram is not the one you want to use, you must
use IpHstSelect to explicitly select (make active) the appropriate window before calling
IpHstScale.

See Also IpHstSelect

 IpHstSelect

Page 2-373

IpHstSelect
Syntax IpHstSelect(HstId)

Description This function activates the specified histogram window. It selects the histogram upon which
all subsequent histogram functions will operate. Equivalent to clicking the Histogram window
to activate it.

Parameters HstId Integer An integer specifying the ID of the histogram that is to
be selected. See comments, below, for more
information about this number.

Example ret = IpHstSelect(0)

This statement makes histogram window “0” the active histogram.

Comments A histogram “ID” (HstId) is assigned to a histogram window when it is created. The window
retains this ID for the duration of its existence. A histogram window is given the lowest unused
ID number available at the time it is created. If a histogram window is opened while no other
histograms are open, it is assigned an ID of “0”. If another histogram is created while “0” is
open, the new histogram will be assigned an ID of “1”. If “0” is closed, and another histogram is
opened (while “1” is still open), the new window will get an ID of “0”, since it is the lowest,
unused ID available.

IpHstSetAttr
Syntax IpHstSetAttr(AttrType, AttrValue)

Description This function selects, sets or deselects options relating to the Histogram window.

Parameters AttrType Integer An enumerated integer specifying the option to be set.
Must be one of the following:

ACCUMULATE
BIN
CHANNEL1
CHANNEL2
CHANNEL3
COLORMODEL
GRID
ICAL
LINETYPE
SCAL
STATISTICS

See definitions under Comments, below.

 AttrValue Integer An integer specifying how the AttrType option is to be
set. See definitions under Comments, below, for the
values allowed by each option.

Example ret = IpHstSetAttr(BIN, 100)

This statement will set the number of bins in the histogram to 100.

Comments AttrType options are as follows:

AttrType DESCRIPTION ALLOWED VALUES

IpHstSetAttr

Page 2-374

ACCUMULATE Determines whether the 0 - Normal Form
 histogram is displayed in 1 - Accumulated form
 normal or cumulative
 form. Equivalent to
 selecting Accumulate
 in the Histogram
 window Report menu.
BIN Specifies the number of An integer specifying
 bins into which the histo- the number of bins.
 gram is to be divided.
 Equivalent to setting the
 Bins value in the
 Histogram window's
 Report menu.
CHANNEL1 Enables or disables the 0 - Disables Channel.
 histogram of the Red, Hue 1 - Enables Channel.
 or Y channel, depending upon

the color model.

CHANNEL2 Enables or disables the 0 - Disables Channel.
 histogram of the Green, 1 - Enables Channel.
 Saturation or In-Phase

channel, depending upon the
color model selected.

CHANNEL3 Enables or disables the 0 - Disables Channel.
 histogram of the Blue, 1 - Enables Channel.
 Intensity, Value or

Quadrature channel,
depending upon the color
model selected.

COLORMODEL Selects the color model CM_RGB
 in which the histogram CM_HSI
 is to be displayed. CM_HSV
 Equivalent to selecting CM_YIQ
 color model in the
 Histogram window's
 Color menu.
GRID Determines whether the 0 - Selects Graph form.
 histogram is displayed in 1 - Se130lects Table

form.
 table or graph form.
 Equivalent to setting the
 Table option in the
 Histogram window's
 Report menu.

 IpHstSize

Page 2-375

AttrType DESCRIPTION ALLOWED VALUES
ICAL Specifies whether the 0 - Disables Calibration.
 intensity calibration is to be 1 - Enables Calibration.
 applied to the histogram.
 Equivalent to setting the
 Intensity Cal option in
 the Histogram window
 Report menu.
LINETYPE Determines whether the 0 - Selects Line form.
 histogram is to be shown 1 - Selects Bar form.
 in bar or line form.
 Equivalent to setting the
 Bar or Line option in
 the Histogram window
 Report menu.
SCAL Specifies whether the 0 - Disables Calibration.
 spatial calibration is to be 1 - Enables Calibration.
 applied to the histogram.
 Equivalent to setting the
 Spatial Cal option in
 the Histogram window
 Report menu.
STATISTICS Specifies whether statistics or

range information is to be
displayed in the histo-

0 - Suppresses display
 of statistics and
 range information.

 gram window. Equivalent 1 - Displays Statistics.
 to setting the Statistics 2 - Displays Range Info.
 or Range/Area option
 in the Histogram
 window's Report menu.

 Note that this function operates upon the “active” histogram window (i.e., the one most recently
opened or selected). If the currently active histogram is not the one you want to use, you must
use IpHstSelect to explicitly select (make active) the appropriate window before calling
IpHstSetAttr.

IpHstSize
Syntax IpHstSize(cx, cy)

Description This function changes the size of the active histogram window to the specified width and
height. Equivalent to resizing Histogram window with the mouse.

Parameters cx Integer An integer specifying the width, in pixels, at which the
Histogram window is to be displayed.

 cy Integer An integer specifying the height, in pixels, at which the
Histogram window is to be displayed.

IpHstUpdate

Page 2-376

Example ret = IpHstSize(400, 175)

This statement will resize the Histogram window to dimensions of 400 pixels wide by 175
pixels tall.

Comments Note that this function operates upon the “active” histogram window (i.e., the one most recently
opened or selected). If the currently active histogram is not the one you want to use, you must
use IpHstSelect to explicitly select (make active) the appropriate window before calling
IpHstSize.

See Also IpHstMove, IpHstMinimize, IpHstMaximize, IpHstRestore, IpHstSelect

IpHstUpdate
Syntax IpHstUpdate()

Description This function updates the data within the active histogram window. Equivalent to selecting the
Update command within the Histogram window.

Comments Note that this function operates upon the “active” histogram window (i.e., the one most recently
opened or selected). If the currently active histogram is not the one you want to use, you must
use IpHstSelect to explicitly select (make active) the appropriate window before calling
IpHstUpdate.

See Also IpHstSelect

IpICalCalibValues
Syntax IpICalCalibValues (Calibration, NumPixels, PixelList, ValueList)

Description This function can be used to retrieve calibrated pixel intensities.

Parameters Calibration Long The ID of the calibration of interest

 NumPixels Integer The number of pixels supplied in the PixelList. See
comments.

 PixelList Double Pixel intensities to calibrate.

 ValueList Double Calibrated pixel intensities

Comments The NumPixels parameter indicates the length of the PixelList and ValueList arrays. The pixel
intensities to be calibrated should be converted (e.g. using the CDbl() function) and copied into
the PixelList array. The calibrated values will be returned in the ValueList array.

IpICalCreate
Syntax IpICalCreate()

Description This function creates a new intensity calibration set. Equivalent to clicking New in the
Intensity Calibration dialog box.

See Also IpICalSelect, IpICalDestroy

 IpICalDestroy

Page 2-377

IpICalDestroy
Syntax IpICalDestroy()

Description This function deletes the current intensity calibration set. Equivalent to clicking Delete in the
Intensity Calibration dialog box.

See Also IpICalCreate, IpICalSelect

IpICalDestroyEx
Syntax IpICalDestroyEx(Calibration)

Description This function deletes the current intensity calibration set. Equivalent to clicking Delete in the
Intensity Calibration dialog box.

Parameters Calibration Long The ID of the calibration to delete, or one of the
following constants:
ICAL_CURRENT_CAL = Save the attributes of the
current calibration
ICAL_ALL = Save all active calibrations
ICAL_ALL_REF = Save all reference calibrations

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpICalGetLong. The calibration
ID is also returned by functions such as IpICalCreate and IpICalLoad which create new
calibrations.

See Also IpICalCreate, IpICalSelect

IpICalGetLong

Page 2-378

IpICalGetLong
Syntax IpICalGetLong(Calibration, Attribute, Value)

Description This function retrieves the attributes of the specified calibration.

Parameters Calibration Long This parameter is only used by
ICAL_GET_ALL and ICAL_GET_REF. For these
attributes, the command is the index of the calibration
of interest

 Attribute Integer The attribute of interest, which must be one of the
following:
ICAL_NUM_ALL = The number of active calibrations
ICAL_NUM_REF = The number of reference
calibrations
ICAL_GET_ALL = Return the calibration ID of an
active calibration
ICAL_GET_REF = Return the calibration ID of a
reference calibration
ICAL_NUM_SAMPLES = Get the number of sample
points in the in the specified calibration.
ICAL_CURRENT = Return the calibration ID of the
current calibration
ICAL_SYSTEM = Return the calibration ID of the
system calibration
SCAL_IS_REFERENCE = Indicates a reference
calibration.
SCAL_IS_SYSTEM = Indicates a system calibration.

 Value Long A long variable that will receive the requested
attribute’s value

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpICalGetLong. The calibration
ID is also returned by functions such as IpICalCreate and IpICalLoad which create new
calibrations.

Return Value 0 if successful, a negative value if failed

See Also IpICalSetLong

 IpICalGetSng

Page 2-379

IpICalGetSng
Syntax IpICalGetSng(Calibration, Attribute,Value)

Description This function retrieves the attributes of the specified calibration.

Parameters Calibration Long The ID of the calibration of interest. Calibration may
also be set to ICAL_CURRENT_CAL to get the current
calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
ICAL_OD_BLACK = Get the black level of an optical
density calibration
ICAL_OD_INCIDENT = Get the incident (white) level of
an optical density calibration.

 Value Single A Single (single point) variable that will receive the
requested attribute’s value

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpICalGetLong. The calibration
ID is also returned by functions such as IpICalCreate and IpICalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or
IPCERR_EMPTY if ICAL_CURRENT_CAL was specified and there is no calibration active.

See Also IpICalSetSng

IpICalGetStr

Page 2-380

IpICalGetStr
Syntax IpICalGetStr(Calibration, Attribute,Value)

Description This function retrieves the attributes of the specified calibration.

Parameters Calibration Long The ID of the calibration of interest. Calibration may
also be set to ICAL_CURRENT_CAL to get the current
calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
SCAL_NAME = The name of the calibration
SCAL_UNITS = The name of the calibration units

 Value String A fixed-length string variable that will receive the
requested attribute’s value

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpICalGetLong. The calibration
ID is also returned by functions such as IpICalCreate and IpICalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or IPCERR_EMPTY
if ICAL_CURRENT_CAL was specified and there is no calibration active

See Also IpICalSetStr

IpICalGetSystem
Syntax IpICalGetSystem (Class)

Description This function sets the attributes of the specified calibration.

Parameters Class Integer The image class that this calibration is designed for,
which must be one of the following:

IMC_GRAY 8
IMC_PALETTE
IMC_RGB24
IMC_RGB36
IMC_RGB48
IMC_GRAY12
IMC_GRAY16
IMC_SINGLE

Comments There are multiple system intensity calibrations with one for each image class.

Return Value Returns the calibration ID of the system calibration for the specified image class, or
IPCERR_NODOC if the specified image class’s system calibration has not been set

 IpICalLinearize

Page 2-381

IpICalLinearize
Syntax IpICalLinearize(bNewImage, bInvert, bScale)

Description This function uses the current intensity calibration, if any, to transform the pixel values of the
active image into calibrated values. This is particularly useful for combining images that have
non-linear calibrations (e.g., Optical Density calibration). Equivalent to the Linearize Image
and Linearize New commands.

Parameters bNewImage Integer A value of 0 or 1, specifying whether the linearization is
to be applied directly to the current image (“Linearize
Image”) or is to be written to a new, linear, single-point
image (“Linearize New”). Where:
0 - Performs the transformation based upon the
range allowed by the current document's class (result
written to current window). Equivalent to the “Linearize
Image” command,
1 - Performs the transformation based upon a
single-point scale (result written to a new, Single Point
window). The range of the single-point scale is
determined by bScale. Equivalent to the “Linearize
New” command.

 bInvert Integer A value of 0 or 1, specifying whether the pixel values
are to be inverted during transformation. Where:
0 - Does not invert the pixel values.
1 - Inverts the pixel values so that dark becomes
bright, and bright becomes dark.
This option can be used to keep an image with a non-
linear, decreasing calibration (e.g., Optical Density)
from being visually inverted when it is linearized.
Regardless of whether bInvert is used, a calibrated
analysis of the image will yield the same results.

 bScale Integer A value of 0 or 1, specifying whether the range of a
single-point transformation is determined by the
image's class. Where:
0 - The range is determined by the
minimum/maximum calibrated values in the image (i.e.,
the calibrated values become the pixel values).

1 - The range is determined by the original
image's class (0 - 255 for Gray Scale, 0 -
4095 for Gray Scale 12). A linear calibration
is attached to the image, which maps the
calibrated values into that range.

 The bScale parameter is ignored when bNewImage is
set to 1 (when this is the case, just set bScale to 0).
bScale is used only when an image is linearized to a
new, Single Point window.

IpICalLoad

Page 2-382

Example The following example linearizes two images with similar optical density calibrations, before
subtracting them (subtracting non-linearly calibrated images would not yield the correct result).
An image must be open before this example macro will run.
'select background image
ret = IpAppSelectDoc(0)

' linearize background image to new single point image.
ret = IpICalLinearize(1, 0, 0)

'select foreground image
ret = IpAppSelectDoc(1)
' linearize foreground image to new single point image.
ret = IpICalLinearize(1, 0, 0)

' perform subtraction of linearized images
ret = IpOpImageArithmetics(2, 0.0, OPA_SUB, 0)

Comments After the transformation, the image will always have a linear calibration. That is, one in which
equal differences in pixel values generate equal differences in calibration unit.

Ignoring round-off errors, the results of a calibrated histogram, line profile, or any other
calibrated intensity analysis operation, is not changed by a linearization transformation. Round-
off errors will result during in-place transformations of 8 or 12 bit images (when data precision is
paramount, always use a single-point transformation — i.e., bNewImage = 1, bScale = 0).

See Also IpICalCreate, IpOpBkgndCorrect

IpICalLoad
Syntax IpICalLoad (Filename, Ref)

Description This function loads an intensity calibration from a file.

Parameters Filename String A string specifying the name of the file from which the
calibration values will be read.

 Ref Integer A non-zero value indicates that the calibration should
be read into the list of reference calibrations. Otherwise
the calibration is only added to the list of active
calibrations.

Comments The calibration will be applied to the active image, if an image is open. The calibration will not
automatically replace the current system calibration.

Return Value The calibration ID of the new calibration if successful, a negative value if the calibration file
cannot be read

See Also IpICalCreate

 IpICalMove

Page 2-383

IpICalMove
Syntax IpICalMove(x, y)

Description This function moves the Intensity Calibration dialog box to the specified screen position.
Equivalent to dragging the dialog box to a new position with the mouse.

Parameters x Integer An integer specifying the x-coordinate of the screen
position to which you want the upper-left corner of the
Intensity Calibration window moved.

 y Integer An integer specifying the y-coordinate of the screen
position to which you want the upper-left corner of the
Intensity Calibration window moved.

Example ret = IpICalMove(6, 26)

This statement will move the Intensity Calibration window to screen position 6, 26 (near the
upper-left corner of the screen).

IpICalReset
Syntax IpICalReset()

Description This function resets the current calibration to default values. Equivalent to clicking Defaults in
the Intensity Calibration dialog box.

IpICalSave
Syntax IpICalSave(Calibration, FileName)

Description This function saves the specified calibration to a file.

Parameters Calibration Long The ID of the calibration of interest. May also be one of
the following constants:
ICAL_CURRENT_CAL = Save the attributes of the
current calibration
ICAL_ALL = Save all active calibrations
ICAL_ALL_REF = Save all reference calibrations

 FileName String A string specifying the name of the file where the
calibration will be saved.

Return Value A negative value if the calibration file cannot be written.

IpICalSelect

Page 2-384

IpICalSelect
Syntax IpICalSelect(szICal)

Description This function selects a calibration set to attach to an image. Equivalent to selecting a set in the
Name field in the Intensity Calibration dialog box.

Parameters szICal String A string specifying the name of the calibration set that
is to be made active.

Example ret = IpICalSelect("DNA Gel")

This statement will activate an intensity calibration called “DNA Gel”.

Comments The activated calibration set becomes the calibration for the active image (if there is one), and all
image windows opened thereafter.

See Also IpICalCreate, IpICalSetName, IpICalDestroy

IpICalSetLong
Syntax IpICalSetLong(Calibration, Attribute, Value)

Description This function sets the current or system calibration

Parameters Calibration Long The calibration ID of the calibration of interest, not used
for ICAL_ONIMAGE_COLOR. Calibration may also be
set to ICAL_CURRENT_CAL to get the current
calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
ICAL_APPLY = Applies the specified calibration to the
active image.
ICAL_CURRENT =Set the current calibration to the
specified calibration
ICAL_ADD_TO_REF = Add the specified calibration to
the list of reference calibrations.
ICAL_REMOVE_FROM_REF = Remove the specified
calibration from the list of reference calibrations.

 Value Long The new value for the specified attribute.

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpICalGetLong. The calibration
ID is also returned by functions such as IpICalCreate and IpICalLoad which create new
calibrations. There are multiple system intensity calibrations, with one ofr each image class (such
as 8-bit grayscale vs. 16-bit grayscale). The system calibratio can be set by the IpICalSetSystem
or IpICalSetSystemByName functions, and queried using the IpICalGetSystem function.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or IPCERR_EMPTY
if ICAL_CURRENT_CAL was specified and there is no calibration active

 IpICalSetName

Page 2-385

See Also IpICalGetLong, IpICalCreate

IpICalSetName
Syntax IpICalSetName(szICal)

Description This function changes the name of the current calibration set. Equivalent to retyping the name
in the Name field of the Intensity Calibration dialog box.

Parameters szICal String A string specifying the new name of the selected
calibration set.

Example ret = IpICalSetName("DNA Density")

This statement will change the name of the current calibration set to “DNA Density”.

IpICalSetOptDens
Syntax IpICalSetOptDens(BlackLevel, IncidentLevel)

Description This function establishes the Black level and Incident level to be applied to the optical density
curve. Equivalent to completing the Optical Density Calibration dialog box.

Parameters BlackLevel Single A number (of IPBasic type, Single) specifying the value
representing the pixel intensity of totally opaque
material.

 IncidentLevel Single A number (of IPBasic type, Single) specifying the value
representing the pixel intensity of totally transparent
material.

Example ret = IpICalSetOptDens(23.0, 179.5)
This statement will set the Black level to 23.0 and the Incident level to 179.5.

IpICalSetPoints
Syntax IpICalSetPoints(ipICalPoints, NumPoints, fitmode)

Description This function establishes the points defining a custom calibration curve. Equivalent to
completing the Freeform Intensity Calibration dialog box.

Parameters ipICalPoints Single (Basic)

LPSINGLE
(C)

The name and first element of an array containing the
calibration points (of IPBasic type, Single). By default,
this array is defined as ipICal.

 NumPoints Integer An integer specifying the number of point definitions
(coordinate pairs) contained in the array ipICal.

 fitmode Integer An integer between 1 and 6 (inclusive) specifying the
degree of fit to be applied to the custom curve.

IpICalSetSamples

Page 2-386

Comments typedef enum
{
ICALSETFIT_POLYNOMIAL = 1, // First order polynomial
(linear)
ICALSETFIT_POLYNOMIAL2 = 2, // Second order polynomial
ICALSETFIT_POLYNOMIAL3 = 3, // Third order polynomial
ICALSETFIT_LAGRANGE1 = 4, // First order Lagrange
(linear)
ICALSETFIT_LAGRANGE2 = 5, // Second order Lagrange
ICALSETFIT_LAGRANGE3 = 6, // Third order Lagrange
}ICALSETFIT_METHOD;

Example ipICal(0) = 0
ipICal(1) = 2.4
ipICal(2) = 100
ipICal(3) = 1.2
ipICal(4) = 170
ipICal(5) = 1.0
ipICal(6) = 255
ipICal(7) = 0.1
IpICalSetPoints(ipICal(0), 4)

This set of statements will create the custom calibration curve from the points defined in
ipICalPoints (i.e., the even-odd pairs of 0,2.4 100,1.2 170,1.0 and 255,0.1). A degree-of-fit
value of 4 will be applied when the curve is calculated.

 IpICalSetSamples
Syntax IpICalSetSamples(NumSamples)

Description This function sets the number of samples to be used to define the X-axis of the calibration
curve. Equivalent to selecting a Number of Samples value in the Intensity Calibration
dialog box.

Parameters NumSamples Integer An integer specifying the number of samples
comprising the X-axis.

Example ret = IpICalSetSamples(100)

This statement will set the number of samples to 100.

IpICalSetSng
Syntax IpICalSetSng(Calibration, Attribute,Value)

Description This function sets the attributes of the specified calibration.

Parameters Calibration Long The ID of the calibration of interest. Calibration may
also be set to ICAL_CURRENT_CAL to get the current
calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
ICAL_OD_BLACK = Set the black level of an optical
density calibration
ICAL_OD_INCIDENT = Set the incident (white) level of
an optical density calibration.

 IpICalSetStr

Page 2-387

 Value Single A Single (single point) variable that will receive the
requested attribute’s value

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpICalGetLong. The calibration
ID is also returned by functions such as IpICalCreate and IpICalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or
IPCERR_EMPTY if ICAL_CURRENT_CAL was specified and there is no calibration active.

See Also IpICalSetSng

IpICalSetStr
Syntax IpICalSetStr(Calibration, Attribute,Value)

Description This function sets the attributes of the specified calibration.

Parameters Calibration Long The ID of the calibration of interest. Calibration may
also be set to ICAL_CURRENT_CAL to get the current
calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
ICAL_NAME = The name of the calibration
ICAL_UNITS = The name of the calibration units

 Value String The string containing the new value for the specified
attribute.

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpICalGetLong. The calibration
ID is also returned by functions such as IpICalCreate and IpICalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or IPCERR_EMPTY
if ICAL_CURRENT_CAL was specified and there is no calibration active

See Also IpICalGetStr

IpICalSetSystem
Syntax IpICalSetSystem (Calibration, Class)

Description This function sets the attributes of the specified calibration.

Parameters Calibration Long The ID of the calibration of interest.

IpICalSetSystemByName

Page 2-388

 Class Integer The image class that this calibration is designed for,
which must be one of the following:

IMC_GRAY 8
IMC_PALETTE
IMC_RGB24
IMC_RGB36
IMC_RGB48
IMC_GRAY12
IMC_GRAY16
IMC_SINGLE

Comments There are multiple system intensity calibrations with one for each image class.
The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpICalGetLong. The calibration
ID is also returned by functions such as IpICalCreate and IpICalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or IPCERR_EMPTY
if ICAL_CURRENT_CAL was specified and there is no calibration active

IpICalSetSystemByName
Syntax IpICalSetSystemByName (Calibration, Class)

Description This function sets the attributes of the specified calibration.

Parameters Calibration String The name of the calibration of interest.

 Class Integer The image class that this calibration is designed for,
which must be one of the following:

IMC_GRAY 8
IMC_PALETTE
IMC_RGB24
IMC_RGB36
IMC_RGB48
IMC_GRAY12
IMC_GRAY16
IMC_SINGLE

Comments There are multiple system intensity calibrations with one for each image class.
The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpICalGetLong. The calibration
ID is also returned by functions such as IpICalCreate and IpICalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or IPCERR_EMPTY
if ICAL_CURRENT_CAL was specified and there is no calibration active

 IpICalSetUnitName

Page 2-389

IpICalSetUnitName
Syntax IpICalSetUnitName(UnitName)

Description This function changes the name of the current intensity unit. Equivalent to typing a name in
the Unit Name field within the Intensity Calibration dialog box.

Parameters UnitName String A string specifying the unit name.

Example ret = IpICalSetUnitName("Degrees")

This statement will set the intensity unit name to “Degrees”.

IpICalShow
Syntax IpICalShow(bShow)

Description This function displays the Intensity Calibration dialog box. It is also used to close the dialog
box if it is open.

Parameters bShow Integer An integer value of 0 or 1 specifying whether to open or
close the Intensity Calibration dialog box. Where:
 0 - Closes the Intensity Calibration
dialog box if it is open.
 1 - Opens the Intensity Calibration dialog box.

Example ret = IpICalShow(1)

This statement will display the Intensity Calibration dialog box.

Comments The dialog box does not have to be opened before assigning and selecting calibration values.

IpICalShowFormat
Syntax IpICalShowFormat(bOptDens)

Description This function specifies whether the calibration is in freeform or Optical Density format.
Equivalent to selecting either the Freeform or Standard Optical Density radio button in the
Intensity Calibration window.

Parameters bOptDens Integer An integer value of 0 or 1 specifying the format of the
calibration curve. Where:
 0 - Specifies “Freeform” calibration.
 1 - Specifies “Standard Optical Density” calibration.

Example ret = IpICalShowFormat(0)

This statement specifies that the calibration curve is to be defined by the points contained in
ipICal.

See Also IpICalSetPoints, IpICalSetOptDens

IpIniFile

Page 2-390

IpIniFile
Syntax IpIniFile(ValType, ValName, lpValue)

Description This function is used to read and write user-defined settings from/to the IPMACRO.INI file.
There is no Image-Pro command equivalent to this function; it is one that must be manually
written with the macro editor.

Parameters ValType Integer An enumerated integer that specifies whether the
setting is to be read or written to the IPMACRO.INI file,
and identifies the setting's data type. Must be one of
the following.

GETINT
GETSINGLE
SETINT
SETSINGLE

See definitions under Comments, below.

 ValName String A string specifying the name of the setting to be read or
written.

 lpValue See below The name of the variable that will receive the requested
data when ValType is set to read (get). Or, the name
of the variable that holds the setting when ValType is
set to write (set). Be sure this variable is one that is
compatible with the type of data written or returned by
the command you have specified in ValType. See
ValType description under Comments, below.

Return Value 0 if successful. Negative if the specified variable (to be read) cannot be found in the file.

Example The following example reads two settings from the IPMACRO.INI file, and writes them to
variables named var1, and var2.

Dim var1 as integer
Dim var2 as single
.
.
.
ret = IpIniFile(GETINT, "MyInteger", var1)
ret = IpIniFile(GETSINGLE, "MySingle", var2)

The following example writes values of the two variables, var1, and var2 as settings in the
IPMACRO.INI file.

Dim var1 as integer
Dim var2 as single
var1 = 123
var2 = 1.234
ret = IpIniFile(SETINT, "MyInteger", var1)
ret = IpIniFile(SETSINGLE, "MySingle", var2)
.
.
.

 IpIOvrApply

Page 2-391

Comments Variables are written in an ASCII file called IPMACRO.INI. Each variable generates an
assignment line consisting of the setting's name, an “=” symbol and the setting's value. The
example above would generate the following lines in the IPMACRO.INI file:
MyInteger=123
MySingle=1.234
ValType options are as follows:

ValType DESCRIPTION

GETINT This command reads an integer value from ValName in the
IPMACRO.INI file. The integer is written to the variable you have
specified in lpVal. Be sure this variable is of BASIC type, Integer (C,
LPSHORT).

GETSINGLE This command reads a single-point value from ValName in the
IPMACRO.INI file. This number is written to the variable you have
specified in lpVal. Be sure this variable is of BASIC type, Single (C,
LPSINGLE).

SETINT This command writes an integer value to ValName in the IPMACRO.INI
file. The integer value is obtained from the contents of the variable you
have specified in lpVal. Be sure this variable is of BASIC type, Integer
(C, LPSHORT).

SETSINGLE This command writes a single-point value to ValName in the
IPMACRO.INI file. The single-point number is obtained from the
contents of the variable you have specified in lpVal. Be sure this
variable is of BASIC type, Single (C, LPSINGLE).

See Also IpIniFileStr

IpIOvrApply
Syntax IpIOvrApply (Position, FillColor, bApplyData)

Description This function allows you to apply the image information overlay to a copy of the currently
active image. In applying the overlay, Image-Pro ‘burns’ it into either a header or footer it
creates in the new image, depending on your specification for the Position parameter. This
function corresponds to the options on the Apply to New Image dialog box.
To learn more about the image information overlay, see “IpIOvrSet”.

Parameters Position Integer An enumerated integer indicating where in the new
image you want the overlay ‘burned’. Must be one of
the following:
IOVR_LOC_HEADER

(Indicates you want it burned in a header)
IOVR_LOC_FOOTER

(Indicates you want it burned in a footer)

 FillColor Integer An RGB value indicating the fill color you want to use
for the header or footer. Must be one of the following:

IOVR_COL_WHITE
IOVR_COL_GRAY
IOVR_COL_BLACK

IpIOvrGet

Page 2-392

 bApplyData Integer Indicates whether or not to apply (‘burn’) the data
overlay with the image information overlay in the new
image. Must be either:

1 – True
0 – False.

This is the same as checking the Apply Data Overlay
checkbox in the Apply to New Image dialog box.

See Also IpIOvrSet, IpIOvrSetStr, IpIOvrShow, IpIOvrGet

IpIOvrGet
Syntax IpIOvrGet(sAttribute, sParam, lpData)

Description This function gets the currently-set attributes for the “image information overlay.” With this
function, you can get the overlay’s font attributes, view and print settings, and display settings.
For more information about the image information overlay, refer to “IpIOvrSet.”

Parameters sAttribute Integer An enumerated integer specifying the type of information
you want to retrieve.
See the list of options and their definitions under
Comments, below.

sParam Integer Depends on the value of sAttribute. See table below.

lpData See table
below

The name of the variable that will receive the requested
data. Be sure this variable is of the type required by
sAttribute, as described in the table below.

Comments The options for sAttribute are listed and described in the table below:

 sAttribute VALUE DESCRIPTION

 Use this command to get the status of the Current BCG option of the
Image Info Overlay dialog box. One of the following flags will be
written to the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_CURRENTBCG

 IpIOvrGet

Page 2-393

 Use this command to get the status of the Applied BCG option of the
Image Info Overlay dialog box. One of the following flags will be
written to the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_APPLIEDBCG

 Use this command to get the status of the Exposure option of the
Image Info Overlay dialog box. One of the following flags will be
written to the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_EXPOSURE

 Use this command to get the status of the Accumulated option of the
Image Info Overlay dialog box. One of the following flags will be
written to the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_ACCUMULATED

 Use this command to get the status of the Date option of the Image
Info Overlay dialog box. One of the following flags will be written to
the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_DATE

IpIOvrGet

Page 2-394

 Use this command to get the status of the Time option of the Image
Info Overlay dialog box. One of the following flags will be written to
the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_TIME

 Use this command to get the status of the File Name option of the
Image Info Overlay dialog box. One of the following flags will be
written to the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_FILENAME

 Use this command to get the image set information, if available.. One
of the following flags will be written to the variable you have specified in
lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_SETINFO

 Use this command to get the status of the Image Signature option of
the Image Info Overlay dialog box. One of the following flags will be
written to the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_IMAGESIGN

 IpIOvrGet

Page 2-395

 Use this command to get the X, Y, and Z positions of the current frame
. One of the following flags will be written to the variable you have
specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_POSITION_
XYZ

 Use this command to get the channel information from set and dyes .
One of the following flags will be written to the variable you have
specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_CHANNEL

 Use this command to get the status of the Show Overlay on Image

option of the Image Info Overlay dialog box. One of the following flags
will be written to the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_OVRLIMAGE

 Use this command to get the status of the Show Overlay on Print
option of the Image Info Overlay dialog box. One of the following flags
will be written to the variable you have specified in lpData:

0 = disabled (unchecked)
1 = enabled (checked)

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_OVRLPRINT

IpIOvrGet

Page 2-396

 Use this command to get the current setting controlling the placement
of the image information overlay in new images/experiments. Values
for IOVR_LOCATION are:

IOVR_LOC_UPPERLEFT
IOVR_LOC_LOWERLEFT
IOVR_LOC_UPPERRIGHT
IOVR_LOC_LOWERRIGHT

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_LOCATION

 Use this command to get current font face setting for the image
information overlay. The result will be written to the variable you have
specified in lpData.

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
String

IOVR_FONTFACE

 Use this command to get current font style setting for the image
information overlay. One of the following integers will be written to the
variable you have specified in lpData:

0 = IOVR_FONT_STYLE (normal)
1 = IOVR_FONT_BOLD
2 = IOVR_FONT_ITALIC

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_FONTSTYLE

 Use this command to get current font effects setting for the image
information overlay. One of the following integers will be written to the
variable you have specified in lpData:

0 = No effects
1 = IOVR_FONT_STRIKEOUT
2 = IOVER_FONT_UNDERLINE

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_FONT_
EFFECTS

 IpIOvrSet

Page 2-397

 Use this command to get current font size setting for the image
information overlay. An integer representing the size in points will be
written to the variable you have specified in lpData.

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Integer

IOVR_FONTSIZE

 Use this command to get current font color setting for the image

information overlay. An hexadecimal value representing the red,
green, and blue values will be written to the variable you have specified
in lpData. The returned value is in the format 0x00[bb][gg][rr], where
[bb] is one byte for the blue component, [gg] is one byte for the green
component, and [rr] is one byte for the red component.

 sParam VALUE lpData

 Not used, must be 0. Variable of type:
Long

IOVR_FONTCOLOR

See Also IpIOvrSet, IpIOvrShow, IpIOvrApply

IpIOvrSet
Syntax IpIOvrSet (sAttribute, sParam, lpData)

Description This function corresponds to the options available on the Image Info Overlay dialog box of
Image-Pro. It sets the values for the “image information overlay.”

The image information overlay is a system-supplied set of annotations that provide basic
information about image open in the Image-Pro work area. It can be enabled to overlay
images associated with active experiments. For example, the image information overlay can
be configured to display images’ current BGC (background, gamma, and contrast) values,
digital signatures, and date and time stamp information. Any of the attributes listed in the
“Display Options” table below can be enabled or disabled in the overlay.

This function also allows you to control the overlay setting options (see the “Setting Options”
table below). You can also use this function to control the position and font attributes (font
style, color, size, and so on) to be applied to the overlay. All available position and font
attributes that you can set are listed in the “Appearance Options” table below.

IpIOvrSet

Page 2-398

Parameters sAttribute Integer An enumerated integer specifying the attribute you
want to set. Must be one of the following:

IOVR_CURRENTBCG
IOVR_APPLIEDBCG
IOVR_EXPOSURE
IOVR_ACCUMULATED
IOVR_DATE
IOVR_TIME
IOVR_FILENAME
IOVR_IMAGESIGN
IOVR_SETINFO
IOVR_POSITION_XYZ
IOVR_CHANNEL
IOVR_OVRLIMAGE
IOVR_OVRLPRINT
IOVR_LOCATION
IOVR_FONTFACE
IOVR_FONTSIZE
IOVR_FONTCOLOR
IOVR_FONTSTYLE
IOVR_FONTEFFECTS

See the definitions for these options under IpIovrGet.

 sParam Integer Depends on the value of sAttribute. See tables under
Comments.

 lpData See table
below.

Depends on the value of sAttribute. See tables under
Comments.

Comments The options for sAttribute are listed and described in the tables below.

 IpIOvrSet

Page 2-399

Display Attributes

sAttribute VALUE sParam lpData DESCRIPTION
IOVR_CURRENTBCG 0 = disable

1 = enable
not used,
must be 0

Displays the image’s current BCG
(brightness, contrast, and gamma)
values in the image information
overlay.

IOVR_APPLIEDBCG 0 = disable
1 = enable

not used,
must be 0

Displays the image’s applied BCG
(brightness, contrast, and gamma)
values in the image information
overlay. The applied BCG values are
those that have been applied to the
image through Image-Pro reflecting
any changes to these values from
the original image.

IOVR_EXPOSURE 0 = disable
1 = enable

not used,
must be 0

Displays the image’s exposure value
in the image information overlay. For
images captured through Image-
Pro’s Acquire function, this value
represents the exposure time used to
capture the image. For all other
images, the Exposure value will be
“NONE.”

IOVR_ACCUMULATED 0 = disable
1 = enable

not used,
must be 0

Displays the image’s ‘accumulated
frames’ value in the image
information overlay. For images
captured through Image-Pro’s
Acquire function, this value
represents the number of video
frames that were added together to
create the image. This corresponds
to the value for Accumulate frames
that was entered through the
Integration tab of the Analog
Simulation dialog box when the
image was captured. For images
originating outside of Image-Pro, the
Accumulated value will be “NONE.”

IOVR_DATE 0 = disable
1 = enable

not used,
must be 0

Displays the image’s date stamp in
the image information overlay. For
images captured through Image-
Pro’s Acquire function, the date
stamp represents the date the image
was captured. For all other images,
the overlay date stamp corresponds
to the date stamp of the image file.

IpIOvrSet

Page 2-400

IOVR_TIME 0 = disable
1 = enable

not used,
must be 0

Displays the image’s time stamp in
the image information overlay. For
images captured through Image-
Pro’s Acquire function, the time
stamp represents the time the image
was captured. For all other images,
the overlay time stamp corresponds
to the time stamp of the image file.

IOVR_FILENAME 0 = disable
1 = enable

not used,
must be 0

Displays the image’s file name in the
image information overlay.

IOVR_IMAGESIGN 0 = disable
1 = enable

not used,
must be 0

Displays the image’s ‘signature’ in
the image information overlay. The
image signature is a digital signature
of the image based on its current
pixel values.

View and Print Settings

sAttribute VALUE sParam lpData DESCRIPTION
IOVR_OVRLIMAGE 0 = disable

1 = enable
not used,
must be 0

Sets whether or not the image
information overlay is to appear on
active images in the Image-Pro work
area.

IOVR_OVRLPRINT 0 = disable
1 = enable

not used,
must be 0

Sets whether or not the image
information overlay is to appear on
images when they are printed.

 IpIOvrSet

Page 2-401

Appearance Attributes

sAttribute VALUE sParam lpData DESCRIPTION
IOVR_LOCATION Must be one of the

following defined
constants:

IOVR_LOC_UPPERLEFT
IOVR_LOC_LOWERLEFT
IOVR_LOC_UPPERRIGHT
IOVR_LOC_LOWERRIGHT

not used, must be 0 Sets the default
placement setting
controlling where
the image
information
overlay will be
initially placed in
new images. This
is equivalent to
the Image
Overlay Initial
Position setting
on the “Veiw
Settings” tab of
the Preference
Views dialog.

Note: The
Preference
Views Dialog
must be CLOSED
for this macro to
function properly.

IOVR_FONT_FACE not used, must be 0 Must be a string
specifying the font
face name.

The data type is
String.

Sets the font face
(Times New
Roman, Courier,
Helvetica, etc.) to
be used in the
overlay.

IOVR_FONT_STYLE Must be one of the
following constants:

IOVR_FONT_NORMAL
IOVR_FONT_BOLD
IOVR_FONT_ITALIC

not used, must be 0 Sets the font style
you want to use
in the overlay.
You can ask
Image-Pro to set
the style as both
bold and italics.

IOVR_FONT_SIZE An integer specifying
the font size, in
points.

not used, must be 0 Sets the font size
to be used in the
overlay. For
example, a value
of “12” indicates
you want text to
appear as 12
points.

IpIOvrSetStr

Page 2-402

IOVR_FONT_EFFECTS Must be one of the
following constants:

IOVR_FONT_NOEFFECTS
IOVR_FONT_STRIKEOUT
IOVR_FONT_UNDERLINE

not used, must be 0 Sets any font
effects you want
to use in the
overlay.

IOVR_FONT_COLOR not used, must be 0 Must specify an
RGB color.
Specification must
be a hexadecimal
value of the format:

0x00[bb][gg][rr]

 where

[bb] = one byte
for the blue
component

[gg] = one byte
for the green
component

[rr] = one byte for
the red
component.

The data type is
Long.

Sets the color of
text you want to
use in the
overlay. For
example, a value
of “0x00FFFFFF”
indicates that you
want the text to
appear white.

See Also IpIOvrGet, IpIOvrShow, IpIOvrApply

IpIOvrSetStr
Syntax IpIOvrSetStr (sAttribute, sParam, FontName)

Description This function corresponds to font face option available on the Image Info Overlay dialog
box of Image-Pro. It sets the display font for the “image information overlay.”

The image information overlay is a system-supplied set of annotations that provide basic
information about image open in the Image-Pro work area. It can be enabled to overlay
images associated with active experiments. For example, the image information overlay can
be configured to display images’ current BGC (background, gamma, and contrast) values,
digital signatures, and date and time stamp information. Any of the attributes listed in the
“Display Options” table below can be enabled or disabled in the overlay.

This function also allows you to control the overlay setting options (see the “Setting Options”
table below). You can also use this function to control the position and font attributes (font
style, color, size, and so on) to be applied to the overlay. All available position and font
attributes that you can set are listed in the “Appearance Options” table below.

Parameters sAttribute Integer Must be one of the following:
IOVR_FONT_FACE = 0

 IpIOvrShow

Page 2-403

 FontName String fontName =Verdana

Comments For more information about the image information overlay, refer to “IpIOvrSet.”

See Also IpIOvrSet, IpIOvrGet, IpIOvrApply

IpIOvrShow
Syntax IpIOvrShow(bShow)

Description This function opens and closes the Image Info Overlay dialog box.

Parameters bShow Integer Must be one of the following:
0 = Close dialog
1 = Open dialog

Comments For more information about the image information overlay, refer to “IpIOvrSet.”

See Also IpIOvrSet, IpIOvrGet, IpIOvrApply

IpIniFileStr

Page 2-404

IpIniFileStr
Syntax IpIniFileStr(ValType, ValName, lpValue)

Description This function is used to read and write user-defined string settings from/to the IPMACRO.INI
file. There is no Image-Pro command equivalent to this function; it is one that must be
manually written with the macro editor.

Parameters ValType Integer An enumerated integer that specifies whether the string
setting is to be read or written to the IPMACRO.INI file,
and identifies the setting's data type. Must be one of
the following.

GETSTRING
SETSTRING

See definitions under Comments, below.

 ValName String A string specifying the name of the setting to be read or
written.

 lpValue See below The name of the string variable that will receive the
requested data when ValType is set to read (get). Or,
the name of the string variable that holds the setting
when ValType is set to write (set)..

Return Value 0 if successful. Negative if the specified variable (to be read) cannot be found in the file.

Example The following example reads a string setting from the IPMACRO.INI file, and writes it to a
variable named var1

Dim var1 as String * 255
.
.
.
ret = IpIniFileStr(GETSTRING, "MySetting", var1)

The following example writes the value of the variable, var1, as a setting in the
IPMACRO.INI file.

Dim var1 as String
ret = IpIniFileStr(SETSTRING, "MySetting", var1)
.
.
.

Comments Variables are written in an ASCII file called IPMACRO.INI. Each variable generates an
assignment line consisting of the setting's name, an “=” symbol and the setting's value. The
example above would generate the following lines in the IPMACRO.INI file:
MySetting = c:\IPWIN\Images\sports.tif
ValType options are as follows:

 IpIsGet

Page 2-405

ValType DESCRIPTION

GETSTRING This command reads a string value from ValName in the
IPMACRO.INI file. This string is written to a fixed-length string
variable you have specified in lpVal. Be sure this variable is a of
BASIC type, String (C, LPSTR).
Important - be sure the length of your fixed-length string is large
enough to accommodate the returned string.

SETSTRING

This command writes a string to ValName in the IPMACRO.INI file. The
string is obtained from the contents of the variable specified in lpVal.
Be sure this variable is of BASIC type, String (C, LPSTR).

See Also IpIniFile

 IpIsGet
Syntax IpIsGet (File, Attribute, Signature)

Description Indicates the image signature attribute that should be returned.

Parameters Attribute Integer Identifies the type of data to be returned. Must be one
of the following:
IS_SIGNATURE The current image signature is
 returned as a 128-bit number.
IS_COMPARE The 128-bit number provided is
 compared to the current
 signarture.

 Data Any Provides the user variable to receive the attribute.

Return
Value

When using IS_COMPARE, returns 1 for identical signatures, otherwise returns 0.Will return an
error code if failed. This command does not record.

See Also IpIsShow, IpIsGetStr

IpIsGetStr

Page 2-406

IpIsGetStr
Syntax IpIsGetStr(Attribute, Signature)

Description Indicates the digital signature attribute that should be returned.

Parameters Attribute Integer Determines the type of data to be returned. Must be
one of the following:
IS_SIGNATURE_STR The current image signature
is returned as a string
IS_COMPARE_STR The provided string is compared
to the current signature.

 Signature String * 40 Provides the user variable to receive the attribute.

Return Value When using IS_COMPARE_STR, returns 1 for identical signatures, otherwise returns 0.
Will return an error code if failed. This command does not record.

See Also IpIsShow, IpIsGet

IpIsShow

Syntax IpIsShow (Show)

Description Shows or hides the image signature dialog.

Parameters Show Integer An integer value specifying whether to display or hide
the image signature dialog.
 0 = Hide Image Signature dialog
 1 = Show Image Signature dialog.

Return Value Returns 0 if successful, a negative error code if failed.

See Also IpIsGet, IpIsGetStr

 IpLensAdd

Page 2-407

IpLensAdd
Syntax IpLensAdd (Lens, Magnification, NA, RI)

Description This function displays the Edit Lens dialog and lets the user add a new lens.

Parameters Lens String A string specifying the name of the new lens

 Magnification Single The magnification of the new lens, from 0.001 to
3000.0

 NA Single The numeric aperature of the new lens, from 1.0 to
2.0

 RI Single The reflective index of the new lens, from 1.0 to 3.0

Comments IpLensAdd will create a lens definition file in the current lens location (see the LENS_PATH
command for IpLensGetStr and IpLensSetStr). The new file will overwrite any existing
dye files with the same name. The name may include the .IPD extension, or if it does not the
extension will be added automatically. The dye’s hue is determined automatically by conversion
from the emission wavelength.

IpLensDelete
Syntax IpLensDelete (Lens)

Description This function removes the specified lens.

Parameters Lens String A string specifying the name of an existing lens

IpLensEdit
Syntax IpLensEdit (Lens, New Lens)

Description This function displays the Edit Lens dialog, and lets the user edit a dye.

Parameters Lens String A string specifying the name of an existing Image-
Pro Lens file

 New Lens String A fixed-length string to which the lens file name is
returned.

Return Value The name of the new lens file, or IPCEERR_EMPTY if you cancel editing the lens.

Comments The NewLens parameter should be a fixed-length string, typically fixed at 255 characters,
which will return the final name of the lens after editing (the user can change the lens name
while editing). IpLensEdit returns IPCERR_EMPTY if the user cancels editing the lens. Note:
IpLensEdit inherently requires user interaction prior to continuation of the macro script.

IpLensGetLong

Page 2-408

IpLensGetLong
Syntax IpLensGetLong(Command, Value)

Description This function returns information about the list of lenses.

Parameters Command Integer Command should be:
 LENS_NUMLENSES = return the number of
lenses

 Value Long A long variable which will receive the
specified lens parameter

See Also IpDyeGetSng, IpDyeGetStr

IpLensGetStr
Syntax IpLensGetStr (Command, Index, Value)

Description This function gets information about the lens management settings.

Parameters Command Integer Should be one of the following:
LENS_PATH = return the current lens location
LENS_LIST = return the name of the specificed
lens

 Index Integer Index of the specified lens for the LENS_LIST
command

 Value String A fixed-length string to receive the current lens file
location or the specified lens name.

See Also IpDyeGetLong, IpDyeGetSng

IpLensGetSng
Syntax IpLensGetSng (Lens, Command, Value)

Description This function gets information about a particular lens.

Parameters Lens String Name of a specific Image-Pro lens

 Command Integer Should be one of the following:
LENS_MAGNIFICATION = return the current lens
magnification
LENS_NA = return numeric aperature of the
specified lens
LENS_RI = return the reflective index of the
specified lens

 Value Single A single value to receive the specified lens
parameter.

See Also IpDyeGetLong, IpDyeGetStr

 IpLensSelect

Page 2-409

IpLensSelect
Syntax IpLensSelect(Lens)

Description This function displays the Edit Lens Dialog and let the user select a lens.

Parameters Lens String A fixed-length string to which the name of the
selected lens is returned..

Return Value IpLensSelect returns IPCERR_EMPTY if the user cancels selecting a lens. Note: IpLensSelect
inherently requires user interaction prior to continuation of the macro script. The name returned is
the name of the selected lens – it is not a full path name, nor does it include the .IPL extension.

IpLensSetStr
Syntax IpLensSetStr (Command,Value)

Description This function sets the lens management settings.

Parameters Command Integer Should be the following:
LENS_PATH = return the current lens location

 Value String A string containing the new lens file location.

IpListPts / IpMorePts
Syntax IpListPts(Points, ListString)

IpMorePts(ListString)
Description These functions are used to fill an array of points from a string that defines a list of pixel

coordinates. IpMorePts is used after IpListPts if more than a single image line is
needed. There are no Image-Pro commands equivalent to these function; they are ones that
must be manually written with the macro editor.

Parameters Points POINTAPI

The address (name) of the array of point
coordinates (BASIC type, POINTAPI) that will
be filled from the string specified in ListString.

 ListString String A string containing a list of the point
coordinates. See Comments, below, for more
about the structure of this list.

Return Value IpListPts returns the number of points found in ListString.

IpMorePts returns the total number of points found in all the strings since, and including, the
last IpListPts call.

Example In the following example IpListPts and IpMorePts are used to create an array defining the
outline of a freeform AOI. Contrast this method with the other way of setting POINTAPI
elements using individual assignment statements (also shown below).
' The new way:
Dim AoiPts(10) as POINTAPI
Dim numPts as integer
numPts=IpListPts(AoiPts(0),"101 147 150 121 193 145 193 198 ")
numPts=IpMorePts("153 221 153 222 153 221 124 216 ")
numPts=IpMorePts("105 205 90 180")
ret=IpAoiCreateIrregular(AoiPts(0), numPts)

IpListPts / IpMorePts

Page 2-410

' The old way:
Dim AoiPts(10) as POINTAPI
AoiPts(0).x = 101
AoiPts(0).y = 147
AoiPts(1).x = 150
AoiPts(1).y = 121
AoiPts(2).x = 193
AoiPts(2).y = 145
AoiPts(3).x = 193
AoiPts(3).y = 198
AoiPts(4).x = 153
AoiPts(4).y = 221
AoiPts(5).x = 153
AoiPts(5).y = 222
AoiPts(6).x = 153
AoiPts(6).y = 221
AoiPts(7).x = 124
AoiPts(7).y = 216
AoiPts(8).x = 105
AoiPts(8).y = 205
AoiPts(9).x = 90
AoiPts(9).y = 180
ret = IpAoiCreateIrregular(AoiPts(0), 10)

Comments ListString must specify a list of coordinates, separated by spaces, where the first number is the
horizontal position of the first point, the second number is the vertical position of the first point,
and so on. The example below illustrates how three points — 10,16 150,120 70,200 — would
be defined as a string:

"10 16 150 120 70 200"
Because a point is made up of two coordinates (X and Y), there must be an even number of items
in the string (i.e., the number of points read from ListString will be half the number of items in the
string).

IpMorePts cannot be called alone. It has to follow a call to IpListPts or IpMorePts.
When passing an array to Image-Pro from a BASIC program, be sure to pass the first element
of the array by reference (See IpListPts statement in example, above).

 IpLiveEDFSetInt

Page 2-411

IpLiveEDFSetInt
Syntax IpLiveEDFSetInt (sAttribute, sParam, l Param

Description This function sets the various live EDF parameters and executes the functions.

Parameters sAttribute Integer

The attribute to set and execute. See table
below.

 sParam Integer See table below.

 lParam Long See table below.

Comments Attrib options are as follows:

Attribute Description sParam lParam

LIVEEDF_
LOWER_
IMAGE

Sets base
image to EDF

frame
index
(when live
EDF is
active, 0
frame is
used by
default)

image handle (when life EDF
is active, the current frame is
used as the base image)

LIVEEDF_
STEREO_
MODE

Activates
stereo mode
(auto-
alignment)

Not used 1 = on
 0 = off

LIVEDF_
DO_EDF

frame
index

image handle

Perform EDF
of the current
image with
the base
image
(not adding it
to base, see
LIVEEDF_AD
D_TO_EDF)

LIVEEDF_
FILTER_SIZE

Sets the size
of the
variance filter

Not used Variance filter size (default is
6)

LIVEEDF_
SEARCH_SIZ
E_H

auto-
alignment
horizontal
pattern size

Not used Horizontal pattern size
(default is 256)

LIVEEDF_
SEARCH_SIZ
E_V

auto-
alignment
vertical
pattern size

Not used Vertical pattern size (default is
64)

IpLiveEDFSetInt

Page 2-412

Attribute Description sParam lParam

LIVEEDF_
ACTIVATE

activate live
EDF (image
is updated on
ImageChang
e event, fired
by workspace
preview)

Not used 1 = on
 0 = off

LIVEEDF_
MULTIFRAM
E

in live
mode,use
accumulated
EDF

Not used 1 = on
 0 = off

sets dual
view mode

Not used LIVEEDF_
DUAL_VIEW

must be one of the following:
DUALVIEW_NONE: normal
view of EDF
DUALVIEW_
HORIZONTAL: horizontal
views side by side
DUALVIEW_LIVE: normal
veiw of live image
DUALVIEW_PIP_EDF:
pcture in picture in the EDF
corner
DUALVIEW_PIP_LIVE:
picture in picture live in the
corner

LIVEEDF_COM
P_MODE

Composition
mode

Not used

Live composition mode, must
be one of the following:
LIVECOMP_LOCAL_CONTR
AST:EDF mode
LIVECOMP_MAX:
maximim signal
LIVECOMP_MIN: miniumum
signal
LIVECOMP_DIFF: difference
between current and base
image
LIVECOMP_ABS_DIFFEREN
CE: absolute difference

LIVEEDF_AD
D_TO_EDF

perform EDF
adding
current image
to base
image

frame
index
(when live
EDF is
active, 0
frame is
used by
default)

image handle (when EDF is
acrive the current live image
is used)

 IpLiveEDFSetInt

Page 2-413

Attribute Description sParam lParam

LIVEEDF_
FULL_FFT

use full FFT
for alignment
in stereo
mode, if 0,
phase only
alignment is
used

Not used 1 - full FFT
0 = phase only

LIVEEDF_
ALIGN_BY_
PREV

align image
usng the
previous
result (if 0,
the first
image will be
used as the
search
pattern

Not used 1 = previous image
0 = first image

LIVEEDF_
BLENDING_
RADIUS

size of the
blending area
along edges
of zones

Not used blending radius in pixels. if 0
(default) no blending is used

LIVEEDF_
CREATE_LIV
E_IMAGE

creates
outputimage

Not used

defines
image
type:
0 = lower
image
1=
variance
lower
image
3 = upper
image
4 =
variance
upper
image

LiveEDFGet

Page 2-414

LiveEDFGet
Syntax IpLiveEDFGet (sAttribute, sParam, l Param)

Description This function gets the live EDF parameters .

Parameters sAttribute Integer

LIVEEDF_FPS: get frames per second of live
EDF

 sParam Integer not used

 lParam Long single value receving the variable

IpLiveTileSetInt
Syntax IpLiveTileSetInt (sAttribute, sParam, l Param

Description This function sets the various live tiling parameters and executes the functions.

Parameters sAttribute Integer

The attribute to set and execute. See table
below.

 sParam Integer See table below.

 lParam Long See table below.

Comments Attrib options are as follows:

Attribute DESCRIPTION sParam lParam

LIVETILING_
ACTIVATE

activates live
tiling

Not used 1 = on
 0 = off

LIVETILING_
SEARCH_
IMAGE

sets search
image

frame
index
(when live
tiling is
active, 0
frame is
used by
default)

image handle (when live tiling
is active, the current image is
used as the search image)

LIVETILING_
ADD_TILE

frame
index
(when live
tiling is
active, 0
frame is
used by
default)

image handle (when live tiling
is active, the current image is
used)

adds a tile

 IpLocZoomMove

Page 2-415

Attribute DESCRIPTION sParam lParam

LIVETILING_
BACK_IMAG
E

sets
background
image

frame
index
(when live
tiling is
active, 0
frame is
used by
default)

image handle (when live tiling
is active, the current image is
used)

LIVETILE_
SEARCH_
IMAGE_ADD

set search
image and
add output

frame
index
(when live
tiling is
active, 0
frame is
used by
default)

image handle (when live tiling
is active, the current image is
used)

LIVETILE_OV
L_COLOR

sets the color
of the overlay
rectangle

Not used color in &HBBGGRR& format

LIVETILE_OV
L_COLOR_E
RROR

sets the color
of the error
overlay
rectangle

Not used color in &HBBGGRR& format

LIVETILE_
OVL_COLOR
_WIDTH

width of
rectangle line

Not used width in pixels

IpLocZoomMove
Syntax IpLocZoomMove (xPos, yPos)

Description This function moves the local zoom window to the specified location.

Parameters xPos Integer An integer specifying the x-coordinate of the pixel
to which the upper-left corner of the local zoom
window is to be moved.

yPos Integer An integer specifying the y-coordinate of the pixel

to which the upper-left corner of the local zoom
window is to be moved.

Example Ret = IpLocZoomMove(86, 758)

Return Value This function returns the object ID.

IpLocZoomSet

Page 2-416

IpLocZoomSet
Syntax IpLocZoomSet (sCommand, sValue)

Description This function sets the parameters of the local zoom window.

Parameters sCommand Short Should be one of the following:
LP_LZ_ZOOM - sets the zoom factor for the local
zoom window.
IP_LZ_CROSS – shows or hides the crosshairs of
the local zoom window.

 sValue Integer If IP_LZ_ZOOM, indicates the zoom factor from 1 to
100.
If P_LZ_CROSS, 1 = show crosshairs, 0= hide
crosshairs

Example Ret = IpLocZoomSet(IP_LZ_CROSS,1)
Ret = IpLocZoomSet(IP_LZ_ZOOM, 800)

IpLocZoomSetPos
Syntax IpLocZoomSetPos(xPos, yPos)

Description This function sets the center of the viewing area in the active image. It has the same effect as
moving the mouse to the specified position.

Parameters xPos Integer An integer specifying the x-coordinate of the pixel
in the center of the active image

yPos Integer An integer specifying the y-coordinate of the pixel

in the center of the active image

Example Ret = IpLocZoomSetPos(i,i)

IpLocZoomShow
Syntax IpLocZoomShow(bShow)

Description This function shows or hides the local zoom window.

Parameters bShow Short A value of 0 or 1, indicating whether to show or
hide the local zoom window
0 - hides the window
1 - shows the window

Example Ret = IpLocZoomShow(1)

IpLocZoomSize
Syntax IpLocZoomSize (xSize, ySize)

Description This function resizes the local zoom window.

 xSize Integer The size, in pixels of the x dimension of the local
zoom window.

 IpLFltApply

Page 2-417

 ySize Integer The size, in pixels of the y dimension of the local
zoom window.

Example Ret = IpLocZoomSize(941, 335)

IpLFltApply
Syntax IpLFltApply(Type, Width, Height, Passes, Strength)

Description This function applies one of the Large Spectral Filters

Parameters Type Integer Type indicates the kind of filter that should be applied.
Must be one of the following:

LF_LOPASS a low-pass filter
LF_HIPASS a high-pass filter
LF_EDGEPL a bright-edge filter
LF_EDGEMN a dark edge filter
LF_BANDPASS a band-pass filter

 Width Integer Width indicates the width of the filter to apply.

 Height Integer Height indicates the height of the filter to apply.

 Passes Integer Passes indicates the number of times the filter should
be applied.

 Strength Integer Strength indicates the filter strength, where 100 is full
strength and 0 is no effect.

Return Value 0 if successful, a negative error code if failed.

Example ‘The following statement will filter the image data using the

‘LoPass Large filter with size 5x81. The filter will be applied
‘3 times.

ret=IpLFltApply(LF_LOPASS,5,81,3,1)

‘Next sample will apply a Large BandPass filter to the image. ‘At
first the LoPass 5x5 filter will be applied 3 times and ‘then
27x27 HiPass filter with strength 7 will be applied 1 ‘time.

ret=IpLFltApply (LF_BANDPASS,27,5,3,7)

'The last sample shows the definition of the Large HiPass
'159x211 filter with strength 97 that will be applied 2 times.

ret=IpLFltApply (LF_HIPASS,159,211,2,97)

IpLFltShow

Page 2-418

Comments The following table describes the values allowed in the Ftype parameter:
These values are equivalent to the options presented within the Large Kernel window's
Filter Type group box.

 VALUE DESCRIPTION

LF_LOPASS applies LoPass filter
LF_HIPASS applies HiPass filter
LF_BANDPASS applies BandPass filter
LF_EDGEPL applies Edge + filter
LF_EDGEMN applies Edge – filter

See Also IpLFltShow

IpLFltShow
Syntax IpLFltShow(Show)

Description This function shows or hides the Large Spectral Filters dialog box.

Parameters Show Integer An integer value of 0 or 1 indicating whether to show or
hide the Large Spectral Filters dialog
0 - Hide the Large Spectral Filters dialog.
1 - Show the Large Spectral Filters dialog

Return Value 0 if successful, a negative error code if failed.

Example Ret = IpLFltShow(1)

See Also IpLFltApply

IpLutApply
Syntax IpLutApply()

Description This function makes permanent the current Brightness, Contrast and Gamma adjustments.
Equivalent to selecting Apply LUTs on the Image menu or clicking the Apply button on the
Ribbon.

Comments This function clears the Lookup Table (LUT). If you want to save the LUT, you must do so
before you perform this function.

See Also IpLutReset, IpLutSave

 IpLutBinarize

Page 2-419

IpLutBinarize
Syntax IpLutBinarize(MinRange, MaxRange, WhiteOnBlack)

Description This function reduces your image or AOI to two colors: black and white. Equivalent to
selecting the Threshold command.

Parameters MinRange Integer An integer from 0 - 255 specifying the lowest value in
the range to be highlighted.

 MaxRange Integer An integer from 0 - 255 specifying the highest value in
the range to be highlighted.

 WhiteOnBlack Integer An integer value of 0 or 1 specifying whether pixels
within the range are to be set to White or Black.
Where:

 0 - Sets the range to Black. Equivalent to the
“Black on White” option in the “Binarize” dialog box.
1 - Sets the range to White. Equivalent to the
“White on Black” option in the “Binarize” dialog box.

Example ret = IpLutBinarize(100, 255, 1)
This statement will set pixels with values between 100 and 255 (inclusive) to white; all other
pixels will be set to black.

Comments If your image is True Color or Palette, the luminance channel will be used for the conversion.

In 12-bit and single-point images, the normalized equivalents to the MaxRange and MinRange
values will be used.

This function maintains the pixel depth (BPP) of the original image.

IpLutData

Page 2-420

IpLutData
Syntax IpLutData (sAttrType,pData)

Description This function sets/gets the LUT (lookup table) of the active image.

Parameters sAttrType Integer An attribute, which may be one of the following:
LUT_GET_LENGTH = returns length of the current
LUT. pData is ignored.
LUT_GET_DATA = returns LUT of the active image.
pData is an array of Bytes that receives the values. The
size of the array can be retrieved using
LUT_GET_LENGTH.
LUT_GET_BRIGHTNESS = Returns the current
brightness setting using a range of 0 to 100. pData is
ignored.
LUT_GET_CONTRAST = Returns the current contrast
setting using a range of 0 to 100. pData is ignored.
LUT_GET_GAMMA = Returns the current gamma
setting using a range of 0 to 970, where a gamma of
1.0 is indicated by 100. pData is ignored.
These functions operate on the current channel as set
through IpLutSetAttr.

 LUT_SET_DATA = sets LUT to the active image.
pData is an array of Bytes with values

 pData Any

Return Value Returns the desired value of the function if successful, an error code if failed, i.e.
Brightness = IpLutData(LUT_GET_BRIGHTNESS, IpNull)

 IpLutData

Page 2-421

Example Sub LutTest()
Dim LutLength As Long,i%
LutLength = IpLutData(LUT_GET_LENGTH,IpNull)

ReDim LutData(LutLength) As Byte
ret = IpLutData(LUT_GET_DATA,LutData(0))
Debug.Print "LUT of the active image"
For i=0 To LutLength-1
 Debug.Print i & " : " & LutData(i)
Next i
IpOutputShow(1)

MsgBox "The current LUT is printed in the Output window. Now we
will invert image LUT."

Dim dInfo As IPDOCINFO
ret = IpDocGet(GETDOCINFO, DOCSEL_ACTIVE, dInfo)
ReDim NewLutData(3*256) As Byte
If ((dInfo.iClass=IMC_RGB) Or (dInfo.iClass=IMC_RGB36) Or
(dInfo.iClass=IMC_RGB48)) Then
 'color image
 For i=0 To 255
 NewLutData(i)=255-i 'red
 NewLutData(256+i)=Abs(240-i) 'green
 NewLutData(512+i)=Abs(220-i) 'blue
 Next i
Else
 'gray image
 For i=0 To 255
 NewLutData(i)=255-i
 Next i
End If
ret = IpLutData(LUT_SET_DATA,NewLutData(0))
End Sub

Comments The returned Lookup Table for all Gray Scale image classes is a single 256-entry lookup
table.The returned Response Lookup Table for true-color image classes is arranged in RGB
planar format:
256 lookup table values for red, immediately followed by...
256 lookup table values for green, immediately followed by...
256 lookup table values for blue.
There is no Response Lookup Table for IMC_BILEVEL class images.
This command resets the BCGM structure of a virtual image, sets the free-form advanced
control to the specified response and applies it to the Response Table.
For IMC_GRAY, IMC_GRAY12, IMC_GRAY16, and IMC_SINGLE class images, pParam
must point to 256 Gray values.
For IMC_RGB, IMC_PALETTE, IMC_RGB36, and IMC_RGB48, pParam must point to a [3]
[256] array, where:
0 contains the Red channel values.
1 contains the Green channel values.
2 contains the Blue channel values

IpLutLoad

Page 2-422

IpLutLoad
Syntax IpLutLoad(FileName)

Description This function loads intensity and color adjustments that have been saved. Equivalent to
selecting Load LUT from the LUT command on the File menu.

Parameters FileName String A string specifying the name of the file from which the
LUT values will be read.

Example ret = IpLutLoad("C:\IPWIN\HPLJ.LUT")

This statement will recall the lookup table settings from the file HPLJ.LUT in the \IPWIN
directory on the C: drive.

See Also IpLutSave

IpLutReset
Syntax IpLutReset(Channel, Type)

Description This function resets any BCG and/or advanced control modifications you have made but not
yet applied to your image. Equivalent to Reset LUTs on the Image menu (however, it offers
more functionality than this command).

Parameters Channel Integer An integer from 0 to 4 specifying the channel to be
reset. Where:
 0 - Luminance
 1 - Red
 2 - Green
 3 - Blue
 4 - All 4 Channels

 Type Integer An enumerated integer specifying the property to be
reset in the specified channel. Must be one of the
following:
LUT_HISHAD

LUT_BRIGHTNESS
LUT_CONTRAST
LUT_GAMMA
LUT_4TONES
LUT_8TONES
LUT_COMPOSIT

LUT_ALL
See definitions under Comments, below.

Example ret = IpLutReset(4, LUT_ALL)

This statement will reset the LUT for all properties of all channels.

ret = IpLutReset(0, LUT_8TONES)

This statement will reset the LUT for the luminance channel of the 1/8-tone curve.

IpLutSave

Page 2-423

Comments Selecting the Reset LUTs command always records an IpLutReset(4,LUT_ALL)
statement, however, once recorded, this statement can be modified to reset only a single
channel and/or property.
The following table describes the values allowed in the Type parameter.

Type DESCRIPTION

LUT_HISHAD Resets the Highlight and Shadow controls for the
specified channel.

LUT_BRIGHTNESS Resets the Brightness control for the specified channel.
LUT_CONTRAST Resets the Contrast control for the specified channel.
LUT_GAMMA Resets the Gamma control for the specified channel.
LUT_4TONES Resets the 1/4-tone curve for the specified channel.
LUT_8TONES Resets the 1/8-tone curve for the specified channel.
LUT_COMPOSITE Resets the Composite curve for the specified channel.
LUT_ALL Resets all controls for the specified channel.

See Also IpLutApply, IpLutSave

IpLutSave
Syntax IpLutSave(FileName, Description)

Description This function saves the Lookup Table (LUT) settings. Equivalent to selecting Save LUT from
the LUT command.

Parameters FileName String A string specifying the name of the file to which the
LUT values are to be written.

 Description String A string containing information describing the file.

Example ret = IpLutSave("C:\IPWIN\FILENAME.LUT", "For Scanned Images")

This statement will create a new Lookup Table file called FILENAME.LUT in the \IPWIN
directory on the C: drive.

See Also IpLutApply, IpLutLoad

IpLutSetAttr

Page 2-424

IpLutSetAttr
Syntax IpLutSetAttr(AttrType, AttrValue)

Description This function selects, deselects or sets a Lookup Table (LUT) attribute. Equivalent to adjusting
the LUT using the BCG controls or the Show Map command.

Parameters AttrType Integer An enumerated integer specifying the attribute type to
be set. Must be one of the following:

LUT_BRIGHTNESS
LUT_CONTRAST
LUT_GAMMA
CHANNEL
CURVE
GRID

See definitions under Comments, below.

 AttrValue Integer An integer value specifying the setting for the attribute.
See Comments, below, for the allowed settings for
each AttrType.

Example ret = IpLutSetAttr(CHANNEL, 2)
ret = IpLutSetAttr(LUT_BRIGHTNESS, 78)

The statements above select the Green channel and adjust its BRIGHTNESS to a value of 78.
ret = IpLutSetAttr(CURVE,4)
This statement selects the 1/4 Tone response curve on the “Color Map” window.

Comments The following table describes the values allowed in the AttrType parameter.

 IpLutSetControl

Page 2-425

AttrType DESCRIPTION ALLOWED VALUES

LUT_BRIGHTNESS Sets the Brightness value of
the selected channel to the
specified amount.

0 - 100

LUT_CONTRAST Sets the Contrast value of the
selected channel to the
specified amount.

0 - 100

 Invert the Lookup Table
Invert the image data

-1
-2

LUT_GAMMA Sets the Gamma value of the
selected channel to the
specified value.

10 – 970 (100 times the
desired gamma setting, where
a value of 10 corresponds to a
gamma of .10 and a value of
970 corresponds to a gamma
of 9.70.

CURVE Selects a curve of the type LUT_HISHAD
 specified by AttrValue. LUT_4TONES
 LUT_8TONES

 LUT_FREEFORM

CHANNEL Selects the active Channel. 0 - Luminance

 1 - Red or Cyan

 2 - Green or Magenta

 3 - Blue or Yellow

GRID Selects whether or not to 0 - Suppresses the grid

 display the Grid. 1 - Displays the grid

See Also IpLutSetControl

IpLutSetControl
Syntax IpLutSetControl(ControlType, ipLutControls, Count)

Description This function sets the values associated with the specified LUT curves. Equivalent to
modifying the intensity curve in the Color Map dialog box.

Parameters ControlType Integer An enumerated integer specifying the kind of control to
be activated. Must be one of the following:

LUT_HISHAD
LUT_4TONES
LUT_8TONES
LUT_COMPOSITE

See definitions under Comments, below.

 ipLutControls Integer
(Basic)

LPSHORT
(C)

The name and first element of an array containing the
integer values to which the controls are to be set. By
default this array is defined as Lut.

IpLutShow

Page 2-426

 Count Integer An integer specifying the number of elements to be
used in the Lut array.

Example Lut(0) = 0
Lut(1) = 100
Lut(2) = 169
Lut(3) = 231
Lut(4) = 255
ret = IpLutSetControl(LUT_4TONES, Lut(0), 5)

These statements set the 1/4-tone control points to 0, 100, 169, 231 and 255.

Comments The value of Count is dependent on the value of ControlType, as follows:

ControlType Count
LUT_HISHAD 2

LUT_4TONES 5

LUT_8TONES 9

LUT_COMPOSITE 256

See Also IpLutSetAttr

IpLutShow
Syntax IpLutShow(bShow)

Description This function is used to open or close the Color Map window. Equivalent to selecting the
Show Map command to open the window, and double-clicking its control box to close it.

Parameters bShow Integer An integer value of 0 or 1 specifying whether the “Color
Map” window is to be shown. Where:
 0 - Closes the window if it is already open.
 1 - Opens the window.

Example ret = IpLutShow(1)

This statement will open the Color Map window if it is not already open; if already open, it
has no effect.

Comments The Color Map window does not have to be open during execution of any LUT function. Its
disposition, visible or hidden, is entirely your choice. You will want to display the window if
your users will be required to make choices within it, but if your objective is simply to adjust
the LUT values, you may want to run without opening it.

 IpMacroLoad

Page 2-427

IpMacroLoad
Syntax IpMacroLoad(ScriptFile)

Description This function loads the specified script file and makes it the active script file. Equivalent to the
Change and Reload buttons in the Macro dialog box.

Parameters ScriptFile String A string specifying the name of the script file that is to
be loaded. If a zero-length string is specified (i.e., ""),
the current script file is assumed.

Example ret = IpMacroLoad("C:\IPWIN\SLIDEPRC.IPM")

This statement will load the SLIDEPRC.IPM script file from \IPWIN on the C: drive.

ret = IpMacroLoad("")

This statement will refresh the active script file with the current contents of its disk file.

Comments Once a script file is loaded, it becomes the current script file.

See Also IpMacroRun

IpMacroPause
Syntax IpMacroPause(Message, Mode,Delay)

Description This function pauses the macro, displays a message in a dialog box, and either waits for the
specified delay period or for the user to click one of the dialog’s buttons before continuing.
This function can be written into your macro using the macro editor, or it can be inserted while
a macro is being recorded using the Pause/Message command on the Insert sub-menu of the
Macro menu.

Parameters Message String A string specifying the message that is to be displayed
in the message box.

 Mode Integer An expression specifying the dialog box's mode (modal
or modeless) and button configuration. Where:
 0 - Issues a “modeless” message
box.
 MS_MODAL - Issues a “modal”
message box.
MS_WAITFORRESPPONSE
MS_RESPECTSETTING
MP_PAUSEANDCONTINUE

When an MS_MODAL dialog is used, the following flags
can also be set:

IpMacroPause

Page 2-428

 MS_YESNO
MS_OKCAN
MS_YESNOCAN
MS_STOP
MS_EXCLAM
MS_QUEST
MS_DEF2
MS_DEF3
See Comments, below, for definitions.

 Delay Long Specifies the number of milliseconds to show the
message before continuing, or -1 to wait for the user to
click one of the dialog buttons (see Comments).

Comments The Mode parameter determines the status of Image-Pro while the message box is active,
where:
 0 - specifies that Image-Pro is to remain active, and accessible to the user, while the

message box is displayed. This mode can be used to instruct the user to make or modify
certain selections during playback.

 MS_MODAL - specifies that Image-Pro is to remain inactive, and inaccessible to the
user, while the message box is displayed. This mode can be used to issue an error
message, or convey other “read-only” type information to your user. It can also be
combined with the following flags to equip the message box with special buttons and
symbols.

MP_WAITFORRESPONSE - When this mode is specified as part of the Mode parameter,
IpMacroPause will display the message until the user clicks one of the dialog buttons.

MP_WAITFORRESPONSE - When this mode is specified as part of the Mode parameter,
IpMacroPause will display the message until the user clicks one of the dialog buttons.

MP_RESPECTSETTING - When this mode is specified, IpMacroPause will respect the
current setting of the IpAppGet/Set command MACRO_PAUSE_TYPE, where a non-zero
value will wait for a user response and a zero value will pause and continue.
Note: For functions that must wait for a user response even in free-running demo mode, a
Delay of -1 can be specified, or the existing IpMacroStop function can be used.

MP_PAUSEANDCONTINUE - When this mode is specified, IpMacroPause will pause
for the specified Delay, or if Delay is -1, will wait for a user response

 IpMacroProgGet

Page 2-429

Comments

FLAG DESCRIPTION

MS_YESNO Displays a “Yes” and a “No” button in the message box. Returns a 0
when the user clicks “No”; 1 when the user clicks “Yes.”

MS_OKCAN. Displays an OK and a Cancel button in the message box. Returns a
1 when the user clicks OK; 2 when the user clicks “Cancel.”

MS_YESNOCAN Displays a “Yes,” a “No” and a Cancel button in the message box.
Returns a 0 when the user clicks “No”; 1 when the user clicks “Yes”;
2 when the user clicks “Cancel.”

MS_STOP Displays a red stop sign symbol in the message box. Cannot be used
concurrently with MS_EXCLAM or MS_QUEST (i.e., only one symbol
is allowed per message).

MS_EXCLAM Displays an exclamation symbol in the message box. Cannot be used
concurrently with MS_STOP or MS_QUEST (i.e., only one symbol is
allowed per message).

MS_QUEST Displays a question mark symbol in the message box. Cannot be
used concurrently with MS_EXCLAM or MS_STOP (i.e., only one
symbol is allowed per message).

MS_DEF2 Defaults to the second button from the left when the user presses The
Enter key. If not used, the first button is the default.

MS_DEF3 Defaults to the third button from the left when user presses the Enter
key. If not used, the first button is the default.

IpMacroProgGet
Syntax IpMacroProgGet (Attribute, Param, Data)

Description This function gets the attributes of the macro progress bar

Parameters Attribute Short See comments below.

 Param Short See comments below.

 Data Short See comments below.

Example See example in IpMacroProgSetStr

Comments Destination must be an integer variable

IpMacroProgGetStr

Page 2-430

sAttribute sParam sData

MPROG_BUTTONTYPE Button number 1-4 Button type:
MPROG_BUTTON_
CANCEL
MPROG_BUTTON_STOP
MPROG_BUTTON_DONE
MPROG_BUTTON_USER

MPROG_BUTTONTEXT Not used, set to 0 Button text
MPROG_FLAG Not used, set to 0 Gets the button state
 0 = no buttons pressed
MPROG_NUMBUTTONS Not used, set to 0 Button 1-4

IpMacroProgGetStr
Syntax IpMacroProgGetStr (Cmd, Param, Data)

Description This function gets the string attributes of the macro progress bar

Parameters Attribute Short See comments below.

 Param Short See comments below.

 Data Short See comments below.

Example See example in IpMacroProgSetStr

Comments Destination must be an integer variable

sAttribute sParam sData

MPROG_TITLE Not used, set to 0 Title of the progress dialog
MPROG_TEXT Not used, set to 0 Progress text
MPROG_BUTTONTEXT Button number 1-4 Button text for

MPROG_BUTTON_USER
butons

 IpMacroProgSetInt

Page 2-431

IpMacroProgSetInt
Syntax IpMacroProgSetInt (Attribute, Param, Data)

Description This function gets the attributes of the macro progress bar

Parameters Attribute Short See comments below.

 Param Short See comments below.

 Data Short See comments below.

Example See example in IpMacroProgSetStr

Comments Destination must be an integer variable

sAttribute sParam sData

MPROG_BUTTONTYPE Button number 1-4 Button type:
MPROG_BUTTON_
CANCEL
MPROG_BUTTON_STOP
MPROG_BUTTON_DONE
MPROG_BUTTON_USER

MPROG_BUTTONTEXT Not used, set to 0 Button text
MPROG_FLAG Not used, set to 0 Sets the button state
 0 = no buttons pressed
MPROG_NUMBUTTONS Not used, set to 0 Button 1-4

IpMacroProgSetStr
Syntax IpMacroProgSetStr (Cmd, Param, Data)

Description This function gets the string attributes of the macro progress bar

Parameters Attribute Short See comments below.

 Param Short See comments below.

 Data Short See comments below.

Comments Destination must be an integer variable

IpMacroProgSetStr

Page 2-432

sAttribute sParam sData

MPROG_TITLE Not used, set to 0 Title of the progress dialog
MPROG_TEXT Not used, set to 0 Progress text
MPROG_BUTTONTEXT Button number 1-4 Button text for

MPROG_BUTTON_USER
butons

Example Const NUMOPERATIONS = 10
Const OPERATION_SECONDS = 2.0
' Demonstrate the IpMacroProg functions
Sub MacroProgTest()
Dim i As Integer
Dim bEndFlag As Integer
Dim timeNow As Double, timeNext As Double

ret = IpMacroProgSetStr(MPROG_TITLE, 0, "Processing stuff")
ret = IpMacroProgSetStr(MPROG_TEXT, 0, "Operations...")

 ' There are options for up to 3 buttons, so that the user can
' do whatever is appropriate...
ret = IpMacroProgSetInt(MPROG_BUTTONTYPE, 0,
MPROG_BUTTON_CANCEL)
ret = IpMacroProgSetInt(MPROG_NUMBUTTONS, 0, 1)

ret = IpMacroProgShow(1)

 IpMacroProgShow

Page 2-433

For i=1 To 10
 ' Update the dialog display for progress...
 ret = IpMacroProgSetStr(MPROG_TEXT, 0, "Operation no." &
Str(i) _
 & " of" & Str(NUMOPERATIONS))

 timeNext = Timer() + OPERATION_SECONDS
 Do
 timeNow = Timer
 DoEvents
 Loop Until timeNow > timeNext

 ' This dialog allows you to check whether the user has
clicked a button
 ' at any appropriate time in the macro - so that you can
stop when you
 ' want to, rather than in the middle of things...
 ret = IpMacroProgGet(MPROG_FLAG, 0, bEndFlag)
 If bEndFlag <> 0 Then
 ret = IpMacroStop("Processing cancelled!", 0)
 GoTo cleanup
 End If
Next i

' Let the user know that we've finished
ret = IpMacroStop("All operations completed.", MS_MODAL)

cleanup:
ret = IpMacroProgShow(0)
End Sub

IpMacroProgShow
Syntax IpMacroProgShow(bShow)

Description This function displays or hides the macro progress bar.

Parameters bShow Integer An integer value of 0 or 1 specifying whether the macro
progress bar is to be shown or hidden. Where:
 0 - hides the bar
 1 - displays the bar.

Example ret = IpMacroProgShow(1)

This statement will display the macro progress bar.

IpMacroRun

Page 2-434

IpMacroRun
Syntax IpMacroRun(MacroName, ScriptFile)

Description This function loads and executes the specified macro from the specified script file. It can be
used to transfer control to another script file in an Auto-Pro macro. It can also be used to
execute an Image-Pro macro from a Visual BASIC or Visual C++ program.

Parameters MacroName String A string specifying the name of the macro to be run.

 ScriptFile String A string specifying the name of the script file containing
the macro. If a zero-length string is specified (i.e., ""),
the current script file is assumed.

Example ret = IpMacroRun("PREP1","C:\IPWIN\UTILTIIES.IPM")

This statement will execute the macro "PREP1" in the “UTILITIES.IPM” script file.

Comments When this function is used in an Auto-Pro macro, it differs from the IPBasic Call statement in
two important ways:

1. It can be used to execute a macro that does not reside in the current script file.
2. It does not return to the calling macro after execution of the specified macro. In this

respect, it behaves like a “GoTo” operation instead of a “Call” operation.
In a Visual Basic or Visual C++ program, this function must be used to invoke a macro that is
defined in Image-Pro (i.e., one whose statements have not been ported into the Visual Basic or
Visual C++ environment).

See Also Call, IpMacroLoad

IpMacroStop
Syntax IpMacroStop(Message, Mode)

Description This function stops the macro, displays a message in a dialog box and waits for the user to click
one of the dialog's buttons before continuing. This function can be written into your macro
using the macro editor, or it can be inserted while the macro is being recorded, using the
Stop/Message command.

Parameters Message String A string specifying the message that is to be displayed
in the message box.

 Mode Integer An expression specifying the dialog box's mode (modal
or modeless) and button configuration. Where:
 0 - Issues a “modeless” message
box.
 MS_MODAL - Issues a “modal”
message box.
When an MS_MODAL dialog is used, the following flags
can also be set:

 IpMacroStop

Page 2-435

 MS_YESNO
MS_OKCAN
MS_YESNOCAN
MS_STOP
MS_EXCLAM
MS_QUEST
MS_DEF2
MS_DEF3
See Comments, below, for definitions.

Example The following example will issue a message box containing the message “Error: Could Not Find
Image”. Image-Pro will be disabled until the Continue button is clicked.

ret = IpMacroStop("Error: No Objects Found", MS_MODAL)

The following example issues a modal message box configured with “Yes” and “No” buttons.
If the user clicks “Yes”, the filter statement will be executed, otherwise it will be skipped.
ret=IpMacroStop("Filter Image?",MS_MODAL+MS_YESNO+ MS_QUEST)
if ret=1 then
ret=IpFltSobel()
End If

The set of statements below will issue a “modeless” message box, allowing the user to move
their AOI before continuing to the next step. An image must be open before the example macro
will run.
ipRect, left = 53
ipRect, right = 102
ipRect, top = 111
ipRect, bottom = 162
ret=IpAoiCreateBox(ipRect)
ret=IpMacroStop("Move Box to Required Location",0)
ret=IpFltSobel

Comments The Mode parameter determines the status of Image-Pro while the message box is active,

where:
 0 - specifies that Image-Pro is to remain active, and accessible to the user, while the

message box is displayed. This mode can be used to instruct the user to make or modify
certain selections during playback.

 MS_MODAL - specifies that Image-Pro is to remain inactive, and inaccessible to the
user, while the message box is displayed. This mode can be used to issue an error
message, or convey other “read-only” type information to your user. It can also be
combined with the following flags to equip the message box with special buttons and
symbols.

Page 2-436

FLAG DESCRIPTION

MS_YESNO Displays a “Yes” and a “No” button in the message box. Returns a 0
when the user clicks “No”; 1 when the user clicks “Yes.”

MS_OKCAN. Displays an OK and a Cancel button in the message box. Returns a
1 when the user clicks OK; 2 when the user clicks “Cancel.”

MS_YESNOCAN Displays a “Yes,” a “No” and a Cancel button in the message box.
Returns a 0 when the user clicks “No”; 1 when the user clicks “Yes”;
2 when the user clicks “Cancel.”

MS_STOP Displays a red stop sign symbol in the message box. Cannot be used
concurrently with MS_EXCLAM or MS_QUEST (i.e., only one symbol
is allowed per message).

MS_EXCLAM Displays an exclamation symbol in the message box. Cannot be used
concurrently with MS_STOP or MS_QUEST (i.e., only one symbol is
allowed per message).

MS_QUEST Displays a question mark symbol in the message box. Cannot be
used concurrently with MS_EXCLAM or MS_STOP (i.e., only one
symbol is allowed per message).

MS_DEF2 Defaults to the second button from the left when the user presses The
Enter key. If not used, the first button is the default.

MS_DEF3 Defaults to the third button from the left when user presses the Enter
key. If not used, the first button is the default.

See Also IpTemplateMode

 IpMacroWait

Page 2-437

IpMacroWait
Syntax IpMacroWait(Delay)

Description This function pauses the macro for a specified duration. You might insert this command to
“slow down” a particular step so that its results can be easily observed on the screen. Or, you
might use it to allow sufficient time for an external event to occur (e.g., await a result from an
external application). This function can be written into your macro using the macro editor, or it
can be inserted while the macro is being recorded, using the Delay command.

Parameters Delay Integer An integer that specifies the length of the delay, in
tenths (i.e., 1/10) of a second.

Example The statement below stops the macro for 5 seconds.
ret = IpMacroWait(50)

Comments Image-Pro is disabled while the macro is stopped.

See Also IpMacroStop

IpMail
Syntax IpMail (IpTo, IpCC, IpSubuct, IpMessage, IpAttachment)

Description This function enables you to compose and send Internet mail.

Parameters IpTo String Name of the recipient. At least one “to” recipent must
be specified.

 IpCC String Name of the recipient getting “carbon copy.”

 IpSubject String Specifies the text for the subject line. A subject must be
specified.

 IpMessage String Specifies the text for the message, or a valid file name.
If a file name is used, the text from the file will be
inserted in the message line. Some amount of
message text must be specified.

 IpAttachment String Specifies an image, a valid file name, or a null string (“”
). If lpAttachment specifies “image”, there is an active
image open, and if the image has been saved to disk,
then the image is used as the message attachment. If
lpAttachment specifies a valid file name, then the
specified file is used as the message attachment. If
lpAttachment specifies a null string, then the message
will be sent with no attachment. Specification of
“image” when none is open or when the active image
has not been saved to disk, or specification of an
invalid file name in lpAttachment will result in an error.

Return Value 1= success, 0 = failed. Return value should IPCERR_XXX where 0 = IPCERR_NONE. Actually,
the macro will indeed return IPCERR values. Success will indeed be IPCERR_NONE, failure
will be one of the others

IpMeasAdd

Page 2-438

Comments In template mode, the supplied information will be filled in and the dialog displayed. When not in
template mode, the message will be sent as specified.

With internet mail, it may not be possible to return an error if invalid addresses are provided.

IpMeasAdd
Syntax IpMeasAdd(Tool, NumPoints, Points)

Description This function is used to add measurement features to an image programmatically.

Parameters Tool Integer Feature to be added, specified by the feature’s tool
type, from the following list:
MEAS_LENGTH Adds a line feature.
MEAS_AREA Adds a polygon feature.
MEAS_ANGLE Adds an angle measurement
between two existing features.
MEAS_TRACE Adds a trace (polyliine) feature.
MEAS_POINT Adds a point feature.
MEAS_RECT Adds a rectangle feature.
MEAS_CIRCLE Adds a circle feature.
MEAS_BFLINE Adds a best-fit line feature
MEAS_BFCIRCLE Adds a best-fit circle feature
MEAS_BFARC Adds a best-fit arc feature
MEAS_DIST Adds a distance measurement between
two existing features.
MEAS_NEWANGLE Adds an angle measurement
between two new lines.
MEAS_HTHICK Adds a horizontal thickness
measurement between two line features:
(MEAS_LINE, MEAS_BFLINE or MEAS_DIST).
MEAS_VTHICK Adds a vertical thickness
measurement between two line features:
(MEAS_LINE, MEAS_BFLINE or MEAS_DIST).
MEAS_CTHICK Adds a curved thickness
measurement between two existing features (all types
except points).

 NumPoints Integer Specifies the number of points supplied in the point
array. Many features have a fixed number of points
that are required. See Comments.

 Points POINTAPI An array of one or more points as required by the
feature. See comments.

Return Value Return value is the index of the feature created.

 IpMeasAdd

Page 2-439

Comments The various types of features require different numbers and/or types of point information:
MEAS_LENGTH 2 points (starting point and ending point of line)
MEAS_AREA 3 or more points
MEAS_ANGLE 2 points, where the X element of the first point specifies the ID of
the first line feature, and the X element of the second point specifies the second line
feature.
MEAS_TRACE 2 or more points.
MEAS_POINT 1 point.
MEAS_RECT 2 points (the top-left corner point and the bottom left corner point)
MEAS_CIRCLE 2 points (the top-left corner point of the square that bounds the
desired circle, and the bottom-left corner point of that square)
MEAS_BFLINE 2 or more points
MEAS_BFCIRCLE 3 or more points
MEAS_BFARC 3 or more points
MEAS_DIST 2 points, where the X element of the first point specifies the ID of
the first feature, and the X element of the second point specifies the second feature.
MEAS_NEWANGLE 3 or 4 points. The first two points are the starting and
ending point of the first line defining the angle. If 3 points are supplied, the ending point
of the first line is the vertex of the angle, and is used as the starting point of the second
line and the third point supplied is used as the ending point. If 4 points are supplied, the
third point is the starting point of the second line, and the fourth point the ending point.
MEAS_HTHICK 2 points, where the X element of the first point specifies the ID of
the first line feature, and the X element of the second point specifies the second line
feature.
MEAS_VTHICK 2 points, where the X element of the first point specifies the ID of
the first line feature, and the X element of the second point specifies the second line
feature.
MEAS_CTHICK 2 points, where the X element of the first point specifies the ID of
the first feature, and the X element of the second point specifies the second feature.

IpMeasAddMeasure

Page 2-440

IpMeasAddMeasure
Syntax IpMeasAddMeasure(sFeature, sMeasure, fTargetVal, fMinTot, fMaxTol)

Description Adds the specified measurements to the measurement grid.

Parameters sFeature Integer Specifies the feature index.

 sMeasure Integer Specifies the particular feature measurement .

 fTargetVal Single Specifies the target value for tolerance testing.

 fMinTot Single Specifies minimum tolerance.

 fMaxTot Single Specifies maximum tolerance.

Example ret = IpMeasAddMeasure(2, MDATA_PERPDIST, 46.1, .0010, .0010)

This statement will add a Perpendicular Distance measurement to the pass/fail Measurements
table, with a target value of 46 and with minimum and maximum tolerances of .001 .

Comments Tolerances are always specified using the target value plus or minus the tolerance formula.
Tolerances can be calculated given a minimum and maximum acceptable value.
The measurement requested must be valid for the indicated feature. In the example above,
feature number 2 must be a distance measurement.Both tolerances are expressed as positive
deviations from the target value. In the example above, values between 45.999 and 46.101 will
pass.

 IpMeasAttr

Page 2-441

IpMeasAttr
Syntax IpMeasAttr (AttrType, AttrValue)

Description This function selects, sets or deselects options relating to the Measurements window.

Parameters AttrType Integer An enumerated integer specifying the option to be set.
Must be one of the following:

MEAS_ANGLE180
MEAS_DISPBFPTS
MEAS_DISPCOLOR
MEAS_DISPCOUNTOPTS
MEAS_DISPLAYFEATURES
MEAS_DISPLAYTYPE
MEAS_LABELCOLOR
MEAS_MAXARCPTS
MEAS_MAXCIRCLEPTS
MEAS_MAXLINEPOTS
MEAS_MEASCOLOR
MEAS_PROMPTS
MEAS_PASSFAILTYPE
MEAS_SHOWLAYOUT
MEAS_SIGNIFICANTDIGITS
MEAS_STATS
MEAS_THICKMODE
MEAS_UPDATE

See definitions under Comments, below.

 AttrValue Integer An integer specifying how the option specified by
AttrType is to be set. See definitions under
Comments, below, for the values allowed by each
option.

Example ret = IpMeasShow(1)
ret = IpMeasAttr(THICKMODE, 1)

This pair of statements will open the Measurements window, then set the option to display the
maximum value of a thickness measurement.

Comments AttrType options are as follows:

IpMeasAttr

Page 2-442

AttrType DESCRIPTION ALLOWED VALUES
MEAS_ANGEL180 indicates if angles are limited

to 0 to 180 degrees, or may
be -180 to 180 degrees

1 = constrained to 0 to 180 degrees
0 = -180 to 180 degrees

MEAS_DISPBFPTS Turn display of best fit points 1 - Display best fit points
 on/off 0 - Hide best fit points
MEAS_DISPCOLOR Selects the color to be used 0 - Red
 to display the measure- 1 - Green
 ment outlines in the image. 2 - Blue
 Equivalent to selecting 3 - Yellow
 the outline color in the 4 - Cyan
 Measurement Options 5 - Magenta
 dialog box. 6 - White
 7 - Black
MEAS_DISPCOUNTOPTS Enable or disable count

options
1 - Display Count Objects dialog

 dialog after selecting object intensity
 0 - Do not display options dialog
MEAS_LABELCOLOR Specifies the color to be 0 - Red
 used to label the measure- 1 - Green
 ments. Equivalent to 2 - Blue
 selecting the label color 3 - Yellow
 in the Measurement 4 - Cyan
 Options dialog box. 5 - Magenta
 6 - White
 7 - Black
MEAS_MAXARCPTS Sets maximum points for

best-fit arc
3 to 20

MEAS_MAXCIRCLEPTS Sets maximum points for
best-fit circle

3 to 20

MEAS_MAXLINEPTS Sets maximum points for
best-fit line

2 to 1000

MEAS_MEASCOLOR Selects the color to be used 0 - Red
 to display the measure- 1 - Green
 ment outlines in the image. 2 - Blue
 3 - Yellow
 4 - Cyan
 5 - Magenta
 6 - White
 7 - Black
MEAS_PROMPTS turns feature prompts on/off 0 – prompts off

1 – prompts on
MEAS_PASSFAILTYPE Sets the pass/fail type MPF_NONE – no pass/fail check

MPF_TOLERANCES – pass/fail
based on tolerances
MPF_MINMAX – pass/fail based
on minimum and maximum values

MEAS_SHOWLAYOUT turn layout display on/off 0 – do not show layout
1 – show layout

MEAS_STATS Specifies whether the data- 0 - Hide Measurements
 sheet will display feature 1 - Display Measurements
 statistics. And Statistics
MEAS_DISPLAYFEATURES turns display of measurement 0 – Hide Features
 features on or off 1 – Display Features
MEAS_SIGNIFICANTDIGITS Modify the number of Allowed values are from 3 -20
 Signficant digits displayed on inclusive
 the image and in the dialog

 IpMeasAttrStr

Page 2-443

AttrType DESCRIPTION ALLOWED VALUES
MEAS_DISPLAYTYPE Specify what will be used as Allowed values, which can be
 labels on the image combined, are;
 MDISP_NONE
 MDISP_NAME
 MDISP_VALUE
 MDISP_UNITS
MEAS_THICKMODE Selects the measurement 0 - Minimum thickness
 result that is to be displayed 1 - Maximum thickness
 when a Thickness 2 - Both thicknesses
 measurement is performed.
 Equivalent to selecting the
 Display Thickness option
 in the Measurement
 Options dialog box.
MEAS_UPDATE Determines whether or not to

update the feature measurments
while moving or resizing the
feature.

0 – Do not update features
1 – Update features

See Also IpMeasShow

IpMeasAttrStr
Syntax IpMeasAttrStr(AttrType, Index AttrValue,)

Description This function defines a new name for the feature of interest.

Parameters AttrType Integer MEAS_SETNAME = indicates the new name of the
feature of interest

 Index Integer An integer indicating the feature of interest

 AttrValue String A string specifying the new name of the feature of
interest

IpMeasDelMeasure
Syntax IpMeasDelMeasure(sMeas)

Description Removes one or all measurements from the measurement grid.

Parameters sMeas Integer An integer value indicating the measurement index, or -
1 to delete all measurements.

Example ret = IpMeasDelMeasure(1)

Comments See IpMeasGet and IpMeasAttr for constants.

IpMeasDelete

Page 2-444

IpMeasDelete
Syntax IpMeasDelete(Index)

Description This function deletes the selected (tagged) measurements, or all measurements. Equivalent to
the Delete and Delete All buttons in the Measurements window.

Parameters Index Integer An enumerated integer specifying whether tagged
measurements or all measurements are to be
deleted. Where:
 MEAS_TAG - Deletes only selected
records (i.e., ones tagged with IpMeasTag).
 MEAS_ALL - Deletes all datasheet
records.

Example ret = IpMeasTag(0,1)
ret = IpMeasTag(2,1)
ret = IpMeasDelete(MEAS_TAG)

The set of statements above will select, then delete, the first and third measurements listed in
the Measurements datasheet.
ret = IpMeasDelete(MEAS_ALL)

The statement above will delete all measurements in the Measurements datasheet.

Comments The Measurements command window must be open before this function is called.

See Also IpMeasShow, IpMeasTag

IpMeasGet
Syntax IpMeasGet(Cmd, Param, OutVal)

Description Use this function to get information relating to the Measurements tool associated with the
current image. There is no Image-Pro command equivalent to this function; it is one that must
be manually written with the macro editor.

Parameters Cmd Integer A command ID, which specifies the type of information
you want to retrieve. Must be one of the following:

GETNUMOBJ
GETFEATVALUES
GETFEATURES
GETNUMMEAS
GETMEASVALUES
GETVALUES
GETTYPE

 GETLABEL
GETINDEX
GETNUMPTS
GETPOINTS
GETSTATS
GETIPPSETTINGS

See definitions under Comments, below

 IpMeasGet

Page 2-445

Parameters Param Integer An integer specifying data with which Cmd will operate.
See definitions under Comments, below, for the values
required by each command

 OutVal See below The variable that will receive the requested data. Be
sure this variable is of the type required by Cmd. See
Cmd description under Comments, below.

Example The following example transforms the area measurements into AOIs and XORs them.

Dim numpoints As Integer, numobj As Integer
Dim status As Integer, i As Integer

ret = IpMeasGet(GETNUMOBJ, 0, numobj)

For i = 0 To numobj - 1
 ret = IpMeasGet(GETTYPE, i, status)
 ret = IpMeasGet(GETNUMPTS, i, numpoints)
 If status = MEAS_AREA Then
 If numpoints > 0 Then
 Redim blbpts(numpoints) As pointapi
 ret = IpMeasGet(GETPOINTS, i, blbpts(0))
 ret = IpAoiCreateIrregular(blbpts(0), numpoints)
 ret = IpOpNumberLogic(0, OPL_NOT, 0)
 End If
End If
Next I

Dim fValues(15) as Single
dim fXPos as Single, fYPos as Single
‘following gets the measurement values for the FIRST feature
‘change the zero to a number form 0 to the number of features
‘–1 for other feature changes
ret = IpMeasGet(GETFEATVALUES, 0, fValues (0))
fXPos=fValues(-MDATA_POS)
fYPos=fValues(-MDATA_POSY)

IpMeasGet

Page 2-446

Comments Cmd options are as follows:

Cmd VALUE DESCRIPTION

GETNUMOBJ Returns the number of features

 Param VALUE OutVal TYPE

 Not used, set to zero. Integer

 OutVal should be an integer variable to receive the number of
features that have been measured on the active image.

Cmd VALUE DESCRIPTION

GETFEATVALUES Returns the measurement for the indicated features.

 Param VALUE OutVal TYPE

 The index of the feature of interest Single

 OutVal should be an array of Singles with 15 elements. The
negative of the MDATA constants can be used to index the array
to reference particular measurements, e.g. the array
(-MDATA_ANGLE)element contains the angular measurement for
the specified feature. See the preceding example.

Cmd VALUE DESCRIPTION

GETNUMMEAS Returns the number of measurements.

 Param VALUE OutVal TYPE

 Not used, set to zero. Integer

 OutVal should be an integer variable to receive the number of
pass/fail measurements on the active image.

Cmd VALUE DESCRIPTION

GETFEATURES Returns whether features are displayed on the image

 Param VALUE OutVal TYPE

 Not used, set to zero. Integer

 OutVal should be an integer variable to receive a flag indicating if
measurement features are displayed on the image.

 IpMeasGet

Page 2-447

Cmd VALUE DESCRIPTION

GETIPPSETTINGS Returns the current value of the measurement attribute. Add the constant for
the attribute of interest. Ex: GETIPPSETTINGS + MEAS_DISPCOLOR

 Param VALUE OutVal TYPE

 Not used, set to zero. Integer

 OutVal should be an integer variable to receive the current value of the
specified attribute.

The following are measurement constants for GETSETTINGS. Refer to IpMeasAttr for the values
returned by each attribute.

AttrType DESCRIPTION
MEAS_ANGEL180 Indicates if angles are limited to 0 to 180 degrees, or may be -180 to

180 degrees
MEAS_DISPBFPTS Turn display of best fit points on/off
MEAS_DISPCOLOR Returns the color to be used to display the measure-ment outlines in the

image..
MEAS_DISPCOUNTOPTS Enable or disable count options dialog.
MEAS_LABELCOLOR Returns the color to be used to label the measure ments. Equivalent to
 selecting the outline color in the Measurement Options dialog box.
MEAS_MAXARCPTS Returns maximum points for best-fit arc
MEAS_MAXCIRCLEPTS Returns maximum points for best-fit circle
MEAS_MAXLINEPTS Returns maximum points for best-fit line
MEAS_MEASCOLOR Returns the color to be used to display the measurement outlines in the

image.
MEAS_PROMPTS Turns feature prompts on/off
MEAS_PASSFAILTYPE Returns ets the pass/fail type
MEAS_SHOWLAYOUT Turn layout display on/off
MEAS_STATS Returns whether the data sheet will display feature statistics.
MEAS_DISPLAYFEATURES Turns display of measurement features on or off
MEAS_SIGNIFICANTDIGITS Modify the number of Signficant digits displayed on the image and in

the dialog
MEAS_DISPLAYTYPE Returns what will be used as labels on the image
MEAS_THICKMODE Returns the measurement result that will be displayed when a Thickness

measurement is performed. Equivalent to selecting the Display
Thickness option in the Measurement Options dialog box.

MEAS_UPDATE Returnswhether or not to update the feature measurments while moving
or resizing the feature.

IpMeasGet

Page 2-448

Cmd VALUE DESCRIPTION

GETMEASVALUES Returns the specified pass/fail measurements.

 Param VALUE OutVal TYPE

 The index of the pass/fail measurements of
interest.

Single

 OutVal should be an array of Singles with 5 elements:
 array (0) is the measured value
 array (1) is the target value
 array (2) is the minimum tolerance
 array (3) is the maximum tolerance
 array (4) is the pass/fail indicator:
 1 = pass, 0 = fail

Cmd VALUE DESCRIPTION

GETVALUES This command gets the three values associated with a specific
measurement in the datasheet.
Note: This command is obsolete and is only retained for backward
compatibility with macros written for previous versions of Image-Pro Plus.
Use the GETFEATVALUES command instead.

 Param VALUE OutVal TYPE

 Not used, set to zero Single

 OutVal should be an array of Singles, with 3 elements. Their
interpretation depends on the feature type.
If the specified feature is a thickness measurement:
 array (0) is the average distance (thickness)
 array (1) is the minimum distance
 array (2) is the maximum distance
If the specified feature is a distance measurement:
 array (0) is the center-to-center distance
 array (1) is the minimum distance
 array (2) is the maximum distance
If the specified feature is any other feature type:
 array (0) is the feature length
 array (1) is the feature area
 array (2) is the feature angle

 IpMeasGet

Page 2-449

Cmd VALUE DESCRIPTION

GETTYPE This command is used to determine the type of a specific feature.

 Param VALUE OutVal TYPE

 The index of the feature of interest. Integer

 OutVal should be an integer variable to receive the type of the
specified feature. The feature types that will be returned are defined
in IpMeasTool.

Cmd VALUE DESCRIPTION

GETLABEL This command is used to get the numeric portion of a feature’s label (the
label is the number displayed with the feature in the image and the
datasheet; e.g., A1, L2, G3).

 Param VALUE OutVal TYPE

 The index of the feature of interest. Integer

 OutVal should be an integer variable to receive the label number.
Note: This command is obsolete and is only retained for backward
compatibility with macros written for previous versions of Image-
Pro Plus. New macros should use feature index numbers instead.

Cmd VALUE DESCRIPTION

GETINDEX This command is used to get a feature’s index from it label number.

 Param VALUE OutVal TYPE

 The label number of the feature of interest.
Note that feature labels begin with 1 not zero.

Integer

 OutVal should be an integer variable to receive the index number.
Note: This command is obsolete and is only retained for backward
compatibility with macros written for previous versions of Image-
Pro Plus. New macros should use feature index numbers instead.

Cmd VALUE DESCRIPTION

GETNUMPTS This command gets the number of points defining the outline of the
specified feature.

 Param VALUE OutVal TYPE

 The index of the feature of interest. Integer

 OutVal should be an integer variable to receive the number of
points used to define a feature. This number can be used to
dimension an array for use with the GETPOINTS command.

IpMeasGet

Page 2-450

Cmd VALUE DESCRIPTION

GETPOINTS This command gets the coordinates defining the outline of the specified
feature.

 Param VALUE OutVal TYPE

 The index of the feature of interest POINTAPI

 OutVal should be an array of POINTAPI structures with enough
elements to contain all of the points used to define the specified
feature.

Cmd VALUE DESCRIPTION
GETBOUNDS This command gets the bounding rectangle of the specified feature.

 Param VALUE OutVal TYPE

 The index of the feature of interest RECT

 OutVal should be an RECT variable to receive the bounding box of
the specified feature.

Cmd VALUE

GETSTATS Use this command to get the statistical data associated with a specified
measurement type (e.g. length, area, thickness).

 Param VALUE OutVal TYPE

 The constant for the measurement of interest
(see the following labels).

Single

 OutVal should be an array of Singles with 9 elements.
 array(0) Minimum value
 array(1) ID of the feature with the minium value
 array(2) Maximum value
 array(3) ID of the feature with the maximum value
 array(4) Range of values
 array(5) Mean value
 array(6) Standard deviation
 array(7) Sum of values
 array(8) Number of measurements

 IpMeasGet

Page 2-451

The following are constants for the measurement data types.
Constant Description

MDATA_POS X position of feature center
MDATA_POSY Y position of feature center
MDATA_AREA area
MDATA_LEN length (perimeter for polygon features)
MDATA_RADIUS radius of circle or arc
MDATA_START X position of feature start point
MDATA_STARTY Y position of feature start point
MDATA_END X position of feature end point
MDATA_ENDY Y position of feature end point
MDATA_ANGLE angle
MDATA_AVGDIST average distance
MDATA_COUNT number of objects
MDATA_MINDIST minimum distance
MDATA_MAXDIST maximum distance
MDATA_CTRDIST center to center distance
MDATA_PERPDIST perpendicular distance of center to line
Note that the negative of these constants (0 to 14) can be used to index the array of feature
measurements returned by IpMeasGet (GETFEATVALUES)

When passing an array to Image-Pro from a BASIC program, be sure to pass the first element of the
array by reference (See IpMeasGet statement in example, above)

ASee Also IpMeasShow, IpMeasTool

IpMeasGetStr

Page 2-452

IpMeasGetStr
Syntax IpMeasGetStr(Cmd, lpParam, OutVal)

Description Use this function to get string information relating to the Measurements tool associated with
the current image.

Parameters Cmd Integer A command ID, which specifies the type of information
you want to retrieve. Must be one of the following:

 GETNAME

 Param Integer An integer specifying the feature with which Cmd will
operate.

 OutVal String A fixed-length string to receive the feature name

Comments The GETNAME command will return the full name of the specified feature.

IpMeasLoad
Syntax IpMeasLoad (lpszFileName, sHow)

Description This function loads the specified measurements file.

Parameters lpszFileName String Indicates the name of the measurement file to be
loaded

 sHow Integer Flag governing how file is loaded, now only
supports MLOAD_INTERACTIVE

Example ret = IpMeasLoad("C:\IPWIN\CIRCLE1.MSR")

Comments Measurement files are always loaded in interactive mode. The user will be prompted to create the
features.

See Also IpMeasSave, IpMeasShow

IpMeasLoadOutline
Syntax IpMeasLoadOutline(OutlineFile)

Description This function loads an outline file into the active image. Equivalent to the Load Outlines
command located on the Measurements window's File menu.

Parameters OutlineFile String A string specifying the name of the file from which the
outlines are to be read.

Example ret = IpMeasLoadOutline("C:\IPWIN\SLIDE1.OUT")
This statement will load outlines from SLIDE1.OUT in the \IPWIN
directory on the C: drive.

Comments The Measurements command window must be open before this function is called.
The file specified by OutlineFile must be an Image-Pro binary .OUT file, not an ASCII outline
file. See IpMeasSaveOutline.

 IpMeasMove

Page 2-453

See Also IpMeasSaveOutline, IpMeasShow

IpMeasMove
Syntax IpMeasMove(X, Y)

Description This function moves the Measurements window to the specified location. Equivalent to
dragging the Measurements window with the mouse.

Parameters X Integer An integer specifying the x-coordinate of the screen
position to which the upper-left corner of the
Measurements window is to be moved.

 Y Integer An integer specifying the y-coordinate of the screen
position to which the upper-left corner of the
Measurements window is to be moved.

Example ret = IpMeasMove(6, 26)

This statement will move the Measurements window to screen position 6, 26, a position near
the upper-left corner of the screen.

Comments The origin (0, 0) for the coordinate system used by the x and y parameters is the upper-left
corner of the screen.

IpMeasRestore
Syntax IpMeasRestore()

Description This function returns the Measurements window to its previous screen position and size.
Equivalent to clicking the Restore button on a maximized Measurements window, or double-
clicking the icon of a minimized Measurements Window.

Return Value In IPP 4.0 OR HIGHER, this macro will return IPCERR_NONE but won’t do anything.

See Also IpMeasSaveOutline, IpMeasShow, IpMeasSize

IpMeasSave

Page 2-454

IpMeasSave
Syntax IpMeasSave(FileName)

Description This function saves the current set of features and measurements to the specified measurements
file.

Parameters lpszFileName String Indicates the name of the measurement file to be
loaded

Example ret = IpMeasSave("C:\IPWIN\CIRCLE1.MSR")

This statement will save the current measurement data to a file called Circle1.msr in the \IPWIN
directory on the C: drive.

See Also IpMeasSaveData, IpMeasShow, IpMeasLoad

IpMeasSaveData
Syntax IpMeasSaveData(FileName, SaveMode)

Description This function saves the current measurement data to a file. Equivalent to the Save Data
command on the File menu in the Measurements command window.

Parameters lpszFileName String A string specifying the name of the file to which the
measurement data will be written.

 SaveMode Integer Must be a combination of one of the following data
type constants:
S_DATA = save feature data
S_STATS = save feature statistics
S_DATA2 = save measurement data
And one of the following destination constants:
S_FILE = save data to file
S_CLIPBOARD = copy table to clipboard
S_DDE = send table contents to external program
 via DDE (Excel is the default)
S_APPEND = append to the existing file
S_PRINTER = send data to printer
S_OUTPUT = send data to the output window

Example ret = IpMeasSaveData("C:\IPWIN\MEASDATA.DAT", S_DATA + S_FILE)

This statement will save the current measurement data to a file called MEASDATA.DAT in the
\IPWIN directory on the C: drive, overwriting the file if it already exists.

Ret = IpMeasSaveData("C:\IPWIN\MEASDATA.DAT", S_DATA + S_APPEND)

This statement will append the current measurement data to a file called MEASDATA.DAT in the
\IPWIN directory on the C: drive, creating the file if it does not exist.

Ret = IpMeasSaveData("", S_DATA + S_CLIPBOARD)

This statement will place the current measurement data on the clipboard.

Comments The Measurements command window must be open before this function is called. You cannot
combine two data type constants or two destination type constants. The FileName parameter is
ignored if the destination is not S_FILE or S_APPEND. Note that Image-Pro Plus 4.0/4.1 does
NOT save .tls files (as the previous versions did).

 IpMeasSaveOutline

Page 2-455

See Also IpMeasSaveOutline, IpMeasShow,IpMeasTool

IpMeasSaveOutline
Syntax IpMeasSaveOutline(OutlineFile)

Description This function saves the current measured object outlines to a file. Equivalent to the Save
Outlines command on the File menuin the Measurements window.

Parameters OutlineFile String A string specifying the name of the file to which the
current measurement outlines will be written. The file
name's extension determines the format in which it is
saved. Where:
 .OUT - Specifies a binary outline file.
Anything else specifies an ASCII-format outline file.

Example ret = IpMeasSaveOutline("C:\IPWIN\MEASOUT.OUT")

This statement will save the current outlines in binary format to the MEASOUT.OUT file in
the \IPWIN directory on the C: drive.

Return Value In IPP 4.0 OR HIGHER, this macro will return IPCERR_INVCOMMAND

Comments The Measurements command window must be open before this function is called.

See Also IpMeasLoadOutline, IpMeasShow

IpMeasShow
Syntax IpMeasShow(bShow)

Description This function is used to open or close the Measurements command window. Equivalent to
selecting the Measurements command to open the window, and clicking the Close button
within it to close it.

Parameters bShow Integer See table below.

Example ret = IpMeasShow(1)
This statement will make the Measurements command window visible during execution of the
macro.

Comments The Measurements command window must be open before any measurement functions are
performed.

 The following are constants for the measurement data types.

IpMeasSize

Page 2-456

Constant Description

MEAS_HIDE Hide the window
MEAS_SHOW Show last used page
MEAS_SHOWADVANCED Switch to Advanced mode
MEAS_SHOWBASIC Switch back to Basic mode
MEAS_SHOWFEATURES Show Features page*
MEAS_SHOWMEASUREMENTS Show Measurements page**
MEAS_SHOWINPUTOUT Show Input/Output page
MEAS_SHOWOPTIONS Show Options page
MEAS_SHOWADVAOPTIONS Show Advanced Options page**

* MEAS_SHOWFEATURES, MEAS_SHOWINPUTOUTPUT and MEAS_SHOWOPTIONS
can be combined with MEAS_SHOWADVANCED or MEAS_SHOWBASIC (to switch the
mode and the page at the same time).

** MEAS_SHOWMEASUREMENTS and MEAS_SHOWADVOPTIONS are only valid in
Advanced mode, so they will switch to Advanced mode if necessary.

These are the enum values:

MEASSHOW_HIDE = MEAS_HIDE
MEASSHOW_SHOW = MEAS_SHOW
MEASSHOW_SHOWADVANCED = MEAS_SHOWADVANCED
MEASSHOW_SHOWBASIC = MEAS_SHOWBASIC
MEASSHOW_SHOWFEATURES = MEAS_SHOWFEATURES
MEASSHOW_SHOWMEASUREMENTS = MEAS_SHOWMEASUREMENTS
MEASSHOW_SHOWINPUTOUTPUT = MEAS_SHOWINPUTOUT
MEASSHOW_SHOWPTIONS = MEAS_SHOWOPTIONS
MEASSHOW_SHOWADVOPTIONS MEAS_SHOWADVOPTIONS

IpMeasSize
Syntax IpMeasSize(cx, cy)

Description This function changes the size of the Measurements window to the specified width and height.
Equivalent to resizing the Line Profile window with the mouse.

Parameters cx Integer An integer specifying the width, in pixels, at which the
Measurements window is to be displayed.

 cy Integer An integer specifying the height, in pixels, at which the
Measurements window is to be displayed.

Example ret = IpMeasSize(400, 175)

This statement will resize the Measurements window to dimensions of 400 pixels wide by 175
pixels tall.

See Also IpMeasMove, IpMeasRestore

 IpMeasTag

Page 2-457

IpMeasTag
Syntax IpMeasTag(Index, OnOff)

Description This function selects/deselects a measurement record. Equivalent to clicking the measurement
record in the Measurements datasheet.

Parameters Index Integer An integer specifying the position of the record in the
datasheet (where the first record occupies position 0),
or MEAS_ALL, to specify all records in the datasheet.

 OnOff Integer An integer value of 0 or 1 specifying whether the record
is to be selected or deselected. Where:
 0 - Deselects
 1 - Selects

Example ret = IpMeasTag(0, 1)
ret = IpMeasTag(2, 1)

The statements above will select the first and third measurement records in the Measurements
datasheet.

ret = IpMeasTag(MEAS_ALL, 0)

This statement will deselect all measurement records in the Measurements datasheet.

Comments This function is used to select individual measurements for deletion by the IpMeasDelete
function. It is also used to select the pair of measurements upon which a thickness
measurement with IpMeasTool(MEAS_THICK) is performed.
The Measurements command window must be open before this function is called.

See Also IpMeasDelete, IpMeasTool, IpMeasShow

Page 2-458

IpMeasTool

Syntax IpMeasTool(Tool)

Description This function selects a measurement tool. Equivalent to clicking one of the measurement tool
buttons (e.g., Length, Area, Thickness) in the Measurements window.

Parameters Tool Integer An enumerated integer specifying the tool to be
selected. Must be one of the following:
 MEAS_ANGLE
 MEAS_AREA
 MEAS_LENGTH
 MEAS_THICK
 MEAS_TRACE
 MEAS_POINT
 MEAS_RECT
 MEAS_CIRCLE
 MEAS_BFLINE
 MEAS_BFCIRCLE
 MEAS_BFARC
 MEAS_DIST
 MEAS_NEWANGLE
 MEAS_HTHICK
 MEAS_VTHICK
 MEAS_CTHICK
 MEAS_COUNT
 MEAS_PERPDIST
 MEAS_DATA_TO_IMAGE
 MEAS_SELECT
 MEAS_NONE
see definitions under comments, below

Example The statements below will select the length tool, allow the user to make length measurements,
then save the measurement data to a file called MEASDATA.DAT in the \IPWIN directory on the
C: drive.

Ret = IpMeasSaveData("C:\IPWIN\MEASDATA.DAT", S_DATA + S_FILE)

The statements below will select the first and third measurement records in the Measurements
datasheet, then perform a thickness measurement upon the two.

Ret = IpMeasTag(0, 1)
ret = IpMeasTag(2, 1)
ret = IpMeasTool(MEAS_THICK)

 IpMeasTool

Page 2-459

Comments The Measurements command window must be open before this function is called.

TOOL DESCRIPTION

MEAS_AREA Selects the Polygon tool. Equivalent to clicking the Trace or
Polygon tool in the Measurements window.

MEAS_ANGLE Selects the Click-and-Drag Angle Measurement tool.
Equivalent to clicking the Click-and-Drag Angle
Measurement button in the Measurements window.

MEAS_LENGTH Selects the Line tool. Equivalent to clicking the Straight
Line button in the Measurements window.

MEAS_THICK Selects the Curved Thick ness tool. Equivalent to clicking
the Curved Thickness button in the Measurements window.

MEAS_TRACE Selects the Trace tool. Equivalent to clicking the Trace
button in the Measurements window.

MEAS_POINT Selects the Point tool.

MEAS_RECT Selects the Rectangle tool. Equivalent to clicking the
Rectangle button in the Measurements window.

MEAS_CIRCLE Selects the Circle tool. Equivalent to clicking the Circle
button in the Measurements window.

MEAS_BFLINE Selects the Best Fit Line tool. Equivalent to clicking the Best
Fit Line button in the Measurements window.

MEAS_BFCIRCLE Selects the Best Fit Circle tool. Equivalent to clicking the
Best Fit Circle button in the Measurements window.

MEAS_BEFARC Selects the Best Fit Arc tool. Equivalent to clicking the Best
Fit Arc button in the Measurements window.

MEAS_DIST Selects the New Distance Measurements.

MEAS_PERPDIST Selects the Pitch tool

MEAS_COUNT Selects the Count Gray Spots tool.

MEAS_DATA_TO_
IMAGE

Selects Data To Image. Equivalent to clicking the Data To
Image button on the Measurement toolbar

IpMeasUpdate

Page 2-460

TOOL DESCRIPTION

MEAS_NEWANGLE Selects the Angle tool. Equivalent to clicking the Add Angle
Measurement button in the Measurements window

MEAS_HTHICK Selects the Horizontal Thickness tool.

MEAS_VTHICK Selects the Vertical Thickness tool.

MEAS_CTHICK Selects the Curved Thickness tool.

MEAS_SELECT Selects the Feature Selection tool.

MEAS_NONE Turns all measurement tools off (no tools are active).

See Also IpMeasTag, IpMeasShow

IpMeasUpdate
Syntax IpMeasUpdate()

Description This function can be used to update all exisiting features on an image programmatically.
This is useful if the image’s calibration has changed.

See Also IpMeasAdd

IpMmonGet
Syntax IpMmonGet (sAttribute, sParam, lpData)

Description This function gets the Memory Manager attributes

Parameters sAttribute Integer The MMON_VMENABLE attribute determines if
the virtual memory manager is enabled.

 sParam Integer Not used, should be set to 0

 lpData Any An integer variable to receive the value; non-
zero if the memory manager is enabled.

See Also IpMmonShow, IpMmonSet

 IpMmonSet

Page 2-461

IpMmonSet
Syntax IpMmonSet (sAttribute, sParam, Value)

Description This function sets the Memory Manager attributes

Parameters sAttribute Integer The MMON_VMENABLE attribute enables or
disables the virtual memory manager.

 sParam Integer Not used, should be set to 0

 Value Long A value indicating if the memory manager is on
or off: zero to turn it off, a non-zero value to turn
it on.

See Also IpMmonShow, IpMmonGet, IpMmonSetInt

IpMmonSetInt
Syntax IpMmonSetInt (sAttribute, sParam, Value)

Description This function sets a value, rather than a variable, for the Memory Manager attributes

Parameters sAttribute Integer Attribute to modify; in this case,
MMON_VMENABLE

 sParam Integer Not used, should be set to 0

 Value Long The new value for the attribute

See Also IpMmonShow, IpMmonGet, IpMmonSet

IpMmonShow
Syntax IpMmonShow (nWindow)

Description This function shows or hides the Memory Manager window.

Parameters nWindow Short Must be one of the following:
MMON_HIDE - Hide current window
MMON_SHOW - Show last used window
MMON_MAXIMIZE - Show large dialog
MMON_MINIMIZE - Show small dialog

See Also IpMmonGet, IpMmonSet

IpMorePts
See IpListPts.

IpMosaicCreate

Page 2-462

IpMosaicCreate
Syntax IpMosaicCreate(ImageList, NumofImages)

Description This function creates a mosaic of the selected images.

Parameters ImageList String A semi-colon delimited string containing a list of
workspace names to specify the images in the
mosaic. There should not be any extraneous
spaces in the string.

 NumofImages Integer Specifys the number of images in the Image
List. Use -1 to specify all open images in the
workspace.

Return Value This function returns the Document ID of the mosaic, which will be an integer greater than 0. A
negative return value indicates an error.

Example ret = IpMosaicCreate (“Test.tif;Untitled”,2)

This command creates a mosaic from the open workspaces called, “Test.tif” and “Untitled. tif.”
The workspace names specified in the image list are separated with a semicolon.

Comments The ImageList parameter is ignored if the number of images less -1.

 IpMosaicGet

Page 2-463

IpMosaicGet
Syntax IpMosaicGet(sAttributes,Value)

Description
This function queries the mosaic attributes.

Parameters Attributes Integer See list below.

 Value Integer
LPSHORT
(C)

Pointer to a long variable to receive the attribute’s
new setting.

ATTRIB Short Value
MA_AUTOGRID 0 = Autogrid on

1 = Autogrid off
MA_CAPTION 0 = none

1 = Image/Workspace name
2 = File Name
3 = Date/Time
4 = Descrption (one line only)
5 = Frame number

MA_COLUMNS number of columns (ignored if using Autogrid)
MA_FONTSIZE font size in points
MA_IMAGESIZE 0 = printer default paper size

1 = ¼ printer default paper size
2 = User defined

ATTRIB Short Value
MA_IMAGEWIDTH Number of pixels
MA_IMAGEHEIGHT Number of pixels
MA_IMAGECLASS -1 = highest precision class (Best Fit)

1 = 8-bit Grayscale
2 = Palette
3 = 24-bit True Color
4 = 12-bit Grayscale
5 = Single Point
6 = 16-bit Grayscale
7 = 48-bit True Color
8 = 36-bit True Color

MA_PAGENUMBERS 0 = Page numbers off
1 = Page number on

MA_ROWS number of rows (ignored if using Autogrid)
MA_SPACING Spacing in pixels between rows or columns

IpMosaicSet

Page 2-464

Return Value This function returns the Document ID of the mosaic, which will be an integer greater than 0.

A negative return value indicates an error.

Example Sub MosaicGet1()
 ret = IpOutputShow(1)
 dim parm as integer
 ret = IpMoasicGet(MA_ROWS,parm)
 Debug.print parm
end sub

Sub MosaicGet2()
 ret = IpOutputShow(1)
 dim parm as string* 255
 ret = IpMoasicGetStr(MA_TITLE,parm)
 Print parm
end sub

This command creates a mosaic from the currently open workspace.

See Also IpMosaicSet

IpMosaicSet
Syntax IpMosaicSet(sAttributes, sValue, lpValue)

Description
This function sets the mosaic attributes.

Parameters Attributes Integer Determines the mosaic attribute to set. Must be one
of the following:

IMC_GRAY = 1
IMC_PALETTE = 2
IMC_RGB = 3
IMC_GRAY12 = 4
IMC_SINGLE = 5
IMC_GRAY16 = 6
IMC_RGB36 = 8
IMC_RGB48 = 9

 sValue Integer New attribute value.

 lpValue String New attribute string. Must be one of the following:
 MA_TITLE
 MA_FOOTER
 MA_FONT

Example ret = IpMosaicSet (MA_IMAGESIZE,0, IPNULL)

ret = IpMosaicSet (MA_TITLE, 0, “Mosaic#1”)

See Also IpMosaicGet

 IpMosaicShow

Page 2-465

IpMosaicShow
Syntax IpMosaicShow(bShow)

Description This function is used to show or hide the Mosaic Image dialog.

Parameters bShow Integer An integer value of 0 or 1 specifying whether to show
or hide the Mosaic Image dialog box. Where:
 0 - Hides the dialog .

1 - Shows the dialog

Example ret = IpMosaicShow(1)

This statement displays the Mosaic Image dialog box.

IpOpBkgndCorrect
Syntax IpOpBkgndCorrect(WsBackId, BlackLevel, bNewImage)

Description This function corrects for uneven background lighting in the active image. Equivalent to the
Background Correction option button in the Background Correction dialog box.

Parameters WsBackId Integer An integer specifying the ID of the open image to be
used as the background image. See Comments,
below, for more about this ID number.

 BlackLevel Integer An integer between 0 and 255 specifying the black
level.

 bNewImage Integer An integer value of 0 or 1 specifying whether the
transformed image is to be written to a new image
window, or back into the active image window. Where:
 0 - Writes the transformed results to
the active window.

1 - Writes the transformed results to a new
image window.

Return Value This function returns the Document ID of the resulting image, which will be an integer greater
than 0. A negative return value indicates an error.

Example ret = IpOpBkgndCorrect(0, 50, 1)

This statement will perform a background correction on the active window, using image 0 as
the characteristic background image. A value of 50 defines the black level.The corrected result
will be written to a new window.

IpOpBkgndSubtract

Page 2-466

Comments Use this function when you want to correct the background of an image measuring optical density
via transmitted light. It is similar to IpOpBkgndSubtract but uses division instead of
subtraction to account for the fact that optical density is not a linear function of the gray scale.
A document “ID” is assigned to an image window when it is opened. It retains this ID for the
duration of its existence. ID's are assigned consecutively in the order in which images are
opened. The next higher number is used when a new window is created — e.g., if image 4 is
already open, the next image is assigned an ID of 5.
Because of the dynamic nature of document IDs (the mix and sequence of images on your
desktop varies from session to session), macros involving multiple images should be recorded
and played back from an empty imaging area (i.e., one in which there are no images open).
This measure will ensure that the recorded image numbers select the intended images on
playback.

See Also IpOpBkgndSubtract

IpOpBkgndSubtract
Syntax IpOpBkgndSubtract(WsBackId, bNewImage)

Description This function corrects for uneven background lighting of the active image. Equivalent to the
Background Subtraction option button in the Background Correction dialog box.

Parameters WsBackId Integer An integer specifying the ID of the open image to be
used as the background image. See Comments,
below, for more about this ID number.

 bNewImage Integer An integer value of 0 or 1 specifying whether the
transformed image is to be written to a new image
window, or back into the active image window. Where:
 0 - Writes the results to the active
window.

1 - Writes the results to a new image window.

Return Value This function returns the Document ID of the resulting image, which will be an integer greater
than 0. A negative return value indicates an error.

Example ret = IpOpBkgndSubtract(2,0)

This statement will perform a background subtraction using image number 2 as the background
image. The corrected result will be written to the active image window.

 IpOpImageArithmetics

Page 2-467

Comments Use this function when you want to flatten the background of an image prior to counting or
measuring objects. IpOpBkgndSubtract compares the active image to the background image
and replaces, in the active image, pixels that are deemed to be part of the background with a value
close to the mean background intensity.

A document “ID” is assigned to an image window when it is opened. It retains this ID number
for the duration of its existence. ID's are assigned consecutively in the order in which images
are opened. The next higher number is used when a new window is created — e.g., if image 4
is already open, the next image is assigned an ID of 5.

Because of the dynamic nature of document IDs (the mix and sequence of images on your
desktop varies from session to session), macros involving multiple images should be recorded
and played back from an empty imaging area (i.e., one in which there are no images open).
This measure will ensure that the recorded image numbers select the intended images on
playback.

See Also IpOpBkgndCorrect

IpOpImageArithmetics
Syntax IpOpImageArithmetics(WsId, Number, OpaCode, bNewImage)

Description This function performs arithmetic operations upon the active image or AOI, in conjunction
with a second image. Equivalent to performing an arithmetic operation using the Other
Image option in the Arithmetic Operations dialog box.

Parameters WsId Integer An integer specifying the ID of the open image to be
used as the operand. See Comments, below, for more
about this ID number.

 Number Single A single point number specifying the value to be used
to offset or scale the result, as follows:
If OpaCode is set to OPA_ADD, OPA_SUB or
OPA_DIFF, this value will be added to the result.
If OpaCode is set to OPA_MULT or OPA_DIV, the
result will be multiplied by this value.
For all other operations, this parameter is ignored (just
set it to 0).

 OpaCode Integer An enumerated integer specifying the kind of arithmetic
operation to be performed. Must be one of the
following:

OPA_ACC
OPA_ADD
OPA_AVG
OPA_DIFF
OPA_DIV
OPA_MAX
OPA_MIN
OPA_MULT
OPA_NOT
OPA_SUB

See definitions under Comments, below.

IpOpImageArithmetics

Page 2-468

 bNewImage Integer An integer value of 0, 1, ro 2 specifying whether the
transformed image is to be written to a new image
window, or back into the active image window. Where:
0 -Writes the transformed results to the active window.
1 -Writes the transformed results to a new image
window.
2 - Writes the transformed results to the image
designated as the first operand.
3 – Writes the transformed results to a new image with
the operands reversed
4 – Float image output
5 – Float image output with operands reversed.

Return Value This function returns the Document ID of the resulting image, which will be an integer greater
than 0. A negative return value indicates an error.

Example ret = IpOpImageArithmetics(0, 20.0, OPA_SUB, 1)

This statement will subtract image 0 from the active image, add 20 to the result in each pixel,
and write the result to a new image window.
ret = IpOpImageArithmetics(2, 0.01, OPA_MULT, 0)

This statement will multiply the active image by image 2, multiply the result of each pixel by
0.01, and write the result back to the active image.

Comments A document “ID” is assigned to an image window when it is opened. It retains this ID number
for the duration of its existence. ID's are assigned consecutively in the order in which images
are opened. The next higher number is used when a new window is created — e.g., if image 4
is already open, the next image is assigned an ID of 5.

 Because of the dynamic nature of document IDs (the mix and sequence of images on your
desktop varies from session to session), macros involving multiple images should be recorded and
played back from an empty imaging area (i.e., one in which there are no images open). This
measure will ensure that the recorded image numbers select the intended images on playback.
The following table describes the values allowed in the OpaCode parameter.

 IpOpImageLogic

Page 2-469

OpaCode DESCRIPTION

OPA_ACC Adds the active image (with the “as is” option
turned off.

OPA_ADD Adds the active image and the other image.
OPA_AVG Replaces each pixel with the mean value of the two

images.
OPA_DIFF Obtains the absolute value of the difference

between the active image and the other image.
OPA_DIV Divides the active image by the other image.
OPA_MAX Replaces each pixel with the largest value of the

two images.
OPA_MIN Replaces each pixel with the smallest value of the

two images.
OPA_MULT Multiplies the active image by the other image.
OPA_NOT Reverses the pixel values of the active image.
OPA_SUB Subtracts the other image from the active image.

See Also IpOpNumberArithmetics, IpOpImageLogic, IpOpNumberLogic

IpOpImageLogic
Syntax IpOpImageLogic(WsId, OplCode, bNewImage)

Description This function performs logical operations upon the active image or AOI, in conjunction with a
second image. Equivalent to selecting one of the logical operations with the Other Image
option in the Arithmetic Operations dialog box.

Parameters WsId Integer An integer specifying the ID of the open image to be
used as the operand. See Comments, below, for
more about this ID number.

 OplCode Integer An enumerated integer specifying the kind of logic
operation to be performed. Must be one of the
following:

OPL_AND
OPL_OR
OPL_XOR
OPL_NAND
OPL_NOR
OPL_NOT
OPL_COPY

Can also be used with IMC_C_DIRECT if the “as is”
checkbox is checked.

IpOpImageLogic

Page 2-470

 bNewImage Integer An integer value of 0 or 1 specifying whether the
result is to be written to a new image window, or back
into the active image window. Where:
 0 - Writes the transformed results to
the active window.

1 - Writes the transformed results to a new
image window.

Return Value This function returns the Document ID of the resulting image, which will be an integer greater
than 0. A negative return value indicates an error.

Example ret = IpOpImageLogic(0, OPL_NOR, 0)

This statement will perform a logical “NOR” between the active image and image 0. The
results will be written back to the active image.

Comments A document “ID” is assigned to an image window when it is opened. It retains this ID number
for the duration of its existence. ID's are assigned consecutively in the order in which images
are opened. The next higher number is used when a new window is created — e.g., if image
window 4 is already open, the next image is assigned an ID of 5.
Because of the dynamic nature of document IDs (the mix and sequence of images on your
desktop varies from session to session), macros involving multiple images should be recorded and
played back from an empty imaging area (i.e., one in which there are no images open). This
measure will ensure that the recorded image numbers select the intended images on playback.
The following table describes the values allowed in the OplCode parameter.

OplCode DESCRIPTION

OPL_AND Performs a logical “AND” between your active
image and the other image. Only bit values that
are “on” in both operands will be “on” in the
result.

OPL_OR Performs a logical “OR” between your active
image and the other image. Bit values that are
“on” in either operand will be “on” in the result.

OPL_XOR Performs a logical “XOR” between your active
image and the other image. Only when a bit
value is “on” in one operand and “off” in the other
will the bit be “on” in the result. If bit values are
“on” in both operands, or if they are “off” in both
operands, they will be “off” in the result.

OPL_NAND Performs a logical “NAND” between your active
image and the other image. Bit values that are
“off” in either, or both, operands will be “on” in
the result.

OPL_COPY Copies the active image to a new image.

 IpOpNumberArithmetics

Page 2-471

OplCode DESCRIPTION

OPL_NOR Performs a logical “NOR” between your active
image and the other image. Bit values that are
“off” in both images will be “on” in the result.

OPL_NOT Performs a logical “NOT” on the bit values in the
active image. Every bit value that is “on” in the
active image will be “off” in the result. Every bit
value that is “off” in the active image will be “on”
in the result.

See Also IpOpNumberLogic, IpOpNumberArithmetics, IpOpImageArithmetics

IpOpNumberArithmetics
Syntax IpOpNumberArithmetics(Number, OpaCode, bNewImage)

Description This function performs arithmetic operations upon the active image or AOI, in conjunction
with a numeric value. Equivalent to selecting one of the arithmetic operations and the Number
option in the Arithmetic Operations dialog box.
Note - if you are working with a True Color image you can use the IpOpNumberRgb function
to operate upon the three color channels simultaneously.

Parameters Number Single A number (of IPBasic type, Single) representing the
operand to be used with the active image.

 OpaCode Integer An enumerated integer specifying the kind of arithmetic
operation to be performed. Must be one of the
following:

OPA_ADD
OPA_SUB
OPA_DIFF
OPA_MULT
OPA_DIV
OPA_AVG
OPA_MAX
OPA_MIN
OPA_SQR
OPA_X2
OPA_X2Y

See definitions under Comments, below. Can also be
used with IMC_C_DIRECT if the “as is” checkbox is
checked.

IpOpNumberArithmetics

Page 2-472

 bNewImage Integer An integer value of 0 or 1 specifying whether the
transformed image is to be written to a new image
window, or back into the active image window. Where:
0 -Writes the transformed results to the active window.
1 -Writes the transformed results to a new image
window.
2 - Writes the transformed results to the image
designated as the first operand.
3 – Writes the transformed results to a new image with
the operands reversed
4 – Float image output
5 – Float image output with operands reversed.

Return Value This function returns the Document ID of the resulting image, which will be an integer greater
than 0. A negative return value indicates an error.

Example ret = IpOpNumberArithmetics(120.0, OPA_MAX, 1)

This statement will compare each pixel of the active image or AOI against the value 120.0,
select whichever one is higher, and write the result to a new window.

Comments The following table describes the values allowed in the OpaCode parameter.

OpaCode DESCRIPTION
OPA_ADD Adds the active image and Number.
OPA_SUB Subtracts Number from the active image.
OPA_DIFF Obtains the absolute value of the difference

between the active image pixel and Number.
OPA_MULT Multiplies the active image pixel by Number.
OPA_DIV Divides the active image pixel by Number.
OPA_AVG Replaces pixel with the mean value of the

active image pixel and Number.
OPA_MAX Replaces pixel with the larger of the two values,

the one in the active image or Number.
OPA_MIN Replaces pixel with the smaller of the two

values, the one in the active image or Number.
OPA_SQR Replaces the pixel with the square root of the

active image pixel
OPA_X2 Replaces the pixel with the square of the active

image pixel
OPA_X2Y Replaces the pixel with the value of the active

image pixe raised to Y power

See Also IpOpNumberRgb, IpOpImageArithmetics, IpOpImageLogic, IpOpNumberLogic

IpOpNumberLogic

Page 2-473

IpOpNumberLogic
Syntax IpOpNumberLogic(Number, OplCode, bNewImage)

Description This function performs logical operations upon the active image or AOI in conjunction with a
numeric value. Equivalent to selecting a logic operation and the “Number” option in the
Arithmetic Operations dialog box.

Parameters Number Integer An integer specifying the operand to be used with the
active image. This parameter is ignored when
OplCode is set to OPL_NOT (in this case, just set
Number to 0).

 OplCode Integer An enumerated integer specifying the kind of logic
operation to be performed. Must be one of the
following:

OPL_AND
OPL_OR
OPL_XOR
OPL_NAND
OPL_NOR
OPL_NOT

See definitions under Comments, below.

 bNewImage Integer An integer value of 0 or 1 specifying whether the
transformed image is to be written to a new image
window, or back to the active image. Where:

0 - Writes the transformed results to the active
window.

 1 - Writes the transformed results to a new
image window.

Return Value This function returns the Document ID of the resulting image, which will be an integer greater
than 0. A negative return value indicates an error.

Example ret = IpOpNumberLogic(0, OPL_NOT, 1)

This statement will produce a negative image of the active image and write the results to a new
window.

ret = IpOpNumberLogic(1, OPL_NOR, 0)

This statement will perform a logical “NOR” between the active image and the number 1, then
write the results to the active image.

Comments The following table describes the values allowed in the OplCode parameter.

IpOpNumberLogic

Page 2-474

OplCode DESCRIPTION

OPL_AND Performs a logical “AND” between the active image
and Number. Only bit values that are “on” in both
operands will be “on” in the result.

OPL_OR Performs a logical “OR” between the active image
and Number. Bit values that are “on” in either
operand will be “on” in the result.

OPL_XOR Performs a logical “XOR” between the active image
and Number. Only when a bit value is “on” in one
operand and “off” in the other will the bit be “on” in
the result. If bit values are “on” in both operands,
or if they are “off” in both operands, they will be “off”
in the result.

OPL_NAND Performs a logical “NAND” between the active
image and Number. Bit values that are “off” in
either, or both, operands will be “on” in the result.

OPL_NOR Performs a logical “NOR” between the active image
and Number. Bit values that are “off” in both
images will be “on” in the result.

OPL_NOT Performs a logical “NOT” on the bit values in the
active image. Every bit value that is “on” in the
active image will be “off” in the result. Every bit
value that is “off” in the active image will be “on” in
the result.

See Also IpOpImageLogic, IpOpNumberArithmetics, IpOpImageArithmetics

 IpOpNumberRgb

Page 2-475

IpOpNumberRgb
Syntax IpOpNumberRgb(Numbers, OpaCode, bNewImage)

Description This function is a special version of the IpOpNumberArithmetics function. It is
designed to be used with True Color images, and allows you to, with a single step,
arithmetically combine the image's (or AOI's) three color channels with 3 numbers.

Parameters Numbers Single (Basic)

LPSINGLE
(C)

The name of an array of three, single-precision, single-
point values, specifying the operands that are to be
arithmetically combined with the three color channels.
The contents of these elements, 0, 1 and 2, are applied
to the Red, Green and Blue channels, respectively.

 OpaCode Integer An enumerated integer specifying the kind of arithmetic
operation to be performed. Must be one of the
following:

OPA_ADD
OPA_SUB
OPA_DIFF
OPA_MULT
OPA_DIV
OPA_AVG
OPA_MAX
OPA_MIN

See IpOpNumberArithmetics for definitions of
these values.

 bNewImage Integer An integer value of 0 or 1 specifying whether the
transformed image is to be written to a new image
window, or back into the active image window. Where:
 0 - Writes the transformed results to
the active window.

1 - Writes the transformed results to a new
image window.

Return Value The document ID of the current or new image, depending on the value of bNewImage. If a new
image is to be created, a return code of -1 indicates a failure.

Example The following example performs a white balance on an RGB image

dim stats(10) as single
dim offsets(3) as single
dim average as single
' Ask the user to place a small AOI over a white or gray area.
ipRect.left = 95
ipRect.top = 33
ipRect.right = 127
ipRect.bottom = 55
ret = IpAoiCreateBox(ipRect)
ret = IpMacroStop("Position box on gray or white area", 0)
' calculate the histogram of the sample.
ret = IpHstCreate()
ret = IpHstSetAttr(ICAL, 0)
' get the average red content.
ret = IpHstGet(GETSTATS, 0, stats(0))
offsets(0) = stats(0)

IpOpShow

Page 2-476

' get the average green content.
ret = IpHstGet(GETSTATS, 1, stats(0))
offsets(1) = stats(0)
' get the average blue content.
ret = IpHstGet(GETSTATS, 2, stats(0))
offsets(2) = stats(0)
ret = IpHstDestroy()
' calculate the average white content
average = (offsets(0) + offsets(1) + offsets(2)) / 3
' Add values to each channel in the image.
ret = IpAoiShow(FRAME_NONE)
offsets(0) = average - offsets(0)
offsets(1) = average - offsets(1)
offsets(2) = average - offsets(2)
ret = IpOpNumberRgb(offsets(0), OPA_ADD, 0)

Comments See Comments under IpOpNumberArithmetics.

See Also IpOpNumberArithmetics

IpOpShow
Syntax IpOpShow(bShow)

Description This function is used to open or close the Image Operations dialog box. Equivalent to
selecting the Operations command to open the box, and clicking its Close button to close it.

Parameters bShow Integer An integer value of 0 or 1 specifying whether to open or
close the Arithmetic Operations dialog box. Where:
 0 - Closes the Arithmetic Operations
dialog box if it is open.

1 - Opens the Arithmetic Operations dialog
box.

2 - Close the Background Correction dialog box.
3 – Opens the Background Correction dialog

box.

Example ret = IpOpShow(1)

This statement displays the Image Operations dialog box.

Comments The Arithmetic Operations dialog box does not have to be open during execution of any of the
arithmetic or logical operations. Its disposition, visible or hidden, is entirely your choice. You
will want to display the window if your users will be required to make choices within it, but if
your objective is simply to perform a predefined operation, you may want to run without opening
it.

 IpOutput

Page 2-477

IpOutput
Syntax IpOutput(message)

Description This function prints a string to the Macro Output window. There is no Image-Pro command
equivalent to this function; it is one that must be manually written with the macro editor.

Parameters message String The string that is it to be printed to the Macro Output
window.

Example The following example prints the number of objects obtained from an earlier procedure. Notice
that a line-ending sequence (i.e., a carriage return and a line feed) is included at the end of the
string. This moves the cursor to the beginning of the next line so that is it in the proper
positioned for the next IpOutput or Debug.print statement.
Dim numobj as integer
Dim NL as String
NL = Chr$(13) + Chr$(10)
ret = IpOutput("Number of objects: " + Str$(numobj)+ NL)

Comments This function is similar to the IPBasic Debug.print function, which you may want to use
instead of IpOutput because of the automatic formatting it provides. Debug.print also lets
you print non-string expressions, directly.
The Macro Output window is limited to 25,000 characters. When this limit is reached, the
oldest lines in the window are erased. To generate data files larger than 25,000 characters, save
the contents of the window to a file, then append to that file in intervals.
It is not necessary to show the Macro Output window to print to it. In fact, your program will
execute faster if you print while the window is closed, since the display will not require any
processing.

See Also Print, IpOutputShow, IpOutputClear, IpOutputSave

IpOutputClear
Syntax IpOutputClear()

Description This function clears the contents of the Macro Output window. It is equivalent to selecting
the Clear Screen command on the Macro Output window's Edit menu.

Comments It is not necessary to show the Macro Output window to clear it.

See Also IpOutputShow, IpOutput, IpOutputSave

IpOutputSave

Page 2-478

IpOutputSave
Syntax IpOutputSave(Filename, sMode)

Description This function saves the current contents of the Macro Output window to a file or to the
Clipboard. It is equivalent to selecting the Save, Append or Copy to Clipboard command on
the Macro Output window's File menu.

Parameters Filename String A string specifying the name of the file to which the
window contents will be will be written.
This parameter is ignored if sMode is set to
S_CLIPBOARD. When this is the case, just set
Filename to an empty string (i.e., "").

 sMode Integer An enumerated integer specifying whether the data is
to be stored as a new file, appended to an existing file
or written to the Clipboard. Where:
 0 - Stores data to a new
ASCII file (if the file already exists, it will be
overwritten).
 S_APPEND - Appends data to
existing ASCII file.
 S_CLIPBOARD - Copies data to the Clipboard.

Example The following statement saves Macro Output window to an ASCII file.
ret = IpOutputSave("c:\ipwin\count.txt", 0)

The following statement appends Macro Output window to an ASCII file.
ret = IpOutputSave("c:\ipwin\count.txt", S_APPEND)

The following statement copies the Macro Output window to the Clipboard.
ret = IpOutputSave("", S_CLIPBOARD)

Comments It is not necessary to show the Macro Output window to save its contents.

See Also IpOutputShow, IpOutput, IpOutputClear

 IpOutputSet
Syntax IpOutputSet(sCmd, sParam, lpParam)

Description This function sets tab stops in the Macro Output window.

Parameters Command Integer An integer indicating the Output command. SETTABS
is the only valid command, currently.

 sParam Integer An integer indicating the number of tab stops in the
lpParam array.

 lpParam Integer An array of integers indicating the tab stops to be set.

See Also IpOutputClear, IpOutputShow, IpOutput, IpOutputSave

 IpOutputShow

Page 2-479

IpOutputShow
Syntax IpOutputShow(bShow)

Description This function is used to open or close the Macro Output window. Equivalent to selecting the
“Output Window” command to open the window, and double-clicking its control box to close
it.

Parameters bShow Integer An integer value of 0 or 1 specifying whether the
Macro Output window is to be shown. Where:
 0 - Closes the window if it is already open.
 1 - Opens the window.

Example The following statement displays the Macro Output window.
ret = IpOutputShow(1)

Comments It is not necessary to show the Macro Output window to print to it, save it or clear it. In fact,
your program will execute faster if you leave the window closed while working with its contents,
since the display will not have to be processed.

See Also IpOutput, IpOutputClear, IpOutputSave

IpPalSetGrayBrush
Syntax IpPalSetGrayBrush(bForeGround, GrayIndex)

Description This function sets the Foreground or Background color on the gray scale palette. Equivalent to
clicking a color-square in the palette to assign it as the Foreground or Background color.

Parameters bForeGround Integer An integer value of 0 or 1 specifying whether the color
is to be selected as the Foreground or Background
color. Where:
 0 - Specifies Background color.
 1 - Specifies Foreground color.

 GrayIndex Integer An integer between 0 and 255 (inclusive) specifying the
gray level to be assigned as the Foreground or
Background color.

Example ret = IpPalSetGrayBrush(0, 111)
This statement will set the gray scale-palette Background color to gray level 111.

See Also IpPalSetPaletteBrush, IpPalSetRGBBrush

IpPalSetPaletteBrush
Syntax IpPalSetPaletteBrush(bForeGround, PaletteIndex)

Description This function sets the Foreground or Background color for the palette-class palette. Equivalent
to clicking a color-square in the palette to assign it as the Foreground or Background color.

IpPalSetPaletteColor

Page 2-480

Parameters bForeGround Integer An integer value of 0 or 1 specifying whether the color
is to be selected as the Foreground or Background
color. Where:
 0 - Specifies Background color.
 1 - Specifies Foreground color.

 PaletteIndex Integer An integer between 0 and 255 (inclusive) specifying the
index (i.e., palette position) to be assigned as the
Foreground or Background color.

Example IpPalSetPaletteBrush(0, 10)

This statement will set the Palette-class Background color to index 10.

See Also IpPalSetRGBBrush, IpPalSetGrayBrush

IpPalSetPaletteColor
Syntax IpPalSetPaletteColor(PaletteIndex, Red, Green, Blue)

Description This function changes the RGB values assigned to the specified palette index. Equivalent to
double-clicking a color-square in the palette and editing the RGB values within it.

Parameters PaletteIndex Integer An integer between 0 and 255 (inclusive) specifying the
index to which the Red, Green and Blue values are to
be applied.

 Red Integer An integer between 0 and 255 (inclusive) specifying the
Red value of the specified palette index.

 Green Integer An integer between 0 and 255 (inclusive) specifying the
Green value of the specified palette index.

 Blue Integer An integer between 0 and 255 (inclusive) specifying the
Blue value of the specified palette index.

Example ret = IpPalSetPaletteColor(111, 0, 0, 192)

This statement will set index 111 to a bright blue (0 / 0 / 192).

IpPalSetRGBBrush
Syntax IpPalSetRGBBrush(bForeGround, Red, Green, Blue)

Description This function sets the Foreground or Background color for the RGB palette. Equivalent to
clicking a color-square in the palette to assign it as the Foreground or Background color.

Parameters bForeGround Integer An integer value of 0 or 1 specifying whether the color
is to be selected as the Foreground or Background
color. Where:
 0 - Specifies Background color.
 1 - Specifies Foreground color.

 Red Integer An integer between 0 and 255 (inclusive) specifying the
Red value of the color to be assigned as the
Foreground or Background color.

 IpPalShow

Page 2-481

 Green Integer An integer between 0 and 255 (inclusive) specifying the
Green value of the color to be assigned as the
Foreground or Background color.

 Blue Integer An integer between 0 and 255 (inclusive) specifying the
Blue value of the color to be assigned as the
Foreground or Background color.

Example ret = IpPalSetRGBBrush(0, 255, 255, 0)

This statement will set the Background color on the RGB palette to yellow (i.e., 255 / 255 / 0).

See Also IpPalSetGrayBrush, IpPalSetPaletteBrush

IpPalShow
Syntax IpPalShow(bShow)

Description This function is used to open or close the brush color selection or the image palette window.
Equivalent to selecting the color patches button/window or selecting the Edit Palette
command .

Parameters bShow Integer An integer value specifying whether the window is to be
shown. Where:
 1 - Opens the brush color selection window.
 2 - Opens the image palette window (for Palette

class images only).
Example ret = IpPalShow(1)

This statement will open the brush color selection window.

IpPcDefineColorSpread
Syntax IpPcDefineColorSpread (ColorSpread, ClrFrom, ClrTo, Method)

Description This function loads defines a custom color spread for the pseudo-color palette.

Parameters ColorSpread Integer An integer value specifying the custom color
spread to be defined, ColorSpread is greater than
or equal to 8 (Custom 1) and less than or equal to
11 (Custom 4).

 ClrFrom Long A long value specifying the starting color value.
This color value is constructed by combining the
desired red, green, and blue intensities (from 0 -
255) as follows:
ClrFrom = red + green * 256 + blue * 65536

 ClrTo Long A long value specifying the ending color value. This
color value is constructed by combining the desired
red, green and blue intensities (from 0 to 255) as
follows: ClrTo = red + green * 256 + blue * 65536

IpPcDyeTint

Page 2-482

 Method Integer An integer value specifying the method of
interpolation between the starting and ending color
values. Where:

0 - interpolate in RGB color space
1 - interpolate clockwise in HSI color space
2 - interpolate counter-clockwise in HSI color
space

Example ret = IpPcDefineColorSpread(8, 0, 16711680, 0)

This statement will define the Custom 1 color spread as being an RGB ramp from black to blue.

 ret = IpPcDefineColorSpread(9, 255, 65280, 1)

This statement will define the Custom 2 color spread as being a clockwise HSI ramp from red to
green.

Comments The custom color spread defined by this function will only be used if it is the active color spread.

See Also IpPcSetColorSpread

IpPcDyeTint
Syntax IpPcDyeTint (DyeFile)

Description This function applies a dye tint to the current channel of the active workspace.

Parameters DyeFile String A string specifying the name of the dye file.

Comments The DyeFile specification can be just the name of the dye (e.g. “DAPI”), in which case the dye
will be loaded from the current dye path. If the DyeFile specification includes a full path to the
dye file, that will override the current dye path. The name may include the .IPD extension, or if
it does not the extension will be added automatically.
Tinting is applied to all of the frames of the active workspace that belong to the currently
selected channel (the channel to which the active frame belongs). If the active workspace
contains channel or wavelength information, the contiguous set of frames with identical
information will be considered a channel set, and will be tinted. If this information is not
available, the current sequence information (active portion or active frame) will be used.
Tinting inherently conflicts with Pseudo-Coloring. Pseudo-coloring is applied to the image (to
all frames identically), while tinting is applied to sets of frames. Applying tinting will remove
any pseudo-coloring, and vice-versa.

See Also IpPcTint, IpDyeSelect

IpPcLoad
Syntax IpPcLoad(PseudoColorFile)

Description This function loads a pseudo-color palette from the specified file. Equivalent to clicking
File:Load in the Pseudo-Color dialog box.

Parameters PseudoColorFile String A string specifying the name of the file from which
the pseudo-color palette will be read.

 IpPcSave

Page 2-483

Example ret = IpPcLoad("C:\IPWIN\FOLIAGE.PSC")

This statement will load the pseudo-color file from a file called FOLIAGE.PSC in the \IPWIN
directory on the C: drive.

See Also IpPcSave

IpPcSave
Syntax IpPcSave(PseudoColorFile)

Description This function saves the current pseudo-color palette to a file. Equivalent to clicking File:Save
in the Pseudo-Color dialog box.

Parameters PseudoColorFile String A string specifying the name of the file to which the
current pseudo-color palette will be written.

Example ret = IpPcSave("C:\IPWIN\BONEMASS.PSC")

This statement will save the current pseudo-color palette to the BONEMASS.PSC file in the
\IPWIN directory on the C: drive.

See Also IpPcLoad

IpPcSaveData
Syntax IpPcSaveData(Filename, Flag)

Description This function saves the pseudocolor percentage area information into the specified file.

Parameters Filename String Name of the data file.

 Flag Integer Valid values for Flag are:
 S_STATS = append statistical information to
 the end of the file
 S_HEADER = save with header
 S_X_AXIS = save with the left column
 S_DDE = transfer data using DDE
 S_APPEND = append data to end of file, will
 overwrite exiting file if not specified
 S_CLIPBOARD = copies the data to the
 Windows Clipboard

Example ret = IpPcSaveData(“C:\IPWIN\Pseudo.pc”, S_DDE+S_HEADER+S_X_AXIS+
S_STATS)

Comments Flag values can be "OR'd" together.

IpPcSetColor
Syntax IpPcSetColor(DivNo, Red, Green, Blue)

Description This function assigns a color to the specified pseudo-color palette interval. Equivalent to
clicking the Edit button in the Pseudo-Color dialog box, and setting the division and color
values in the Division Attributes dialog box.

IpPcSetColor

Page 2-484

Parameters DivNo Integer An integer between 1 and 128 (inclusive) specifying the
interval to which the specified color is to be assigned.

 Red Integer An integer between 0 and 255 (inclusive) specifying the
level of Red in the assigned color.

 Green Integer An integer between 0 and 255 (inclusive) specifying the
level of Green in the assigned color.

 Blue Integer An integer between 0 and 255 (inclusive) specifying the
level of Blue in the assigned color.

Example ret = IpPcSetColor(1, 200, 0, 0)

This statement will assign the color Red (255, 0, 0) to the first interval in the selected range.

Comments Note that DivNo numbering begins with one, not zero.

See Also IpPcSetRange, IpPcSetDivisions

 IpPcSetColorSpread

Page 2-485

IpPcSetColorSpread
Syntax IpPcSetColorSpread (ColorSpread)

Description This function selects a particular color spread for the pseudo-color palette.

Parameters ColorSpread Integer An integer value specifying the custom color
spread to define. Where

ColorSpread:
0 - red to green to blue
1 - blue to green to red
2 - black to red
3 - black to green
4 - black to blue
5 - black to cyan
6 - black to magenta
7 - black to yellow
8 - Custom spread 1
9 - Custom spread 2
10 - Custom spread 3
11 - Custom spread 4

Example ret = IpPcSetColorSpread(8)

This statement will select the Custom 1 color spread.

See Also IpPcDefineColorSpread

IpPcSetDivisions
Syntax IpPcSetDivisions(Divisions)

Description This function sets the number of colors (intervals) into which the selected intensity-range is
divided. Equivalent to setting the Divisions value in the Pseudo-Color dialog box.

Parameters Divisions Integer An integer specifying the number of intervals into which
the selected range is to be divided. Must be a value
between 1 and 128 (inclusive).

Example ret = IpPcSetDivisions(100)

This statement will divide the current range into 100 pseudo-color intervals.

See Also IpPcSetRange

IpPcSetRange
Syntax IpPcSetRange(DivNo, FromVal, ToVal)

Description This function specifies the intensity range to which pseudo-coloring is to be applied. Also
used to specify the beginning and ending value of a specified palette interval. Equivalent to
adjusting the upper and lower limit values in the Pseudo-Color dialog box. Also equivalent to
setting the interval start/end values in the Division Attributes dialog box.

IpPcShow

Page 2-486

Parameters DivNo Integer An integer between 1 and 128, specifying the interval
for which beginning (FromVal) and endpoints (ToVal)
are to be set, or -1 to specify the entire range.

 FromVal Integer An integer between 0 and 255 (inclusive) specifying the
first value in the specified interval or range.

 ToVal Integer An integer between 0 and 255 (inclusive) specifying the
last value in the specified interval or range.

Example ret = IpPcSetRange(2, 60, 100)

This statement will assign a range of 60 - 100 (inclusive) to the second interval.

ret = IpPcSetRange(-1, 0, 110)

This statement will set 0 to 110 (inclusive) as the range to which all pseudo-coloring will be
applied.

Comments The FromVal and ToVal values must be expressed as an integer from 0 to 255 (inclusive). If your
image is Gray Scale 12 or Single Point, the normalized equivalents of these values will be used.

When you record a macro that sets ranges, Auto-Pro may record more than one IpPcSetRange
statement for each division. This occurs because one statement is posted when you set the
starting value, and another is posted when you set the end value. You may edit out the
unnecessary IpPcSetRange statements, and leave only the single statement that actually sets
the range that is to be defined.

IpPcShow
Syntax IpPcShow(bShow)

Description This function is used to apply or reset the pseudo-color palette for the active image. Equivalent
to selecting the Pseudo-Color command to open the dialog box, and clicking the OK or
Cancel buttons to close it.

Parameters bShow Integer An integer value of 0 or 1 specifying whether the
Pseudo-Color palette is to be applied or removed from
the active image. Where:
 0 - Resets the pseudo-color palette, and

removes pseudo-coloring from the active
image.

 1 - Applies the pseudo-color palette to the active
image.

Example ret = IpPcShow(1)

This statement will apply the pseudo-color palette to the active image.

IpPcTint
Syntax IpPcTint (Tint)

Description This function applies or removes a tint to the current channel of the active workspace.

 IpPlFilter

Page 2-487

Parameters Tint Integer Tint must be one of the following constants, or a
wavelength expressed in nanometers from 300-
800:
TINT_REMOVE = Removes any tinting
TINT_RED = Tints Red
TINT_GREEN = Tints Green
TINT_BLUE = Tints Blue

Comments Tinting is applied to all of the frames of the active workspace that belong to the currently
selected channel (the channel to which the active frame belongs). If the active workspace
contains channel or wavelength information, the contiguous set of frames with identical
information will be considered a channel set, and will be tinted. If this information is not
available, the current sequence information (active portion or active frame) will be used.
Tinting inherently conflicts with Pseudo-Coloring. Pseudo-coloring is applied to the image (to
all frames identically), while tinting is applied to sets of frames. Applying tinting will remove
any pseudo-coloring, and vice-versa.
The TINT_REMOVE command will remove tinting applied by IpPcDyeTint

See Also IpPcDyeTint

IpPlFilter
Syntax IpPlFilter (szCategory, szFilter)

Description This function specifies which filter and category to use.

Parameters szCategory String Specifies the filter category

 SzFilter String Specifies the filter function to use

Return Value DocID if successful
IPCERR_INVARG if incorrect parameters are specified
IPCERR_FUNC otherwise

See Also IpPlShow, IpPlImport

IpPlImport

Page 2-488

IpPlImport
Syntax IpPlImport (szImportName)

Description This function specifies which third-party import function to use.

Parameters szImportName String Name of the import function

Return Value DocID if successful
IPCERR_INVARG if incorrect parameters are specified
IPCERR_FUNC otherwise

See Also IpPlShow, IpPlFilter

IpPlShow
Syntax IpPlShow (PlugWindow, bShow)

Description This function shows or hides the third-party plug-in dialogs.

Parameters PlugWindow integer 0 = selects the Import dialog.
1 = selects the Filter dialog.

 bShow integer A value of 0 or 1, specifying whether the plug-in
command window is to be open or closed. Where:

0 - Closes the window if it is already open.
1 - Opens the window.

Return Value IPCERR_NONE if successful
IPCERR_INVARG if incorrect parameters are specified
IPCERR_FUNC otherwise

See Also IpPlImport, IpPlFilter

IpPlotCreate
Syntax IpPlotCreate(title)

Description Create a plot window with the given title.

Parameters title String Names the plot window

See Also IpPlotData, IpPlotRange, IpPlotSet, IpPlotShow, IpPlotUpdate, IpPlotDestroy

 IpPlotData

Page 2-489

IpPlotData
Syntax IpPlotData(plotId, axis, valueType, values, count)

Description Plots the data in the window referenced by plotID.

Parameters axis Integer Can be either the vertical axis (1) or the horizontal axis
(0).

 plotID Integer Integer value greater than zero.

 valueType Integer Type of data to be plotted: PDT_INT16, PDT_INT32,
PDT_SINGLE, PDT_DSINGLE

 values Integer Contains the data to be plotted.

 count Integer Number of elements to be plotted.

See Also IpPlotCreate, IpPlotRange, IpPlotSet, IpPlotShow, IpPlotUpdate, IpPlotDestroy

Comments For most plots, only the y-axis data needs to be set; the x-axis is incremented automatically by
default.

IpPlotDestroy
Syntax IpPlotUpdate (plotID)

Description Destroys the plot

Parameters plotID Integer Integer value greater than zero.

See Also IpPlotCreate, IpPlotData, IpPlotRange, IpPlotSet, IpPlotShow, IpPlotUpdate

IpPlotRange
Syntax IpPlotRange(plotId, axis, valueType, rangeType, values,)

Description Sets the range for the values that will be visible on the graph for the horizontal or vertical axis.

Parameters axis Integer Can be either the vertical axis (1) or the horizontal axis
(0).

 plotID Integer Integer value greater than zero.

 valueType Integer Type of data to be plotted: PDT_INT16, PDT_INT32,
PDT_SINGLE, PDT_DSINGLE

IpPlotSet

Page 2-490

 rangeType Integer Must be one of the following:
RGE_FIXEDMIN values contins the lower range
 value. The upper range is calculated
 automatically from the data itself.
RGE_FIXEDMAX values contains the upper range
 values.
RGE_FIXEDvalues contains the upper and lower
 range values.
RGE_AUTO values is not used. The lower and upper
 range values are calculated automatically
 from the data itself.

 values Integer Contains one or two numbers defining the range.

See Also IpPlotData, IpPlotCreate, IpPlotSet, IpPlotShow, IpPlotUpdate, IpPlotDestroy

IpPlotSet
Syntax IpPlotSet(plotId, commandString,)

Description Sets the graph parameters, legends, styles, etc.

Parameters plotID Integer Integer value greater than zero.

 commandString String Can contain any number of parameters and is of the
following form: [] indicate optional parameters.

 Parameter1 [=value1], parameter2 [=value2], parameter3 = [value3]…

 Parameters Values Description

 histogram none bar chart without gaps between bars

 line none line plot

 scattergram none points plot

 bars none bar chart with gaps

 title string title of the graph

 title on, off title of the graph on or off

 axis string “on” or “off” i.e. axis is shown or hidden

 x label string title of the x-axis

 x label on, off title of the x-axis on or off

 y label string title of the y-axis

 y label on, off title of the y-axis on or off

 IpPlotShow

Page 2-491

 Parameters Values Description

 majortics string major tic marks turned “on” or “off”

 minortics string minor tic marks turned “on” or “off”

 grid string grid on the graph turned “on” or “off”

 legend string graph legend turned “on” or “off”

 line style string style of the plot line: solid, dash, dashdot, dot,
dashdotdot

 plot title string title of the data plot

 x tics number number of tics on x-axis

 y tics number number of tics on y-axis

See Also IpPlotData, IpPlotCreate, IpPlotShow, IpPlotUpdate, IpPlotDestroy

IpPlotShow
Syntax IpPlotShow(plotID, sMode)

Description Shows or hides the plot

Parameters plotID Integer Integer value greater than zero.

 sMode Integer 1 = show plot, 0 = hide plot

See Also IpPlotCreate, IpPlotData, IpPlotRange, IpPlotSet, IpPlotUpdate, IpPlotDestroy

IpPlotUpdate

Page 2-492

IpPlotUpdate
Syntax IpPlotUpdate(plotID)

Description Updates the plot, after the data has changed

Parameters plotID Integer Integer value greater than zero.

See Also IpPlotCreate, IpPlotData, IpPlotRange, IpPlotSet, IpPlotShow, IpPlotDestroy

IpPlShow
Syntax IpPlShow (PlugWindow, bShow)

Description This function shows or hides the third-party plug-in dialogs.
Parameters PlugWindow integer 0 = selects the Import dialog.

1 = selects the Filter dialog.

 bShow integer A value of 0 or 1, specifying whether the plug-in
command window is to be open or closed.
Where:

0 - Closes the window if it is already open.
1 - Opens the window.

Return Value IPCERR_NONE if successful
IPCERR_INVARG if incorrect parameters are specified
IPCERR_FUNC otherwise

See Also IpPlImport, IpPlFilter

Page 2-493

IpPortIOControl
Syntax IpPortIOControl (Port, Command)

Description This function gets the current value of a specified attribute or setting.

Parameters Port Integer The serial port to control, from 1-8

 Command Integer The command to apply to the serial port (see
below)

Return Value 0 if the command can be completed, a negative error code if not.

Comments The following commands are supported after configuring the ports:

Command Description
PORTIO_INIT Initializes the port with the current serial I/O configuration (baud rate, parity, etc.),

making the port ready for use with IpPortIORead and/or IpPortIOWrite.
PORTIO_CLOSE Closes the port, releasing the port to other applications.
PORTIO_UPDATE Updates the communications configuration for the port.
PORTIO_CLEAR Clears the port’s input buffer, recommended prior to sending a new command

IpPortIOWrite that may result in a response string.

Example Attribute VB_Name = "Module1"

Option Explicit
Private Const COM1 = 1
Private Const COM2 = 2
Private Const COM3 = 3
Private Const COM4 = 4
Sub Open_Port()
ret = IpPortIOSetInt(PORTIOSET_SERIAL_BAUD, COM1,
PORTIO_BAUD_115200)
ret = IpPortIOSetInt(PORTIOSET_SERIAL_DATASIZE, COM1,
PORTIO_DATASIZE_EIGHT)
ret = IpPortIOSetInt(PORTIOSET_SERIAL_PARITY, COM1,
PORTIO_PARITY_NONE)
ret = IpPortIOSetInt(PORTIOSET_SERIAL_STOPBITS, COM1,
PORTIO_STOP_ONE)
ret = IpPortIOSetInt(PORTIOSET_SERIAL_FLOW, COM1,
PORTIO_FLOW_NONE)
ret = IpPortIOControl(COM1, PORTIO_INIT)
End Sub
Sub HelloWorld()
Dim sMessage As String
Dim sOut As String*255
sOut = "Hello World"
ret = IpStGetString("Message to send:", sOut, 255)
sMessage = IpTrim(sOut)
ret = IpPortIOWrite(COM1, sMessage, 1, -1)
Debug.Print ret; vbTab; Len(sMessage); vbTab; sMessage
End Sub
Sub ReadPort()

Page 2-494

Dim sOut As String*255
Dim sMessage As String
Dim count As Long
Debug.Clear
ret = IpOutputClear()
sOut = " "
count = 0
sMessage = ""
Debug.Print "Begin read"
 Do
 count = count + 1
 ret = IpPortIORead(COM1, sOut, 1, 255, 100)
 'If sOut <> Chr(0) Then Debug.Print ret; vbTab; count;
vbTab; sOut
 If ret > 0 And Asc(sOut) <> 10 And Asc(sOut) <> 13
Then
 Debug.Print ret; vbTab; count; vbTab; sOut; vbTab;
GetTickCount()
 sMessage = sMessage + IpTrim(sOut)
 End If
Loop Until Asc(sOut) = 13 'sOut = Chr(0)
Debug.Print "Finished reading port: "; sMessage
End Sub
Sub Close_Port()
ret = IpPortIOControl(COM1, PORTIO_CLOSE)
End Sub

IpPortIOGetInt
Syntax IpPortIOGetInt (Attribute, Paramter, Value)

Description This function gets the current value of a specified attribute or setting.

Parameters Attribute Integer The attribute to inquire (see Comments below)

 Param Integet A value needed for some attributes (see
Comments below)

 Value Integer An integer to receive the current value for the
specified attribute (see Comments below)

Return Value 0 if the attribute can be inquired, a negative error code if not.

See Also IpPortIOSetInt

Comments Note that only three inquiries are supported prior to configuring the ports:
PORTIO_NUM_BOARDS, PORTIO_BOARD_DISABLED and
PORTIO_DIGITAL_CONFIGURATION. The following attributes are supported:

 IpPortIOGetInt

Page 2-495

Attribute Param value Description
PORTIO_NUM_BOARDS Not used, set to 0 Returns the number of parallel

ports, each of which is treated as
an independent I/O “board”.

PORTIO_NUM_D_INPUTS Not used, set to 0 Returns the total number of 8-bit
digital inputs that are configured.
Note that a particular board can
only support a single 8-bit input or
output – see also
PORTIO_DIGITAL_CONFIGURA
TION.

This inquiry will return an error if
the ports are not configured.

PORTIO_NUM_D_OUTPUTS Not used, set to 0. Returns the total number of 8-bit
digital outputs that are configured.
Note that a particular board can
only support a single 8-bit input or
output – see also
PORTIO_DIGITAL_CONFIGURA
TION.

This inquiry will return an error if
the ports are not configured.

PORTIO_NUM_D_INPUT_PINS Not used, set to 0 Returns the total number of
single-bit digital input pins that are
configured. Note that a particular
board can support 8 1-bit inputs
or outputs – see also
PORTIO_DIGITAL_CONFIGURA
TION.

This inquiry will return an error if
the ports are not configured.

PORTIO_NUM_D_OUTPUT_
PINS

Not used, set to 0 Returns the total number of single
-bit digital output pins that are
configured. Note that a particular
board can only support 8 1-bit
inputs or outputs – see also
PORTIO_DIGITAL_CONFIGURA
TION.

This inquiry will return an error if
the ports are not configured.

IpPortIOGetInt

Page 2-496

Attribute Param value Description
PORTIO_D_INPUT_BRD The index of the input port

to inquire
Returns the board containing the
specified 8-bit input port.

PORTIO_D_OUTPUT_BRD The index of the output
port to inquire

Returns the board containing the
specified 8-bit output port.

PORTIO_D_INPUT_PIN_INDEX The index of the input pin
to inquire

Returns the index of the pin on
the port that corresponds to the
specified 1-bit input pin. Note that
pin indexes range from 0 to 7,
which correspond to pins 2-9 of
the physical connector.

PORTIO_D_INPUT_PIN_BRD The index of the input pin
to inquire

Returns the board containing the
specified 1-bit input pin.

PORTIO_D_OUTPUT_PIN_
INDEX

The index of the output
pin to inquire

Returns the index of the pin on
the port that corresponds to the
specified 1-bit input pin. Note that
pin indexes range from 0 to 7,
which correspond to pins 2-9 of
the physical connector.

PORTIO_D_OUTPUT_PIN_BRD The index of the output
pin to inquire

Returns the board containing the
specified 1-bit output pin.

PORTIO_D_INPUT_VALUE The index of the input port
to inquire

Returns the current value on the
specified 8-bit input port.

PORTIO_D_INPUT_PIN_VALUE The index of the input pin
to inquire

Returns the current value on the
specified single-bit input pin.

PORTIO_BOARD_DISABLED The index of the board to
inquire

Returns whether the specified
board is disabled in the current
configuration.

PORTIO_DIGITAL_
CONFIGURATION

The index of the board to
inquire

Returns the port configuration for
the specified board, from the
following:

PORTIO_D_8BIT_INPUT

PORTIO_D_8BIT_OUTPUT

PORTIO_D_8_INPUT_PINS

PORTIO_D_8_OUTPUT_PINS

PORTIO_SERIAL_BAUD Value of
PORTIO_BAUDRATES

Should be one of the following:

PORTIO_BAUD_300 = 0,

PORTIO_BAUD_1200 = 1,

 IpPortIOGetInt

Page 2-497

PORTIO_BAUD_2400 = 2,

PORTIO_BAUD_9600 = 3,

PORTIO_BAUD_14400 = 4,

PORTIO_BAUD_19200 = 5,

PORTIO_BAUD_38400 = 6,

PORTIO_BAUD_56000 = 7,

PORTIO_BAUD_57600 = 8,

PORTIO_BAUD_115200 = 9,

PORTIO_BAUD_128000 = 10,

PORTIO_BAUD_256000 = 11,

IpPortIOGetInt

Page 2-498

Attribute Param value Description
PORTIO_SERIAL_DATASIZE A value between 5 and 8 Sets the byte size for the data

transfter to and from the device.
Should be one of the following
PORTIO_DATASIZE VALUES:

PORTIO_DATASIZE_FIVE

PORTIO_DATASIZE_SIX

PORTIO_DATASIZE_SEVEN

PORTIO_DATASIZE_EIGHT

PORTIO_SERIAL_PARITY Value of
PORTIO_PARITYTYPES

Should be one of the following:

PORTIO_PARITY_NONE = 0,

PORTIO_PARITY_EVEN = 1,

PORTIO_PARITY_ODD = 2,

PORTIO_SERIAL_FLOW Serial port to inquire from
1-8

Returns the currently selected
flow control for the specified port

PORTIO_SERIAL_STOPBITS Value of
PORTIO_STOPBITS

Should be one of the following:

PORTIO_STOP_ONE = 0,

PORTIO_STOP_ONE_PT_FIVE
= 1,

PORTIO_STOP_TWO = 2,

PORTIO_BLOCK_UPDATE Not used, set to 0 Returns whether output is
currently blocked. Output may be
blocked using IpPortIOSetInt in
order to assure that a number of
pins are set as close to
simultaneously as possible.

PORTIO_OPEN_LAST_CONFIG Not used, set to 0 Returns whether the last saved
configuration will automatically be
opened.

PORTIO_D_OUTPUT_VALUE The index of the output
port to inquire

Returns the last value that the 8-
bit output port was set to.

PORTIO_D_OUTPUT_PIN_
VALUE

The index of the output
pin to inquire

Returns the last value that the
single-bit output pin was set to.

 IpPortIOOpenConfig

Page 2-499

IpPortIOOpenConfig
Syntax IpPortIOOpenConfig (FileName)

Description This function opens an existing configuration file

Parameter FileName String The name of the
selected port.

Return Value Zero if the file opens successfully and th e ports are configured, or a negative error code if the
file is not found or cannot be opened, if the configuration file contains too many or too few
ports, or if the configuration fails for some reason.

Comments This function will respect template mode and display a File:Open dialog if in template mode,
or if the FileName string is empty.

IpPortIORead
Syntax IpPortIORead (Port, Response, Terminated, Count, TimeOut)

Description This function reads the response from the specified serial port.

Parameters Port Integer The serial port to read, from 1-8

 Response String A fixed-length string to receive the response.

 Terminated Integer If non-zero, indicates the the read should complete
when a terminating zero is received (e.g. for an
ASCII response string)

 Count Integer The maximum number of characters to receive
from the serial port (see comments)

 TimeOut Long The maximum number of milliseconds to wait for
the response.

Return Value The number of characters received if the command can be completed, a negative error
code if not.

Comments IpPortIORead can only be used after the ports have been configured, and the specified
port has been opened using the PORTIO_INIT command to IpPortIOControl.
The Response string should be a fixed length string of sufficient length to receive the
response. Typically a device returns an ASCII string terminated by a character zero
terminator. For this purpose, the Count parameter can be set to the size of the string
buffer, and any non-zero value passed into Terminated. Under these conditions,
IpPortIORead will read characters until the zero terminator is encountered, or the
specified number of characters are read, or the operation times out.
IpPortIORead can also be used with devices that do not return an ASCII zero-terminated
string, in which case the length of the expected response must be known.

See Also IpPortIOControl example code

IpPortIOSaveConfig

Page 2-500

IpPortIOSaveConfig
Syntax IpPortIOSaveConfig (FileName)

Description This function saves an existing configuration file

Parameters FileName String The name of the
selected port.

Return Value Zero if the file is successfully saved and th e ports are configured; a negative error code if the
file cannot be saved, or if the configuration fails for some reason.

Comments This function will respect template mode and display a File:Save As dialog if in template
mode, or if the FileName string is empty.

IpPortIOSetInt
Syntax IpPortIOSetInt (Attribute, Paramter, Value)

Description This function sets the current value of a specified attribute or setting.

Parameters Attribute Integer The attribute to inquire (see Comments below)

 Param Integet A value needed for some attributes (see
Comments below)

 Value Integer An integer to receive the current value for the
specified attribute (see Comments below)

Return Value 0 if the attribute can be inquired, a negative error code if not.

See Also IpPortIOGetInt, IpPortIOControl sample code

Comments Note that only three inquiries are supported prior to configuring the ports:
PORTIO_NUM_BOARDS, PORTIO_BOARD_DISABLED and
PORTIO_DIGITAL_CONFIGURATION. The following attributes are supported:

Attribute Param value Description
PORTIO_BOARD_DISABLED The index of the board to

inquire
Set the specified board
disabled (if Value is non-
zero) or enabled in the
current configuration.

PORTIO_DIGITAL_CONFIGURATION The index of the board to
inquire

Sets the port configuration
for the specified board, from
the following:

PORTIO_D_8BIT_INPUT
PORTIO_D_8BIT_OUTPUT
PORTIO_D_8_INPUT_PIN
S
PORTIO_D_8_OUTPUT_PI
NS

 IpPortIOSetInt

Page 2-501

 PORTIO_BLOCK_UPDATE Not used, set to 0 Sets whether output is

currently blocked. Output
may be blocked in order to
assure that a number of pins
are set as close to
simultaneously as possible.

PORTIO_OPEN_LAST_CONFIG Not used, set to 0 Sets whether the last saved
configuration will
automatically be opened.

PORTIO_D_OUTPUT_VALUE The index of the output port
to inquire

Sets the 8-bit output port to
the specified value.

PORTIO_D_OUTPUT_PIN_VALUE The index of the output pin
to inquire

Sets the single-bit output pin
to active (if non-zero) or
inactive.

PORTIO_SERIAL_BAUD Value of

PORTIO_BAUDR
ATES

Should be one of the following:
PORTIO_BAUD_300 = 0,
PORTIO_BAUD_1200 = 1,
PORTIO_BAUD_2400 = 2,
PORTIO_BAUD_9600 = 3,
PORTIO_BAUD_14400 = 4,
PORTIO_BAUD_19200 = 5,
PORTIO_BAUD_38400 = 6,
PORTIO_BAUD_56000 = 7,
PORTIO_BAUD_57600 = 8,
PORTIO_BAUD_115200 = 9,
PORTIO_BAUD_128000 = 10,
PORTIO_BAUD_256000 = 11,

PORTIO_SERIAL_DATASIZE A value between 5
and 8

Sets the byte size for the data transfter to and
from the device. Should be one of the following
:
PORTIO_DATASIZE_FIVE
PORTIO_DATASIZE_SIX
PORTIO_DATASIZE_SEVEN
PORTIO_DATASIZE_EIGHT

PORTIO_SERIAL_FLOW Serial port to
inquire from 1-8

Sets the flow control for the active port
PORTIO_FLOW _NONE = 0,
PORTIO_FLOW _XONXOFF = 1,
PORTIO_FLOW _HARDWARE = 2,

PORTIO_SERIAL_PARITY Value of
PORTIO_PARITY
TYPES

Should be one of the following:
PORTIO_PARITY_NONE = 0,
PORTIO_PARITY_EVEN = 1,
PORTIO_PARITY_ODD = 2,

IpPortIOShowConfig

Page 2-502

PORTIO_SERIAL_STOPBITS Value of

PORTIO_STOPBI
TS

Should be one of the following:
PORTIO_STOP_ONE = 0,
PORTIO_STOP_ONE_PT_FIVE = 1,
PORTIO_STOP_TWO = 2,

IpPortIOShowConfig
Syntax IpPortIOShowConfig ()

Description This function shows or hides the port configuration dialog

Return Value Zero if the ports are configured, a negative error code if there are no parallel ports available
for configuration, if the configuration is canceled, or if the configuration fails for some reason.

Comments The function will not return until the dialog is exited by clicking OK or the close box.

IpPortIOWrite
Syntax IpPortIOWrite (Port, Command, Terminated, Count)

Description This function writes a response to he specified serial port.

Parameters Port Integer The serial port to write, from 1-8

 Command String The command string to send to the port

 Terminated Integer If non-zero, indicates the the write should be
completed by a terminating zero in the command
string (e.g. for an ASCII response string)

 Count Integer The maximum number of characters to write to
the serial port (see comments)

Return Value The number of characters sent if the command can be completed, a negative error code if
not.

Comments IpPortIOWrite can only be used after the ports have been configured, and the specified
port has been opened using the PORTIO_INIT command to IpPortIOControl.

Typically a device command should be an ASCII string terminated by a character zero
terminator. For this purpose, the Count parameter can be set to -1, and any non-zero
value passed into Terminated. Under these conditions, IpPortIOWrite will write all
characters in the Command string up to and including the zero terminator.

IpPortIOWrite can also be used with devices that do not take ASCII terminated strings, in
which case Terminated should be set to zero, and the Count set to the precise number of
characters to send.

 IpProfCreate

Page 2-503

IpProfCreate
Syntax IpProfCreate()

Description This function opens the Line Profile window for the active image. Equivalent to selecting the
Line Profile command.

Return Value This function returns the Profile ID if successful. A negative value is returned if an error
occurred.

Comments An image must be open before calling this function. The newly created profile window becomes
the “active” (i.e., selected) line profile as soon as it is created.

See Also IpProfMove, IpProfDestroy, IpProfSelect

IpProfDestroy
Syntax IpProfDestroy()

Description This function closes the active line profile window and clears any data associated with it.
Equivalent to selecting the Close command in the Line Profile File menu.

Comments Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfDestroy.

See Also IpProfCreate, IpProfSelect

IpProfGet
Syntax IpProfGet(Cmd, Param, OutVal)

Description Use this function to get information relating to the selected line profile. There is no Image-Pro
command equivalent to this function; it is one that must be manually written with the macro
editor.

Parameters Cmd Integer A command ID, which specifies the type of information
you want to retrieve. Must be one of the following:

GETINDEX
GETNUMPTS
GETVALUES
GETSTATS
GETRANGE
GETPOINTS

See definitions under Comments, below

 Param Integer An integer specifying data with which Cmd will operate.
See definitions under Comments, below, for the values
required by each command

 OutVal See below The address (name) of the variable that will receive the
requested data. Be sure this variable is of the type
required by Cmd. See Cmd description under
Comments, below.

Return Value All commands listed below return 0 if successful. A negative error, otherwise.

IpProfGet

Page 2-504

Example The following example calculates the mean value of the active profile.
Dim numbins As Integer
Dim ProfArea As Single, Mean as single
Dim i As Integer

ret = IpProfGet(GETNUMPTS, 0, numbins)
Redim profdat(numbins) As Single
ret = IpProfGet(GETVALUES, numbins, profdat(0))

ProfArea = 0#

For i = 0 To numbins - 1
 ProfArea = ProfArea + profdat(i)
Next i

If numbins > 0 Then
 Mean = ProfArea / numbins
End If
.
.
.

The following example gets the mean value directly
.
.
.

Redim stats(10) As Single
ret = IpProfGet(GETSTATS, 0, stats(0))
Mean = stats(0)

The following example shifts the line profile down and to the right.

Redim endPts(2) As POINTAPI
ret = IpProfGet(GETPOINTS, 0, endPts(0))
endPts(0).x = endPts(0).x + 20
endPts(0).y = endPts(0).y + 10
endPts(1).x = endPts(1).x + 20
endPts(1).y = endPts(1).y + 10
ret = IpProfLineMove(endPts(0).x, endPts(0).y, endPts(1).x,
endPts(1).y)

Comments Note that this function operates upon the “active” line profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfGet.
Profiles of RGB images contain 3 times as much data as an equivalent Gray Scale profile. The
data are organized Red channel first, then Green, then Blue.
When passing an array to Image-Pro from a BASIC program, be sure to pass the first element of
the array by reference (See GETVALUES statement in example, above).

Cmd VALUE DESCRIPTION

GETINDEX Use this command to determine the active profile’s ID. The ID is written to
OutVal. This value can be used later to select this profile with
IpProfSelect().

 Param VALUE OutVal TYPE

 Not used by GETINDEX. Must be set to 0. BASIC, Integer
C, LPSHORT

 IpProfGet

Page 2-505

Cmd VALUE DESCRIPTION

GETNUMPTS Use this command to determine the number of points in the profile. The
number is written to OutVal.

 Param VALUE OutVal TYPE

 Not used by GETNUMPTS. Must be set to 0. BASIC, Integer
C, LPSHORT

GETVALUES Use this command to get the selected profile's values. The values are written
to the one-dimensional array specified in OutVal. For a True Color profile
the entire Red channel profile is written into the array first, then the Green
channel, then the Blue channel.
Note - do not use the keyword Statistics as the name of your OutVal array.
This is an Auto-Pro reserved word. Using it as a variable name can cause
a GPF.

GETVALUES Param VALUE OutVal TYPE

 An integer specifying the length of your
OutVal array. If you are getting data from a
True Color image, your array must be large
enough to hold 3 times the number of points in
the profile.

Note - you can use GETNUMPTS to determine
the number of elements needed in this array.

BASIC , Single.
C, LPSINGLE

Note - OutVal must
specify an array.

GETSTATS Use this command to get the statistical data associated with the selected
profile. For True Color images, information will be obtained for the color
channel specified in Param (see below).
The statistics are written to a 10-element array in OutVal, as follows:

OutVal (0) - Mean value
OutVal (1) - Standard Deviation
OutVal (2) - Area under the profile
OutVal (3) - Minimum value in profile
OutVal (4) - Maximum value in profile
OutVal (5) - Not Currently Used
OutVal (6) - Not Currently Used
OutVal (7) - Not Currently Used
OutVal (8) - Not Currently Used
OutVal (9) - Not Currently Used

IpProfGet

Page 2-506

Cmd VALUE DESCRIPTION

 Param VALUE OutVal TYPE

 An integer specifying the color channel for
which statistics are to be obtained. Where:

0 - Red Channel
1 - Green Channel
2 - Blue Channel

This parameter is ignored if the image is not
True Color. When this is the case, just set
Param to 0.

BASIC, Single.
C, LPSINGLE
Note - OutVal must
specify a 10-
element array.

GETRANGE Use this command to get the range information associated with the selected
profile. For True Color images, information will be obtained for the color
channel you specify in Param (see below).
The range information is written to a 10-element array in OutVal, as follows:

OutVal (0) - Start range (X1)
OutVal (1) - End range (X2)
OutVal (2) - Area under profile that is inside the range
OutVal (3) - Area, above, as a percent of total area (%)
OutVal (4) - Profile value at start of range (Y1)
OutVal (5) - Profile value at end of range (Y2)
OutVal (6) - Pixel number at start of range (0-based)
OutVal (7) - Pixel number at end of range (0-based)
OutVal (8) - Not Currently Used
OutVal (9) - Not Currently Used

 Param VALUE OutVal TYPE

 An integer specifying the color channel for
which range information is to be obtained.
Where:

BASIC, Single.
C, LPSINGLE

 Param VALUE OutVal TYPE

 0 - Red Channel
1 - Green Channel
2 - Blue Channel

This parameter not used when the image is not
True Color. Set to 0.

BASIC, Single.
C, LPSINGLE
Note - OutVal must
specify a 10-
element array.

 IpProfLineMove

Page 2-507

Cmd VALUE DESCRIPTION

GETPOINTS Use this command to get the image coordinates for the rectangle defining the
start and end points of the profile. This command writes the coordinates to
the 2-element array specified in OutVal.

 Param VALUE OutVal TYPE

 Not used by GETPOINTS. Must be 0. BASIC , POINTAPI
C, LPPOINT

See Also IpProfCreate, IpProfSelect

IpProfLineMove
Syntax IpProfLineMove(x1, y1, x2, y2)

Description This function defines the position of the line (or rectangle) being profiled. Equivalent to
positioning the defining line with the mouse in the image window.

Parameters x1 Integer An integer specifying the x-coordinate of the first point
on the line to be profiled. If a thick profile is being
defined, this value specifies the x-coordinate of the
upper-left corner of the rectangle to be profiled.

 y1 Integer An integer specifying the y-coordinate of the first point
on the line to be profiled. If a thick profile is being
defined, this value specifies the y-coordinate of the
upper-left corner of the rectangle to be profiled.

 x2 Integer An integer specifying the x-coordinate of the last point
of the line to be profiled. If a thick profile is being
defined, this value specifies the x-coordinate of the
lower-right corner of the rectangle to be profiled.

 y2 Integer An integer specifying the y-coordinate of the last point
of the line to be profiled. If a thick profile is being
defined, this value specifies the y-coordinate of the
lower-right corner of the rectangle to be profiled.

Example ret = IpProfLineMove(0, 0, 100, 216)

This statement will define a line that extends from pixel 0, 0 to pixel 100, 216 in the image.

Comments The parameter values must specify pixel positions in uncalibrated form.
Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfLineMove.
The position to which the profile is moved becomes the default position for the next Line
Profile command.

See Also IpProfSetAttr

IpProfMaximize

Page 2-508

IpProfMaximize
Syntax IpProfMaximize()

Description This function enlarges the active line profile window to full screen. Equivalent to clicking the
maximize button on the Line Profile window Control bar.

Comments Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfMaximize.

See Also IpProfMinimize, IpProfRestore, IpProfSelect

IpProfMinimize
Syntax IpProfMinimize()

Description This function reduces the active line profile window to an icon. Equivalent to clicking the
minimize button on the Line Profile window Control bar.

Comments Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfMinimize.

See Also IpProfMaximize, IpProfRestore, IpProfSelect

IpProfMove
Syntax IpProfMove(x, y)

Description This function moves the active (i.e., selected) line profile window to the specified location.
Equivalent to dragging the Line Profile window with the mouse.

Parameters x Integer An integer specifying the x-coordinate of the screen
position to which the upper-left corner of the Line
Profile window is to be moved.

 y Integer An integer specifying the y-coordinate of the screen
position to which the upper-left corner of the Line
Profile window is to be moved.

Example ret = IpProfMove(10, 40)

This statement will move the active profile window 11 pixels to the right, and 41 pixels down
from the upper-left corner of the screen.

Comments The origin (0, 0) for the coordinate system used by the x and y parameters is the upper-left
corner of the screen.
Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfSize.

 IpProfRestore

Page 2-509

See Also IpProfRestore, IpProfMaximize, IpProfMinimize, IpProfSelect

IpProfRestore
Syntax IpProfRestore()

Description This function returns the active line profile window to its previous screen position and size.
Equivalent to clicking the Restore button on a maximized profile window, or double-clicking
the icon of a minimized profile window.

Comments Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfRestore.

See Also IpProfMinimize, IpProfMaximize, IpProfSelect

IpProfSave
Syntax IpProfSave(FileName, SaveMode)

Description This function saves, or appends, the active line profile data or statistics to the specified file.
Equivalent to the Save Profile, Append Profile, Save Statistics, and Append Statistics
commands on the File menu in the Line Profile window.

Parameters FileName String A string specifying the name of the file to which the
profile data will be written.
This parameter is ignored when the S_CLIPBOARD
option in the SaveMode parameter is used. When this
is the case, set FileName to an empty string (i.e., "").

 SaveMode Integer An enumerated integer, or an expression involving the
addition of two or more enumerated integers, that
specify the kind of profile data to be stored. This
parameter also identifies where the data is to be
stored. Must contain one or more of the following:

 S_DATA or S_STATS
S_APPEND or S_CLIPBOARD
 or S_PRINT_TABLEor
 or S_PRINT_ GRAPH
S_HEADER

S_LEGEND
S_X_AXIS
S_COORDS

See Comments, below, for a definition of each name.
See Example, below, for usage.

IpProfSave

Page 2-510

Example ret = IpProfSave("C:\IPWIN\PROF.HST", S_DATA)

The statement above will save the current profile data to a file called PROF.HST in the \IPWIN
directory on the C: drive. If the file already exists, it will be overwritten.

ret = IpProfSave("C:\IPWIN\PROF.HST", S_STATS+S_APPEND)

The statement above will append the current profile statistics to a file called PROF.HST in the
\IPWIN directory on the C: drive.

ret = IpProfSave("C:\IPWIN\PROF.HST", S_DATA+S_HEADER+S_LEGEND)

The statement above will save the current profile data to a file called PROF.HST in the \IPWIN
directory on the C: drive. The header and legend information will be stored with the data. If
the file already exists, it will be overwritten.

ret = IpProfSave("", S_CLIPBOARD)

The statement above will save the current profile data to the Clipboard (the function defaults to
S_DATA). Note that the FileName parameter specifies a zero-length string.

ret = IpProfSave("C:\IPWIN\PROF.HST",S_APPEND+S_DATA+S_X_AXIS)

The statement above will append the current profile data to a file called PROF.HST in the
\IPWIN directory on the C: drive. The X-axis data will be stored with the statistics.

Comments Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfSave.
The following options can be used in the expression comprising the SaveMode parameter.

USAGE Save Mode DESCRIPTION

Use one or
none...

S_DATA Specifies that line profile data is to be stored.

 S_STATS Specifies that line profile statistics are to be
stored.

 Note - if neither S_DATA nor S_STATS is included
in the expression, S_DATA is assumed.

Use one or
none...

S_APPEND Specifies that the data/statistics are to be
appended to the specified file.

 S_CLIPBOARD Specifies that the data/statistics are to be saved to
the Clipboard. When this option is used, the
FileName parameter is ignored.

 IpProfSelect

Page 2-511

USAGE Save Mode DESCRIPTION

 S_CLIPBOARD
(continued)

Note - if neither S_APPEND nor S_CLIPBOARD is
included in the expression, line profile
data/statistics are saved to a new file (if the file
already exists, it will be overwritten).

 S_PRINT_TABLE Specifies that the data in the table will be sent to
the print.

 S_PRINT_GRAPH Indicates that the graph displayed in the dialog
box will be sent to the printer.

Use any, all
or none...

S_HEADER Specifies that the header is to be stored along
with the data/statistics.

 S_LEGEND Specifies that the legend is to be stored along
with the data/statistics.

 S_X_AXIS Specifies that the X-axis information is to be
stored along with the data/statistics.

 S_COORDS Specifes that the X and Y pixel coordinates are to
be stored along with the data

See Also IpProfSelect

IpProfSelect
Syntax IpProfSelect(ProfId)

Description This function activates the specified line profile window. It selects the profile upon which all
subsequent line profile functions will operate. Equivalent to clicking the Line Profile window
to activate it.

Parameters ProfId Integer An integer specifying the ID of the profile that is to be
selected. See comments, below, for more information
about this ID.

Example ret = IpProfSelect(0)

This statement makes Line Profile window 0 the active Line Profile.

Comments A profile “ID” (ProfId) is assigned to a profile window when it is created. The window retains
this ID for the duration of its existence. A profile window is given the lowest unused ID number
available at the time it is created. If a profile window is opened while no other profiles are open,
it is assigned an ID of “0”. If another profile is created while “0” is open, the new profile is
assigned an ID of “1”. If “0” is closed, and another profile is opened (while “1” is still open), the
new window is given an ID of “0”, since it is the lowest, unused ID available.

IpProfSetAttr

Page 2-512

IpProfSetAttr
Syntax IpProfSetAttr(AttrType, AttrValue)

Description This function selects, sets or deselects options relating to the Line Profile window.

Parameters AttrType Integer An enumerated integer, which identifies the option to
be set. Must be one of the following:

CHANNEL1
CHANNEL2
CHANNEL3

 COLORMODEL
FREEZE
GRID
ICAL
LINEGEOMETRY
LINETYPE
SCAL
STATISTICS

See definitions under Comments, below.

 AttrValue Integer An integer specifying how the option specified by
AttrType is to be set. See definitions under Comments,
below, for the values allowed by each option.

Example ret = IpProfSetAttr(REFERENCE, 1)

This statement will set the current defining line as a “reference” line.

Comments AttrType options are as follows:

AttrType DESCRIPTION ALLOWED VALUES
CHANNEL1 Enables or disables the 0 - Disables Channel.
 profile of the Red, Hue 1 - Enables Channel.
 or Y channel, depending

upon the color model
selected.

CHANNEL2 Enables or disables the 0 - Disables Channel.
 profile of the Green, 1 - Enables Channel.
 Saturation or In-Phase

channel, depending upon the
color model selected.

CHANNEL3 Enables or disables the 0 - Disables Channel.
 profile of the Blue, 1 - Enables Channel.
 Intensity, Value or

Quadrature channel,
depending upon the color
model selected.

COLORMODEL Selects the color model CM_RGB
 in which the line profile CM_HSI
 will be displayed. CM_HSV

 IpProfSetAttr

Page 2-513

AttrType DESCRIPTION ALLOWED VALUES
COLORMODEL Equivalent to selecting CM_YIQ
 the color model in the
 Line Profile window's
 Color menu.
FREEZE Sets or releases a frozen 0 - Releases frozen line.
 profile line. 1 - Freezes current line.
 Equivalent to setting the
 Freeze option in the
 Line Profile window's
 Report menu.
GRID Determines whether the 0 - Selects Graph form.
 profile is displayed in 1 - Selects Table form.
 table or graph form.
 Equivalent to setting the
 Table option in the
 Line Profile window's
 Report menu.
ICAL Specifies whether the

intensity calibration is to be
0 - Suppresses calibration of

profile.
 applied to the profile.

Equivalent to setting the
1 - Applies calibration to

profile.
 Intensity Cal option in
 the Line Profile window
 Report menu.
LINEGEOMETRY Sets the type of line used in

the Line Profile (line, circle,
PROFTYPE_LINE

 or freeform) . PROFTYPE_CIRCLE
 Equivalent to setting the PROFTYPE_FREEFORM
 Profile Type in the Line
 Profile window.
 The points should be
 initialized with the freeform
 line's points using IpListPts
 prior to calling IpProfSetAtt.
LINETYPE Determines whether a THICKHORZ
 line or a rectangle is to be THICKVERT
 profiled. Also selects the THICKNORMAL
 type of statistic that is THICKAVG
 to be measured when a THICKSTDDEV
 rectangle is profiled.
 Equivalent to setting the
 Normal, Thick Vert,
 Thick Horz or Thick
 Options options in the
 Line Profile window
 Report menu.

IpProfSetFreeForm

Page 2-514

AttrType DESCRIPTION ALLOWED VALUES
ORIGIN Specifies whether the 0 - Scales from range min.
 Y-axis will originate at 1 - Scales from 0.
 0, or will be scaled to the
 range min and max values.
 Equivalent to setting the
 Full Scale option in
 the Line Profile window
 Report menu.
REFERENCE Sets or releases a reference 0 - Releases reference line.
 line. Equivalent to setting

the Reference box in the
1 - Sets current line as a

reference line.
 Line Profile window.
SCAL Specifies whether the spatial

calibration is to be
0 - Suppresses calibration of

the profile.
 applied to the profile.

Equivalent to setting the
1 - Applies calibration to the

profile.
 Spatial Cal option in
 the Line Profile window
 Report menu.
STATISTICS Specifies whether statistics

or range information is to be
displayed in the profile

0 - Suppresses display of
statistics and range
information.

 window. Equivalent to 1 - Displays Statistics.
 setting the Statistics 2 - Displays Range Info.
 or Range/Area option
 in the Line Profile
 window's Report menu.

 Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfSetAttr.

IpProfSetFreeForm
Syntax IpProfSetFreeForm (NumPoints, Points)

Description This function can be used in place of IpProfSetAttr for freeform line profiles.

Parameters NumPoints Integer An integer specifying the number of points for the
freeform line profile.

 Points POINTAPI An array of points defining the freeform line profile.

Comments The function will set the LINETYPE attribute to PROFTYPE_FREEFORM and
simultaneously set the free form points. A new line profile must be created using
IpProfCreate before you use this function to set the line profile type and shape.

See Also IpProfCreate, IpProfSetAttr

 IpProfSize

Page 2-515

IpProfSize
Syntax IpProfSize(cx, cy)

Description This function changes the size of the active line profile window to the specified width and
height.

Parameters cx Integer An integer specifying the width, in pixels, at which the
Line Profile window is to be displayed.

 cy Integer An integer specifying the height, in pixels, at which the
Line Profile window is to be displayed.

Example ret = IpProfSize(400, 175)

This statement will resize the Line Profile window to dimensions of 400 pixels wide by 175
pixels tall.

Comments Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfSize.

See Also IpProfSelect

IpProfUpdate
Syntax IpProfUpdate()

Description This function updates the data within the Line Profile window. Equivalent to selecting the
Updatecommand within the Line Profile window.

Comments Note that this function operates upon the “active” profile window (i.e., the one most recently
opened or selected). If the currently active profile is not the one you want to use, you must use
IpProfSelect to explicitly select (make active) the appropriate window before calling
IpProfUpdate.

See Also IpProfSelect

IpPrtHalftone
Syntax IpPrtHalftone(bUsePrtHalftone, bUsePrtScaling, HalftoneType, HaltoneOption)

Description This function sets the halftone and scaling options to be applied when the image is printed.
Equivalent to setting the options within the Halftone group box in the Print dialog box.

Parameters bUsePrtHalftone Integer An integer value of 0 or 1 specifying whether the
printer's halftone capability is to be utilized. Where:
 0 - Image-Pro halftones the image before it

is sent to the printer using the method
specified by the HalftoneType and
HalftoneOption parameters.

 1 - the printer halftones the image at print
time.

When this parameter is set to 1, the HalftoneType
and HalftoneOption parameters are ignored.

IpPrtPage

Page 2-516

 bUsePrtScaling Integer An integer value of 0 or 1 specifying whether the
printer's scaling capability is to be utilized. Where:
 0 - Image-Pro scales the image before it is

sent to the printer.
 1 - the printer scales the image at print time.

 HalftoneType Integer An integer from 0 to 6 (inclusive) specifying the
halftone screen/method to be used. Where:
 0 - Angle Dot Screen
 1 - Flat Dot Screen
 2 - Angle Line Screen
 3 - Horz Line Screen
 4 - Vert Line Screen
 5 - Error Diffusion
 6 - Threshold
This parameter is ignored when bUsePrtHalftone is
set to 1. When this is the case, just set
HalftoneType to 0.

 HaltoneOption Integer An integer from 0 to 4 (inclusive) specifying the
screen resolution or halftone option to be used.
Where:
for HalftoneType values of 0 - 4:
 0 - largest LPI value
 1 - second-largest LPI value
 2 - second-smallest LPI value Screen
 3 - smallest LPI value

 for HalftoneType values of 5:
 0 - 4 Weights
 1 - 12 Weights
 2 - Fuzzy
 3 - Random
This parameter is ignored when bUsePrtHalftone is
set to 1, or when HalftoneType is set to 6. When
this is the case, just set HalftoneOption to 0.

Example ret = IpPrtHalftone(0, 0, 5, 3)

This statement will set the halftone type to Error Diffusion using the Random pattern.

See Also IpPrtSize, IpPrtPage

IpPrtPage
Syntax IpPrtPage(PageNo, bPrintOverlay, Copies)

Description This function prints the active image (with or without an overlay). Equivalent to clicking the
Print button in the Print dialog box.

Parameters PageNo Integer An integer specifying the tile number to be printed, or 0
if the entire image is to be printed on a single page.
See Comments, below.

 IpPrtScreen

Page 2-517

 bPrintOverlay Integer An integer value of 0 or 1 specifying whether to print
the image with an overlay. Equivalent to enabling the
Print Overlay checkbox in the Print dialog box.
Where:
 0 - Print the image only.
 1 - Print with image with overlay.

 Copies Integer An integer specifying the number of copies to be
printed of the specified tile.

Example ret = IpPrtPage(1, 0, 3)

This statement will print three copies of the second tile of the image.

Comments When an image is tiled across several pages, each tile is assigned a page number. This number is
the one that you must specify in the PageNo parameter. Page numbers are assigned, beginning
with “0”, from left to right, beginning with the top row and working down. The examples below
illustrate the way in which tiles are numbered:

0 1

2 3

0 1

3 4

2

5

See Also IpPrtSize

IpPrtScreen
Syntax IpPrtScreen(PageNo, bPintOverlay, Copies)

Description This function prints the screen capture image.

Parameters PageNo Integer An integer specifying the tile number to be printed, or 0
if the entire image is to be printed on a single page.
See Comments, below.

 bPrintOverlay Integer An integer value of 0 or 1 specifying whether to print
the image with an overlay. Equivalent to enabling the
Print Overlay checkbox in the Print dialog box.
Where:
 0 - Print the image only.
 1 - Print with image with overlay.

 Copies Integer An integer specifying the number of copies to be
printed of the specified tile.

Example ret = IpPrtScreen(0, 0, 1)

This statement will print one copy of the entire image.

See Also IpPrtPage

IpPrtSize

Page 2-518

IpPrtSize
Syntax IpPrtSize(Mode, bCentered, Top, Left, Width, Height, Smooth)

Description This function sets the image size and position for printing purposes. Equivalent to clicking the
Position button in the Print dialog box, and setting the size and position fields.

Parameters Mode Integer An enumerated integer specifying whether the image is
to be printed at actual size, page size, or the size
specified by the Width and Height parameters. Must
contain one of the following:
 PRT_ACTUAL
 PRT_FIT
 PRT_DISTORT
See definitions under Comments, below.

 bCentered Integer An integer value of 0 or 1 specifying whether the image
is to be centered within the print space, or is to be
printed according to the margins specified by the Top
and Left parameters. Where:
 0 - Prints the image according to the position

specified by the Top and Left parameters.
 1 - Prints the image in the center of the print

space.
When this parameter is set to 1, the Top and Left
parameters are ignored.

 Top Single A single point number specifying, in inches, the
position of the top edge of the image in the print space.
This parameter is ignored when the bCentered
parameter is set to 1. When this is the case, just set
Top to 0.

 Left Single A single point number specifying, in inches, the
position of the left edge of the image in the print space.
This parameter is ignored when the bCentered
parameter is set to 1. When this is the case, just set
Left to 0.

 Width Single A single point number specifying the width (x-
dimension), in inches, to which the printed image is to
be scaled.
This parameter is used only when the Mode parameter
is set to PRT_DISTORT. Set it to 0, otherwise.

 Height Single A single point number specifying the height (y-
dimension), in inches, to which the printed image is to
be scaled.
This parameter is used only when the Mode parameter
is set to PRT_DISTORT. Set it to 0, otherwise.

Parameters Smooth Integer An integer value of 0 or 1 specifying whether the image
is to be smoothed when it is scaled for print. Where:
 0 - Suppresses smoothing.
 1 - Applies smoothing.

 IpPrtSize

Page 2-519

Example ret = IpPrtSize(PRT_FIT, 0, 1.0, 0.0, 0.0, 0.0, 1)

This statement will print the active image to fit the page. The top edge will begin 1 inch down
from the top of the print space. Smoothing will be employed. The Width and Height
parameters have been set to 0 because they are not used by PRT_FIT.

Comments Mode options are as follows:

Mode DESCRIPTION

PRT_ACTUAL Sets print size to the actual image dimensions, based
upon its current DPI value.

PRT_FIT Sets print size to the largest possible dimensions
given the current print space.

PRT_DISTORT Sets print size to that specified by Width and Height
parameters.

See Also IpPrtPage

IpRegister

Page 2-520

IpRegister
Syntax IpRegister(FromPoints, ToPoints, NumPoints, AffCode)

Description This function warps the active image to a set of tiepoint, using a projective affine
transformation. Equivalent to the Registration command.

Parameters FromPoints POINTAPI An array containing a list of tiepoint coordinates in the
object image (the image to be warped).

 ToPoints POINTAPI An array containing the list of tiepoint coordinates in the
reference image. The order of these points must
correspond to the order of the points in the FromPoints
array.

 NumPoints Integer Number of points in FromPoints or ToPoints.

 AffCode Integer An expression involving the addition of one or more
enumerated integers, where the operands specify the
options to be used during the transformation process.

 The expression may include any of the following as
operands:
AFF_AOI
AFF_NOBILINEAR
AFF_NOSCALE
AFF_NOTILT
AFF_SINGLE

AFF_CLIP
See definitions under Comments, below.

Example The following example registers one image to another using the image-clip and single-point
options. Note that a single array has been used for both sets of points.
'the source points
ret = IpListPts(Pts(0), "142 65 480 0 472 421 133 443 ")
'the target points
ret = IpListPts(Pts(4), "133 57 472 18 479 413 153 445 ")
ret = IpRegister(Pts(0), Pts(4), 4, AFF_CLIP + AFF_SINGLE)

Comments AffCode options (flags) are enabled by including them as operands in an additive expression. For
example,

An AffCode of... would specify...
0 No options.

AFF_CLIP A single option (in this case, the image-clipping option).

AFF_CLIP+AFF_SINGL
E

Two options (in this case, the image-clipping and single-point options).

 IpRegShow

Page 2-521

 The following table describes the options that can be added in AffCode:

AffCode FLAG DESCRIPTION
AFF_CLIP This option determines the position of the tiepoints in the new image. When AFF_CLIP

is enabled, the tiepoints in the result are located in exactly the same spatial positions as
the reference image (pixels above and to the left of the new image origin may be
clipped to achieve this positioning). If the purpose of the registration is to align two
images for comparative analysis, use AFF_CLIP. This produces an image that most
closely resembles the reference image in terms of perspective and position.

If this option is disabled, the new image will encompass the entire transformed result.

AFF_SINGLE This option enables the single-point transformation process. This option produces the
most accurate results, but will be slow if your system is not equipped with a math co-
processor.

AFF_NOBILINEAR This option disables the bilinear interpolation process during transformation. Enabling
this option yields faster processing time, but lower quality results.

AFF_NOSCALE This option tells the function not to correct for differences in scaling between two
images.

AFF_NOTILT This option tells the function not to correct for differences in perspective or “tilt”
between two images.

See Also IpRegShow

IpRegShow
Syntax IpRegShow(bShow)

Description This function displays or hide the Registration dialog box. Equivalent to selecting the
Registration command to open the window, or clicking its Close button to close it.

Parameters bShow Integer An integer value of 0 or 1 specifying whether the
“Registration” window is to be shown. Where:
 0 - Closes the window if it is already open.
 1 - Opens the window.

Example This set of statements will open the “Registration” window, perform a registration, then close the
“Registration” window.
ret = IpRegShow(1)
ret = IpListPts(Pts(0), "40 121 289 26 301 315 30 256 ")
ret = IpListPts(Pts(4), "50 55 275 55 275 301 50 301 ")
ret = IpRegister(Pts(0), Pts(4), 4,0)
ret = IpRegShow(0)

See Also IpRegister

IpRendAnimation

Page 2-522

IpRendAnimation
Syntax IpRendAnimation (Command, sPram, lParam)

Description This function executes various animation operations

Parameters Command Integer See comments and list below.

 sParam Integer See comments and list below.

 lParam Long See comments and list below.

Comments The animation functions take the following parameters:

 sCmd sParam lParam Description

 ANIM_GET_FRAMES not used Pointer to a
long variable
receving the
result

Gets the total
number of frames in
the current
animation.

 ANIM_GET_CAMERAS not used Pointer to a
long variable
receving the
result

Gets the total
number of camera
positions in the
current animation.

 ANIM_GET_CAM_
FRAMES

Camera
position (0-
based)

Pointer to a
long variable
receving the
result

Gets the number of
frames for the
specified camera
position in the
current animation.

 ANIM_PLAYFF Starting camera
position

Pointer to a
long variable
that contains
the value of the
starting frame
for the camera
position. If the
value is NULL
the base
camera position
is used.

Plays animation
forward

 ANIM_PLAYRW Starting camera
position

Pointer to a
long variable
that contains
the value of the
starting frame
for the camera
position. If the
value is NULL
the base
camera position
is used.

Plays animation in
reverse.

 sCmd sParam lParam Description

 IpRendAnimationFile

Page 2-523

 ANIM_STOP Ending camera
position

Pointer to a
long variable
receving the
result

Stop play

 ANIM_GOTO Camera
position to
display

Pointer to a
long variable
that contains
the value of the
intermediate
frame for the
camera
position. If the
value is NULL
the base
camera position
is used.

Displays the position
of the defined frame
in the animation.

 ANIM_CREATE used
as:
CREATE_ANIM_ALL to
create a sequence of all
animation
CREATE_ANIM_CURR
ENT to create 1-frame
animation of the current
view

Defines
whether to
create
animation of
whole
sequence or
only the current
view.

Not used. Creates an
animation sequence
in the IPP
workspace.

Return Value The ID of the animation sequence if successful, a negative error code if failed.

Example Please see Appendix A, Sample Macro Code.

See Also IpRendAnimationFile

IpRendAnimationFile
Syntax IpRendAnimationFile (szFileName, bSave)

Description This function loads or saves the animation file.

Parameters szFileName String Indicates the file to load or save.

 bSave Integer Indicates whether to load or save the file:
0 = load file
1 = save file

Return Value 0 if successful, a negative error code if failed.

Example Ret = IpRendAnimationFile(“FlyThrough.anm”,0)

See Also IpRendAnimation

IpRendConvertCoord

Page 2-524

IpRendConvertCoord
Syntax IpRendConvertCoord (sUnFrom, sUnTo, dInCoord, dOutCoord)

Description This function is used to convert the coordinates from one unit of measure to another.

Parameters sUnFrom Integer Indicates the units to convert from. See description
below

 sUnTo Integer Indicates the units to convert to. See description
below:

 dInCoord LPVOID Pointer to an array (InArr of 3 doubles) that contains
the coordinate to convert. Should be one of the
following:
 InArr[0] = X coordinate
 InArr[1] = Y coordinate
 InArr[2] = Z coordinate

 dOutCoord LPVOID Pointer to an array (OutArr of 3 doubles) that will
receive the converted coordinate. Should be one of
the following:
 OutArr[0] = X coordinate
 OutArr[1] = Y coordinate
 OutArr[2] = Z coordinate

 Parameter Name Description

sUnFrom UN_IM_COORD Image coordinates (pixel

coordinates)

 UN_VOL_COORD Volume coordinates (pixel
coordinates with sub-sampling)

 UN_CALIBR_
COORD

Calibrated coordinates

 UN_WORLD_
COORD

World coordinates, i.e.the
coordinates where the 3D volume is
shown in the 3D constructor window.

 sUnTo UN_IM_COORD Image coordinates (pixel
coordinates)

 UN_VOL_COORD Volume coordinates (pixel
coordinates with sub-sampling)

 UN_WORLD_
COORD

World coordinates, i.e.the
coordinates where the 3D volume is
shown in the 3D constructor window

 UN_CALIBR_
COORD

Calibrated coordinates

 IpRendConvertRotation

Page 2-525

IpRendConvertRotation
Syntax IpRendConvertRotation (ConvType, InRotation, OutRotation)

Description This function is used to convert the rotation defined by a quaternion to angles and back.

Parameters sConvType Short Indicates the conversion type:
CONV_QUAT_TO_ANG converts rotation values
defined by quaterions to angles in radians
CONV_ANG_TO_QUAT converts rotation values
defined by angles in radians to quaternions

 InRotation LPVOID See description below

 OutRotation LPVOID See description below

Comments The InRotation and OutRotation parameters depend on the conversion type, as describe
here:

 Parameter Conversion
Type

Description

 InRotation CONV_
QUAT_
TO_ANG

Pointer to array InArr of double[4] that contains
the quaternion of the rotation (returned by
IpRendElem(ELEM_OBL_SL_PAR_GET,
IP_REND_OBLIQUE_SLICE,…) or
IpRendElem(ELEM_TRANSFORM_GET,
IP_REND_EXT_OBJECT,…)). Note, that the
Oblique slice dialog shows A,B and G angles
relatively to Y and –Z axes, whereas camera
dialog shows angles relatively to –Z and Y axis.
 InArr[0] – rotation X
 InArr[1] – rotation Y
 InArr[2] – rotation Z
 InArr[3] – rotation W

 CONV_
ANG_TO_Q
UAT

Pointer to array InArr of double[3] with rotation as
angles in radians (see Camera parameters
dialog for the description of angles)
 InArr [0] – alpha angle
 InArr [1] – beta angle
 InArr [2] – gamma angle

IpRendConvertRotation

Page 2-526

 Parameter Conversion

Type
Description

 OutRotation CONV_

QUAT_
TO_ANG

Pointer to array OutArr of double[3] that will
receive the converted rotation as angles in
radians (see Camera parameters dialog for the
description of angles)
 OutArr [0] – alpha angle
 OutArr [1] – beta angle
 OutArr [2] – gamma angle

 CONV_ANG
_TO_QUAT

Pointer to array OutArr of double[4] that will
receive the converted rotation as quaternion (can
be used with IpRendElem(ELEM_OBL_SL_PAR,
IP_REND_OBLIQUE_SLICE,…) or
IpRendElem(ELEM_TRANSFORM,
IP_REND_EXT_OBJECT,…))
 OutArr [0] – rotation X
 OutArr [1] – rotation Y
 OutArr [2] – rotation Z
 OutArr [3] – rotation W

 IpRendElem

Page 2-527

IpRendElem
Syntax IpRendElem (Command, lOpt1, lOpt2, lParam)

Description This function sets and gets various parameters of 3D rendering elements.

Parameters Command Integer See comments and list below.

 lOpt1 Long See comments and list below.

 lOpt2 Long See comments and list below.

 lParam Any See comments and list below.

Comments The animation functions take the following parameters:

sCmd lOpt1 lOpt2 lParam Description

ELEM_GET_
NUMBER

Not used Not used Pointer to a
long variable
that will
receive the
value. Use
this
command to
determine the
number of
elements and
allocate the
data array

Gets the total
number of
rendering
elements in the
current
configuration. (The
number of
elements in the
table of rendering
lOptions dialog).

ELEM_GET_TYPE_
LIST

Not used Not used. Pointer to an
array of long
variables that
will recive the
information.
The list must
be long
enough to
receive all
elements

Gets the list of 3D
rendering element
types (see list
below).

ELEM_GET_ID_
LIST

Not used. Not used. Pointer to an
array of long
variables that
will recive the
information.
The list must
be long
enough to
receive all
elements

Gets list of the 3D
rendering element
IDs. For element
types that can be
multiple as Ortho-
Slice, Oblique
Slice or Iso-
Surface this value
gives the ID. The
IDs for elements
that can not be
duplicated
(Volume,
Palette…) is 0.

IpRendElem

Page 2-528

sCmd lOpt1 lOpt2 lParam Description

ELEM_GET_HIST
_X

IP_REND_ISO_S
URF

ID of iso-
surface

Pointer to an
array of
double[100]
that will receive
the histogram
information.
Each value
represents the
number of
voxels in the
bin

Gets the X values
of the mesh
histogram of the
iso-surface.

ELEM_GET_HIST
_Y

IP_REND_ISO_S
URF

ID of iso-
surface

Pointer to an
array of
double[100]
that will receive
the histogram
information.
Each value
represents the
intensity value
of the left
margin of the
bin

Gets the Y values
of the mesh
histogram of the
iso-surface.

ELEM_SHOW Element type. See
list below.

Element ID Pointer to a
long variable
that that
contains the
value. If this
value is 0 the
element will
be hidden,
otherwise it
will be shown

Shows or hides a
3-D rendering
element.

 IpRendElem

Page 2-529

Element type Type Value Description

IP_REND_VOLUME 0 Volume

IP_REND_ORTHO_SLICE 1 Ortho-Slice

IP_REND_OBLIQUE_SLICE 2 Oblique Slice

IP_REND_ROI 3 Region of Interest

IP_REND_PALETTE 4 Palette

IP_REND_ISO_SURF 5 Iso-Surface

IP_REND_SLICER 6 Slicer

IP_REND_TIME 7 Time

IP_REND_MEASUREMENTS 8 Manual Measurements

IP_REND_EXT_OBJECT 9 External Object

IP_REND_ANIMATION 10 Animation

sCmd LOpt1 LOpt2 lParam Description

ELEM_ACTIVATE Element type. See
list below.

Index of the
element

Not used,
should be
IpNULL

Activates the
lOptions page of the
3D rendering dialog
for the element
referenced in lLOpt1,
lLOpt2.

ELEM_ADD Element type.
Should be one of the
following:
IP_REND_ISO_
SURF
IP_REND_
ORTHO_SLICE
IP_REND_
OBLIQUE_SLICE
IP_REND_EXT_
OBJECT

Not used,
should be 0

Not used,
should be
IpNULL

Adds a new 3D
rendering element

ELEM_DELETE Element type.
Should be one of the
following:
IP_REND_ISO_
SURF
IP_REND_
ORTHO_SLICE
IP_REND_
OBLIQUE_SLICE
IP_REND_EXT_
OBJECT

Index of the
element

Not used,
should be
IpNULL

Deletes the 3D
rendering element.

IpRendElem

Page 2-530

sCmd LOpt1 LOpt2 lParam Description

ELEM_SET_USER
_
PALETTE

Palette length
(recommended length
is 256)

Not used. Pointer to an
array palAr of
integer values
that contains
palette. The
palette is saved
as an array of
RGBA values,
shown below:
All values must
be in range
from 0 to 255.
Size of the
array must be
4*palette length

Sets the user-
defined palette.

lParam Description
palAr[0] Red value of the first entry
palAr[1] Green value of the first entry
palAr[2] Blue value of the first entry
palAr[3] Transparency value of the first entry
palAr[4] Red value of the second entry

ELEM_GET_VOI_I
NFO

Not used. Not used. Pointer to an
array of
double[8] that
will receive the
VOI
information.
The structure of
the array is the
following:

Gets the parameters
of the current
Volume of Interest in
calibrated units

 IpRendElem

Page 2-531

lParam Description

voiAr[0] Size of VOI in X direction
voiAr[1] Size of VOI in Y direction
voiAr[2] Size of VOI in Z direction
voiAr[3] Left X coordinate of VOI
voiAr[4] Left Y coordinate of VOI
voiAr[5] Left Z coordinate of VOI
voiAr[6] Volume of VOI
voiAr[7] Volume fraction of VOI

sCmd LOpt1 LOpt2 lParam Description

ELEM_GET_
VOLUME_INFO

Not used. Not used. Pointer to an
array of
double[10] that
will receive the
volume
information.
The structure of
the array is the
following:

Gets the parameters
of the current
rendered volume
loaded into the 3D
Contructor

lParam Description

OutAr[0] sub-sampling X
OutAr[1] sub-sampling Y
OutAr[2] sub-sampling Z
OutAr[3] voxel size X, in calibrated units
OutAr[4] voxel size Y, in calibrated units
OutAr[5] voxel size Z, in calibrated units
OutAr[6] width, number of slices in X
OutAr[7] height, number of slices in Y
OutAr[8] depth, number of slices in Z
OutAr[9] total volume in calibrated units

sCmd LOpt1 LOpt2 lParam Description

ELEM_VOI_PAR_
GET

IP_REND_ROI 0 Pointer to an
array of
double[6] that
will receive the
information.
The structure of
the array is the
following:

Gets position and
scale parameters of
current VOI

IpRendElem

Page 2-532

lParam Description

OutAr[0] Position X of the center of VOI in world
coordinates

OutAr[1] Position Y of the center of VOI in world
coordinates

OutAr[2] Position Z of the center of VOI in world
coordinates
Range = -1 to +1

OutAr[3] Scale X
Range = 0 to 1

OutAr[4] Scale Y
OutAr[5] Scale Z

sCmd LOpt1 LOpt2 lParam Description

ELEM_VOI_PAR_
SET

IP_REND_ROI 0 Pointer to an
array of
double[6] that
holds the
information.
The structure of
the array is
described in
ELEM_VOI_
PAR_GET

Sets position and
scale parameters of
current VOI

ELEM_OBL_SL_
PAR_GET

IP_REND_OBLIQU
E_SLICE

ID of oblique
slice

Pointer to an
array of
double[10] that
will receive the
information.
The structure of
the array is
described
below:

Gets the oblique
slice orientation
parameters

lParam Description

OutAr[0] Position X of the center of slice dragger
OutAr[1] Position Y of the center of slice dragger
OutAr[2] Position Z of the center of slice dragger
OutAr[3] Scale X
OutAr[4] Scale Y
OutAr[5] Scale Z
OutAr[6] Rotation X
OutAr[7] Rotation Y
OutAr[8] Rotation Z
OutAr[9] Rotation W

 IpRendElem

Page 2-533

sCmd lOpt1 lOpt2 lParam Description

ELEM_OBL_SL_
PAR_SET

IP_REND_OBLIQU
E_
SLICE

ID of oblique
slice

Pointer to an
array of
double[10] that
holds the
information.
The structure of
the array is
described in
ELEM_OBL_SL
_PAR_GET

Sets the oblique
slice orientation
parameters

ELEM_LIGHT
_GET

IP_REND_VOLUM
E

0 Pointer to an
array of
double[8] that
will receive the
information.
The structure of
the array is the
shown here:

Get directional light
volume

lParam Description

OutAr[0] X direction of light
OutAr[1] Y direction of light
OutAr[2] Z direction of light
OutAr[3] 1= On, 0 = Off

This is a read-only parameter. To turn
light on/off , use IpRendElemSet

OutAr[4] Intensity of light in range from 0 to 1.
OutAr[5] Red component of light color in range

from 0 to 1.
OutAr[6] Green component of light color in range

from 0 to 1
OutAr[7] Blue component of light color in range

from 0 to 1.
OutAr[8]
OutAr[9]

IpRendElem

Page 2-534

sCmd lOpt1 lOpt2 lParam Description

ELEM_LIGHT
_SET

IP_REND_VOLUM
E

0 Pointer to an
array of
double[8] that
holds the
information.
The structure of
the array is
described in
ELEM_LIGHT_
GET

Set directional light
volume

ELEM_COLOR_GE
T

IP_REND_ISO_SU
RF or
IP_REND_VOLUM
E

ID of iso-
surface

Pointer to an
array of
double[14] that
will receive the
information.

Gets the color of the
element

lParam Description

OutAr[0] Red component of ambient color in
range from 0 to 1.

OutAr[1] Green component of ambient color in
range from 0 to 1

OutAr[2] Blue component of ambient color in
range from 0 to 1

OutAr[3] Red component of diffuse color in range
from 0 to 1.

OutAr[4] Green component of diffuse color in
range from 0 to 1.

OutAr[5] Blue component of diffuse color in
range from 0 to 1.

OutAr[6] Red component of specular color in
range from 0 to 1.

OutAr[7] Green component of specular color in
range from 0 to 1

OutAr[8] Blue component of specular color in
range from 0 to 1

OutAr[9] Red component of emissive color in
range from 0 to 1.

OutAr[10] Green component of emissive color in
range from 0 to 1

OutAr[11] Blue component of emissive color in
range from 0 to 1.

OutAr[12] Shininess in range from 0 to 1
OutAr[13] Transparency in range from 0 to 1

 IpRendElem

Page 2-535

sCmd lOpt1 lOpt2 lParam Description

ELEM_COLOR_SE
T

IP_REND_ISO_SU
RF or
IP_REND_VOLUM
E

ID of iso-
surface

The structure of
the array is
described in
ELEM_COLOR_G
ET

Sets color
parameters

ELEM_ISO_
SUBSAMPLING

IP_REND_ISO_
SURF

ID of iso-
surface

Pointer to an
array of
double[3] that
will receive the
information.
The structure of
the array is the
following:

Sets new
subsampling for iso-
surface; Setting any
element of the array
to 0 will turn ON
auto-subsampling.

lParam Description

ipDArray [0] Sub-sampling X
ipDArray [1] Sub-sampling Y
ipDArray [2] Sub-sampling Z

ELEM_CAM_
POSITION_GET

IP_REND_ANIMATI
ON

0 Pointer to an
array of
double[9] that
will receive the
information.
The structure of
the array is
shown below

Gets current camera
position parametrs

lParam Description

OutAr[0] camera angle alpha (radians)
OutAr[1] camera angle beta (radians)
OutAr[2] camera angle gamma (radians)
OutAr[3] camera type : 1 – orthographic, 0 -

perspective
OutAr[4] (for orthographic), height angle, radians

(for perspective)
OutAr[5] focal point X position in world

coordinates

IpRendElem

Page 2-536

lParam Description

OutAr[6] focal point Y position in world
coordinates

OutAr[7] focal point Z position in world
coordinates

OutAr[8] focal distance in world coordinates

sCmd lOpt1 lOpt2 lParam Description

ELEM_CAM_
POSITION_SET

IP_REND_
ANIMATION

0 Pointer to an
array of
double[9] with
camera
parameters.
See
ELEM_CAM_
POSITION_GE
T for the
structure of the
array

sets camera position
parameters

ELEM_GET_VOL_
STATS

IP_REND_ISO_
SURF

ID of iso-
surface

Pointer to an
array of
double[12] that
will receive the
information.
The structure of
the array is the
shown here

Gets the statistics for
the volume mesh
and iso-surface

lParam Description

OutAr[0] Miniumum value
OutAr[1] Maximum value
OutAr[2] Number of bins in the histogram
OutAr[3] Channel
OutAr[4] Sub-sampling X
OutAr[5] Sub-sampling Y
OutAr[6] Sub-sampling Z
OutAr[7] Filter

 IpRendElem

Page 2-537

lParam Description

OutAr[8] Close edges
OutAr[9] Simplification
OutAr[10] Surface value (level)
OutAr[11] Count flag

sCmd lOpt1 lOpt2 lParam Description

ELEM_TRANSFOR
M_
SET

IP_REND_EXT_
OBJECT

ID of external
object

Pointer to an
array of
double[17] that
holds the
information.
The structure of
the array is
described in
ELEM_TRANS
FORM_GET

Sets the transform
parameters for the
external object

ELEM_TRANSFOR
M_
GET

IP_REND_EXT_
OBJECT

ID of external
object

Pointer to an
array of
double[17] that
will receive the
information.
The structure of
the array is the
following:

Gets the transform
parameters for the
external object1

lParam Description

OutAr[0] Rotation X
OutAr[1] Rotation Y
OutAr[2] Rotation Z
OutAr[3] Rotation W

OutAr[4] Scale orientation X
OutAr[5] Scale orientation Y
OutAr[6] Scale orientation Z
OutAr[7] Scale orientation W

1 Quaternions always obey: x^2 + y^2 + z^2 + w^2 = 1.0
See the following for more information on quaternions:
- Shoemake, K., Animating Rotation With Quaternion Curves,

 Computer Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
 - Pletinckx, D., Quaternion Calculus as a Basic Tool in Computer Graphics,
 The Visual Computer 5, 2-13, 1989

IpRendElem

Page 2-538

lParam Description

OutAr[8] Position X of the center of the object
OutAr[9] Position Y of the center of the object
OutAr[10] Position Z of the center of the object
OutAr[11] Translation X
OutAr[12] Translation Y
OutAr[13] Translation Z
OutAr[14] Scale X
OutAr[15] Scale Y
OutAr[16] Scale Z

See Also IpRendElemGet, IpRendElemSet, IpRendElemSetStr

Return Value 0 if successful, a negative error code if failed.

Example Please see Appendix A, Sample Macro Code

 IpRendElemGet

Page 2-539

IpRendElemGet
Syntax IpRendElemGet (Command, 1LOpt1, lLOpt2,lParam)

Description This function gets various parameters of the 3D rendering elements. This function is a
version of IpRendElem used to retrieve parameters from 3D Constructor elements

Parameters Command Integer See comments and list below.

 lOpt1 Long See comments and list below.

 lOpt2 Long See comments and list below.

 lParam Any See comments and list below.

Comments This macro takes the following commands:

Command lOpt 1 lOpt 2 lParam Description

ELEM_NUM_TIME_
POINTS

IP_REND_TIME 0
Pointer to a long
variable that will
receive the value.

Gets the total
number of time
points in the current
4D stack.

ELEM_CURR_ TIME_POINT
IP_REND_TIME 0

Pointer to a long
variable that will
receive the value

Gets the current time
point in the 4D stack

See Also IpRendElem, IpRendElemSet

Example Dim TotalTimePoints As Long
Dim CurrentTimePoint As Long
ret =
IpRendElemGet(ELEM_NUM_TIME_POINTS,IP_REND_TIME,0,TotalTimePoin
ts)
ret =
IpRendElemGet(ELEM_CUR_TIME_POINT,IP_REND_TIME,0,CurrentTimePoi
nt)
Debug.Print TotalTimePoints
Debug.Print CurrentTimePoint

IpRendElemSet

Page 2-540

IpRendElemSet
Syntax IpRendElemSet (Command, lOpt1, lOpt2, dParam)

Description This function sets various parameters of the 3D rendering elements.

Parameters Command Integer See comments and list below.

 lOpt1 Long See comments and list below.

 lOpt2 Long See comments and list below.

 dParam Double See comments and list below.

Comments The animation functions take the following parameters:

lOpt1 sCmd lOpt2 dParam Description

IP_REND_VOLUME

ELEM_VOL_COMP 0 0 = Blend
1= Sum
2= Max

Volume Composition

 ELEM_LIGHTING 0 1 = On
0 = Off

Lighting

 ELEM_GLOBAL_TRA
NSP

0 Transparency Global
Transparency

 ELEM_NUM_SLICES 0 Number of
Slices

Number of Slices

 ELEM_INTERPOLATI
ON

0 1 = On
0 = Off

Interpolation

 ELEM_GRADUATIO
NS

0 1 = On
0 = Off

Graduations

 ELEM_GRID_LINES 0 1 = On
0 = Off

Grid Lines

 ELEM_DRAW_AXES 0 1 = On
0 = Off

Draw Axes

 ELEM_BBOX 0 1 = On
0 = Off

Volume bounding
box

 ELEM_SHOW_PROJ 0 1 = On
0 = Off

Toggle projections
on volume

 ELEM_SHOW_PROJ
_X

0 1 = On
0 = Off

When
ELEM_SHOW_PRO
J is on, show
projection along X

 ELEM_SHOW_PROJ
_Y

0 1 = On
0 = Off

When
ELEM_SHOW_PRO
J is on, show
projection along Y

 IpRendElemSet

Page 2-541

LOpt1 sCmd lOpt2 dParam Description

IP_REND_VOLUME ELEM_SHOW_PROJ
_Z

0 1 = On
0 = Off

When
ELEM_SHOW_PRO
J is on, show
projection along Z

 ELEM_PROJ_
OFFSET

0 % value Projection offset in
percent of size

 ELEM_SHOW_
SHADOW_
PROJ

0 1 = Shadow
projection
0 = Volume
projection

When
ELEM_SHOW_PRO
J is on, show
shadow projection

 ELEM_GRAD_
FONTSIZE

0 % value Graduations in font
size in percent of
default

 ELEM_GRAD_
TICKSIZE

0 % value Graduations in tick
size in percent of
default

 ELEM_AUTO_
RELOAD

0 1 = Auto
Reload on
0 = Auto
Reload off

Turns the Auto-
Reload option on or
off

Example ‘switch On volume projections

ret = IpRendElemSet(ELEM_SHOW_PROJ,IP_REND_VOLUME,0,1)

‘switch off Y projection

ret = IpRendElemSet(ELEM_SHOW_PROJ_Y,IP_REND_VOLUME,0,0)

‘switch on Z projection

ret = IpRendElemSet(ELEM_SHOW_PROJ_Z,IP_REND_VOLUME,0,1)

‘set projection offset to 30 %

ret = IpRendElemSet(ELEM_PROJ_OFFSET,IP_REND_VOLUME,0,30)

‘set shadow projection mode

ret=IpRendElemSet(ELEM_SHOW_SHADOW_PROJ,IP_REND_VOLUME,0,1)

See also: ELEM_COLOR_GET, ELEM-COLOR_SET, ELEM_LIGHT_GET and ELEM_LIGHT_SET in IpRendElem

Lopt1 sCmd lOpt2 dParam Description

IP_REND_PALETTE ELEM_PAL_RED 0 1 = On
0 = Off

Red channel

 ELEM_PAL_GREEN 0 1 = On
0 = Off

Green channel

 ELEM_PAL_BLUE 0 1 = On
0 = Off

Blue channel

IpRendElemSet

Page 2-542

Lopt1 sCmd lOpt2 dParam Description

 ELEM_PAL_ID 0 Palette ID:
0 = Gray
1 =
Temperature
2 = Physics
3 = Standard
4 = Glow
5 = Seismic
6 = Blue/Red
7 = From Image
8 = User
defined
9 = Red
10 = Green
11 = Blue

Set palette by ID

 ELEM_PAL_COL_
MIN

0 Minimum value
for palette color
spread

 ELEM_PAL_OPAQ_
MAX

0 Maximum value
for opaque
palette

IP_REND_PALETTE ELEM_PAL_COL_MA
X

0 Maximum value
for palette color
spread

 ELEM_PAL_BRIGHT
NESS

0 A value in the
range 0 – 100.
Default = 50

Set volume
brightness for all
channels

 ELEM_PAL_BRIGHT
NESS_R

0 A value in the
range 0 – 100.
Default = 50

Set volume
brightness for red
channel.

 ELEM_PAL_BRIGHT
NESS_G

0 A value in the
range 0 – 100.
Default = 50

Set volume
brightness for green
channel

 ELEM_PAL_BRIGHT
NESS_B

0 A value in the
range 0 – 100.
Default = 50

Set volume
brightness for blue
channel

 IpRendElemSet

Page 2-543

lOpt1 sCmd lOpt2 dParam Description

IP_REND_
PALETTE

ELEM_PAL_
CONTRAST

0 A value in the
range 0 – 100.
Default = 50

Set volume contrast
for all channels.

 ELEM_PAL_
CONTRAST_R

0 A value in the
range 0 – 100.
Default = 50

Set volume contrast
for red channel

 ELEM_PAL_
CONTRAST_B

0 A value in the
range 0 – 100.
Default = 50

Set volume contrast
for blue channel

 ELEM_PAL_
CONTRAST_G

0 A value in the
range 0 – 100.
Default = 50

Set volume contrast
for green channel

 ELEM_PAL_GAMMA 0 A value in the
range 10 –
1000.
Default = 100

Set gamma for all
volume channels,
muliplied by 100; i.e.
use 200 to set
gamma = 2

 ELEM_PAL_GAMMA_R 0 A value in the
range 10 –
1000.
Default = 100

Set volume gamma
for red channel,
muliplied by 100; i.e.
use 200 to set
gamma = 2

 ELEM_PAL_GAMMA_B 0 A value in the
range 10 –
1000.
Default = 100

Set volume gamma
for blue channel,
muliplied by 100; i.e.
use 200 to set
gamma = 2

 ELEM_PAL_GAMMA_G 0 A value in the
range 10 –
1000.
Default = 100

Set volume gamma
for green channel,
muliplied by 100; i.e.
use 200 to set
gamma = 2

IpRendElemSet

Page 2-544

lOpt1 sCmd lOpt2 dParam Description

IP_REND_
ANIMATION

ELEM_GO_FIRST Not Used Not Used Go to first position in
Animation sequence

 ELEM_PLAY_RW Not Used Start frame no. Play sequence back
once

 ELEM_GO_PREV Not Used Not Used Go to previous
position

 ELEM_GO_NEXT Not Used Not Used Go to next position
 ELEM_PLAY_FF Not Used Start frame no. Play sequence

forward once
 ELEM_GO_LAST Not Used Not Used Go to last position
 ELEM_GO_TO Not Used Frame no. Go to position

specified by
dParam.

 ELEM_CLOSE_ENDS Not Used 1 = On
0 = Off

Close start/end
frames (create a
loop)

 ELEM_FRAMES_PER_
CAM

Not Used Value No. of intermediate
frames between
start and end

 ELEM_AUTO_ANIM_SI
ZE

Not Used 1 = On
0 = Off

Auto animation
image size

 ELEM_ ANIM_WIDTH Not Used Value Animation width in
pixels

 ELEM_FRAMES_CIRC
ULAR

Not Used Value No. of frames in
circular path

 ELEM_INTERVAL_MS Not Used. Value in
milliseconds

Interval between
frames in
milliseconds

 ELE_TIME_SYNC Not Used. 1 = On
0 = Off

Synchronize with
time

 ELEM_ ANIM_HEIGHT Not Used Value Animation height in
pixels

 IpRendElemSet

Page 2-545

lOpt1 sCmd lOpt2 dParam Description

IP_REND_
ANIMATION

ELEM_ANIM_
ANTIALIAS

Not Used 1 = On
0 = Off

Turns anti-aliasing
of image on or off

 ELEM_ANIM_
ANTIALIAS_N

Not Used Value Number of anti-
aliasing passes
creating animation

 ELEM_REND_IN_
ANIMATION

Not Used 1 = On
0 = Off

Turns rendering
settings in animation
on or off

 ELEM_RECORD_
FRAME

Not Used 1 = On
0 = Off

Records current
camera position to
animation

 ELEM_DEL_CUR_
FRAME

Not Used Not Used Delete current frame
from animation

 ELEM_DEL_ALL Not Used Not Used Delete all frames
from animation

IP_REND_TIME ELEM_GO_FIRST Not Used Not Used Go to first position in
Animation sequence

0 ELEM_PLAY_RW Not Used Start frame no. Play sequence back
once

 ELEM_GO_PREV Not Used Not Used Go to previous
position

 ELEM_GO_NEXT Not Used Not Used Go to next position
 ELEM_PLAY_FF Not Used Start frame no. Play sequence

forward once
 ELEM_GO_LAST Not Used Not Used Go to last position
 ELEM_GO_TO Not Used Frame no. Go to position

specified by
dParam.

 ELEM_INTERVAL_MS Not Used. Value in
milliseconds

Interval between
frames in
milliseconds

 ELEM_TIME_PLAY_TY
PE

Not Used. 0 = Wrap
around
1 = Auto
reverse

Time play type

 ELEM_REND_DUPL_IS
O

Not Used Not Used. Creates duplicates
of volume
measurement for
every time point.

IpRendElemSet

Page 2-546

lOpt1 sCmd lOpt2 dParam Description

 ELEM_REND_REMOVE
_
DUPL

Not Used Not Used. Removes duplicates
of volume
measurement for all
time points except 0.

 ELEM_REND_SHOW_
CUR TIME_ISO

Not Used 1 = On
0 = Off

Sets Show Iso-
Surface for current
time only option

IP_REND_ROI ELEM_VOI_SHAPE Not Used 0 = Sub-Volume
1 = Cross
2 = Slicer
3 = Exclusion
box

VOI shape

0 ELEM_SHOW_
HANDLES

Not Used 1 = On
0 = Off

Show handles on
Volume of Interest

 ELEM_VOI_RESET Not Used Not Used Reset VOI
IP_REND_
SLICER

ELEM_SLR_VIEW_
TYPE

Not Used. 0 = thin
1 = thick
2 = projections

Slicer view type

0 ELEM_
TRANSPARENCY

Not Used. 0 = Off
1 = On

Transparency mode

 ELEM_
INTERPOLATION

Not Used. 0 = Off
1 = On

Interpolation

 ELEM_SLR_CROSS Not Used. 0 = Off
1 = On

Show cross section?

 IpRendElemSet

Page 2-547

lOpt1 sCmd lOpt2 dParam Description

IP_REND_
SLICER

ELEM_SL_X Not Used Value Position of slice X

 ELEM_SL_Y Not Used Value Position of slice Y
 ELEM_SL_Z Not Used Value Position of slice Z

 ELEM_THICK_X Not Used Value Thickness of slice X
 ELEM_THICK_Y Not Used Value Thickness of slice Y
 ELEM_THICK_Z Not Used Value Thickness of slice Z
 ELEM_ RESET Not Used Not Used Reset slicer view
 ELEM_CREATE_

SLICE
Not Used 0 = XY

1 = ZY
2 = XZ

Create slice image

IP_REND_ORTHO_
SLICE

ELEM_SL_
ORIENTATION

Element ID 0 = X
1 = Y
2 = Z

Slice orientation

ID number of the
slice

ELEM_
TRANSPARENCY

Element ID 0 = Off
1 = On

Transparency mode

 ELEM_
INTERPOLATION

Element ID 0 = Off
1 = On

Interpolation

 ELEM_CLIPPING Element ID 0 = Off
1 = On

Clipping

 ELEM_CLIPPING_
SIDE

Element ID 0 = Front
1 = Back

Clipping Side

 ELEM_SLICE_
NUMBER

Element ID Value Slice number

 ELEM_SHOW_
HANDLES

Element ID 1 = On
0 = Off

Show handles

IpRendElemSet

Page 2-548

lOpt1 sCmd lOpt2 dParam Description

IP_REND_OBLIQUE
_SLICE

ELEM_TRANSPARE
NCY

Element ID 0 = Off
1 = On

Transparency mode

ID number of the
slice

ELEM_INTERPOLATI
ON

Element ID 0 = Off
1 = On

Interpolation

 ELEM_CLIPPING Element ID 0 = Off
1 = On

Clipping

 ELEM_SLICE_NUMB
ER

Element ID Value of the
position from -1
to 1

Slice position in
range from -1 to 1

 ELEM_SHOW_HAND
LES

Element ID 1 = On
0 = Off

Show handles

See also: ELEM_OBL_SL_PAR_GET and ELEM_OBL_SL_PAR SET in IpRendElem

IP_REND_ISO_SURF ELEM_ISO_SIMPL Element ID 0 = none
 1= Med
 2 = Max

Simplification level

ID number iso-surface
or volume
measurements

ELEM_ISO_LEVEL Element ID Value Iso-surface
threshold level

 ELEM_ISO_COUNT Element ID 1 = On
0 = Off

Count lOption

IP_REND_ISO_SURF ELEM_SO_CLOSE_
EDGES

Element ID 1 = On
0 = Off

Close edges

 ELEM_ISO_FILTER Element ID 0 = None
1 = LoPass 3x3
2 = LoPass
5x5x5
3 = LoPass
7x7x7
4 = LoPass
9x9x9
5 = Gauss
5x5x5
6 = Gauss
7x7x7
7 = Gauss
9x9x9

Filter type

 ELEM_FREEZE Not Used 1 = On
0 = Off

Turns freeze state of
iso-surface elements
on or off

 ELEM_DUPLICATE Not Used Not Used Duplicates iso-
surfaces

 IpRendElemSet

Page 2-549

lOpt1 sCmd lOpt2 dParam Description

 ELEM_AUTO_HIST

_RNG
Not Used 1 = On

0 = Off
Describes the auto-
histogram range of
the iso-surface

IP_REND_MEASURE
MENTS

ELEM_DECIMAL_
PL

0 Value Number of decimal
places in data

0

See Also IpRendElem, IpRendElemGet, IpRendElemSetStr

Example Please see Appendix A, Sample Macro Code

IpRendElemSetStr

Page 2-550

IpRendElemSetStr
Syntax IpRendElemSetStr (Command, 1Opt1, lOpt2,FileName)

Description This function sets string parameters of the 3D rendering elements. This function is a
version of IpRendElem used to pass string elements into 3D Constructor elements

Parameters Command Integer See comments and list below.

 lOpt1 Long See comments and list below.

 lOpt2 Long See comments and list below.

 File Name LPSTR See comments and list below.

Comments This macro takes the following commands:

Command lOpt 1 lOpt 2 File Name

ELEM_EXT_FILE_NAME Not Used Not Used.
File Name of the
External Element

ELEM_EXPORT IP_REND_ISO_SURF ID of Iso-Surface File Name of
Exported Object

ELEM_ISO_OUTL Not Used Not Used File Name of 3D
outline file

REND_IMAGE_BACK_
NAME

Not Used Not Used FileName
including path of
the background
image

See Also IpRendElem, IpRendElemSet

Example ‘add external element

ret =
IpRendElemSetStr(ELEM_EXT_FILE_NAME,0,0,"C:\models\x29.iv")

ret = IpRendElem(ELEM_ADD,IP_REND_EXT_OBJECT,0,IpNULL)

ret = IpRendElemSetStr(ELEM_EXPORT,
IP_REND_ISO_SURF,0,"C:\Surface1.iv")

 IpRendSaveData

Page 2-551

IpRendSaveData
Syntax IpRendSaveData(sSrcFlags, sDstFlags, szDest)

Description This function saves the data from the 3D Constructor windows.

Parameters sSrcFlags Integer Combination of data source flags and data type
flags that specify the source and type of data to be
saved. See comments and list below.

 sDestFlags Integer Combination of data destination flags and
(lOptional) file lOption flags that specify the
destination and format for the saved data. See
comments and list below.

 szDest LPSTR Indicates the destination file name. Used with
RNDF_FILE only.

 The data source, type, destination, and file lOption flags are described here:

 Flag Type Name Description

 Data source flags RN_MM_DATA Save manual measurements data
table contents to selected
destination (default if source is
not supplied).

 RN_MM_STATS Save manual measurements
statistics contents to selected
destination

 RN_MM_ACTIVE Save manual measurements data
and statistics if it is shown to
selected destination

 RN_VM_DATA Save volume measurements data
table contents to selected
destination

 RN_DATAGRAPH Saves data graph information to
the selected destination

 RN_VM_STATS Save volume measurements
statistics contents to selected
destination

 RN_VM_ACTIVE Save volume measurements data
and statistics if it is shown to
selected destination

 RN_HISTOGRAM Saves volume histogram data to
selected destination.

IpRendSaveData

Page 2-552

 Flag Type Name Description

 Data type flags RNTF_GRAPH Save the information as a picture.
This flag is valid only for
RN_HISTOGRAM with
destination RNDF_CLIPBOARD

 Data destination
flags

RNDF_FILE

Copy data to tab-delimited file
(default if destination is not
supplied). Not valid with
RNTF_GRAPH.

 RNDF_CLIPBOA
RD

Copy data to clipboard. Valid only
for RN_HISTOGRAM with
RNTF_GRAPH.

 Flag Type Name Description

 Data destination
flags

RNDF_OUTPUT Send contents to output file

 RNDF_DDE Send contents to Excel via COM.
Not valid with RNTF_GRAPH

 RNDF_PRINTER Send contents of file to printer

 File lOption flags RNDF_CSV The default format of the data file
is a tab-delimited table of values,
with one line per row. RNDF_CSV
is used in conjunction with the
RNDF_FILE command to modify
the tab-delimited file format and
save it as a comma-delimited
variable file (usually compatible
with import into spreadsheets and
databases). Cannot be combined
with RNDF_HTML

 RNDF_HTML Used to specify that the data file
should be written as a HTML file
containing an HTML TABLE.
Cannot be combined with
RNDF_CSV

Return Value 0 if successful, a negative error code if failed.

Example save volume measurements data table

ret = IpRendSaveData(RN_VM_ACTIVE,RNDF_FILE +RNDF_CSV,
"D:\cs.csv")

‘copy histogram graph to clipboard

ret = IpRendSaveData(RN_HISTOGRAM + RNTF_GRAPH,
RNDF_CLIPBOARD,"")

 IpRendLoad

Page 2-553

IpRendLoad
Syntax IpRendLoad ()

Description This function loads the active sequence into the 3D Constructor volume renderer

Comments Color channel, voxel size and sub-sampling for the loaded sequence must be set prior calling
this function using IpRendSet commands.

Return Value 0 if successful, a negative error code if failed.

Example ‘load active sequence into the renderer

ret = IpRendLoad()

IpRendManualMeasurementsFile
Syntax IpRendManualMeasurementsFile(szFileName,bSave)

Description This function loads or saves a manual measurement file.

Parameters szFileName String Indicates the file to load or save.

 bSave Integer Indicates whether to load or save the file:
0 = load file
1 = save file

Return Value 0 if successful, a negative error code if failed.

Example Ret = IpRendManualMeasurementFile
(“C:\Template\TestMeas1.m3d”,0)

IpRendMeasGraphSet

Page 2-554

IpRendMeasGraphSet
Syntax IpRendMeasGraphSet (sCommand, 1Opt1, dParam)

Description This function gets and sets various parameters of the 3D data graph.

Parameters sCommand Integer See comments and list below.

 lOpt1 Long See comments and list below.

 dParam Double See comments and list below.

Comments This macro takes the following commands:

Command 1Opt1 dParam Description

GRAPH_MEASUREME
NT

Indicates the type
of measurement.
Should be one of
the following:
MANUAL_MEAS_T
YPE or
VOLUME_MEAS_T
YPE

Measurement
ID. Should be
one of the
following:
IVM_SurfVolume
= 0
IVM_SurfArea =
1
IVM_SizeX = 2
IVM_SizeY = 3
IVM_SizeZ = 4
IVM_CenterX
 = 5
IVM_CenterY
 = 6
IVM_CenterZ
 = 7
IVM_VolumeBox
= 8
IVM_BoxRatio
=9

Selects the measurments to be
displayed in the data graph

 IpRendMeasGraphSet

Page 2-555

Command 1Opt1 dParam Description

GRAPH_MEASUREM
ENT, con’t

 IVM_VolumeFra
ction
 = 10
IVM_Diameter =
11
IVM_Sphericity =
12
IVM_MeanDensi
ty = 13
IVM_IOD = 14
IVM_DensityStD
ev = 15
IVM_RadiusMax
= 16
IVM_RadiusMin
= 17
IVM_RadiusRati
o = 18
IVM_Class = 19
IVM_FeretMax =
20
IVM_FeretMin =
21
IVM_FeretRatio
= 22
IVM_SurfAngleA
= 23
IVM_SurfAngleG
= 24
IVM_SurfNormD
ev
 = 25

GRAPH_RANGE_AU
TO

Not used, should be
0

0 = off
1 = on

Sets the auto-range flag for the
graph

GRAPH_RANGE_MI
N

Not used, should be
0

Value Sets the minimum value for the
range

GRAPH_RANGE_MA
X

Not used, should be
0

Value Sets the maximum value for the
range

GRAPH_X_LABELS Not used, should be
0

Should be one of
the following:
rnxlFrameNumb
er
rnxlRelTime
rnxlAbsTime

Indicates the type of label to
display on the graph

GRAPH_SHOW_TRA
CKS

Not used, should be
0

0 = off
1 = on

Turns the tracking mode for the
graph on or off

Example ‘select SurfaceArea measurement in Data Graph

ret=IpRendMeasGraphSet(GRAPH_MEASUREMENT,VOLUME_MEAS_TYPE,
IVM_SurfArea)

Return Value 0 if successful, a negative error code if failed

IpRendMMeas

Page 2-556

IpRendMMeas
Syntax IpRendMMeas(sCommand, 1Opt1, dParam)

Description This function gets and sets various parameters of the 3D manual measurements.

Parameters sCommand Integer See comments and list below.

 lOpt1 Long See comments and list below.

 dParam Double See comments and list below.

Comments This macro takes the following commands:

Command 1Opt1 dParam Description

M_MEAS_GET Manual
measurement
element, should be
one of the following:
IMM_POS_X
IMM_POS_Y
IMM_POS_Z
IMM_LENGTH
IMM_START_POS_
X
IMM_START_POS_
Y
IMM_START_POS_
Z
IMM_END_POS_X
IMM_END_POS_Y
IMM_END_POS_Z
IMM_ANGLE
IMM_AREA

Pointer to an
array of doubles,
large enough to
receive all values.
The size of the
array must be not
less than
NumObj, where
NumObj is the
number of objects
in the manual
measurements
list (see
M_NUM_OBJEC
TS_GET)

Gets the values of manual
measurement elements.

M_STATS_GET Manual
measurement. See
M_MEAS_GET for
available constants

Pointer to an
array of
double[10] that
will receive the
information. The
structure of the
array is the
following:

Gets manual measurement
statistics.

dParam Description

Stats [0] Mean value (DST mean)
Stats[1] Standard deviation (DSTStDev)
Stats[2] Minimum value (DSTMin)
Stats[3] Maximum value (DSTMax)
Stats[4] Range (DST range)

IpRendMMeas

Page 2-557

dParam Description

Stats[5] Sum (DST Sum)
Stats[6] Index of minimum (DSTIndMin)
Stats[7] Index of maximum (DSTIndMax)
Stats[8] Number of shown objects

(DSTNShown)
Stats[9] Total number of objects (DSTNObj)

Command 1Opt dParam Description

M_ADD_MM_
POINT

Number of points in
the element. For
POINT, LINE and
ANGLE this field
must be 1,2 and 3
correspondingly

Pointer to an array of
doubles that contain
point coordinates in
Image coordinates
(see
IpRendConvertCoord
for coordinate
conversion if
necessary). Each
point is represented
by 3 double values
with X,Y and Z
coordinates. Example
of the structure:
ipDArray(0) – X
coordinate of 1-st
point
ipDArray(1) – Y
coordinate of 1-st
point
ipDArray(2) – Z
coordinate of 1-st
point

Adds new point manual
measurement element.
Note that in Template mode the
prompt is displayed and the
macro continues only after
creating the requested
measurement or closing the
Prompt dialog. If the Prompt is
closed by the user, the function
returns -1, otherwise, the ID of
new measurement object is
returned.

M_ADD_MM_LINE See above See above Adds new line manual
measurement element

M_ADD_MM_
POLY_LINE

See above See above Adds new polyline manual
measurement element

M_ADD_MM_
ANGLE

See above See above Adds new angle manual
measurement element

IpRendMMeas

Page 2-558

Command 1Opt dParam Description

M_ADD_MAN_
TRACK

Number of points in
the track

Pointer to an array of
doubles, with object
IDs and time points
for the track. The
structure of the array
is following:
ipDArray(0) – 1st
volume object ID
ipDArray(1) – 1st time
point
ipDArray(2) – 2nd
volume object ID
ipDArray(3) – 2nd
time point
ipDArray(4) – 3rd
volume object ID

Adds a manual 4D track

M_ADD_AUTO_
TRACK

Number of points in
the track; should be
1, because all auto-
tracking starts with
1 object

Pointer to an array of
doubles of size 2, with
starting object ID and
time point (0-based)

Adds an automatic 4D track

M_TYPE_GET Index of the
measurement
element (zero-
based)

Pointer to a double,
that will receive the
value. The value can
be one of the
following:
0 =
IP_REND_MM_POIN
T
1 =
IP_REND_MM_LINE
2 =
IP_REND_MM_POLY
_LINE
3 =
IP_REND_MM_ANGL
E

Gets the type of manual
measurement

M_NUM_OBJECTS_
GET

Not used Pointer to a double
that will receive the
value

Gets the number of manual
measurement elements.

IpRendMMeas

Page 2-559

Command 1Opt dParam Description

M_NUM_POINTS_
GET

Index of the
measurement
element (zero-
based)

Pointer to a double
that will receive the
value

Gets the number of points in the
of manual measurement
element

M_ POINTS_GET Index of the
measurement
element (zero-
based)

Pointer to an array of
doubles, large enough
to receive to receive
all coordinates. The
size of the array must
be not less than
3*NumPoints, where
NumPoints is the
number of points in
the element (see
M_NUM_POINTS_G
ET)

Gets the coordinates of the
points in the manual
measurement element

M_NUM_MEAS_
GET

Not used Pointer to a double
that will receive the
value

Gets the number of active
manual measurements

M_SEL_GET Index of the
measurement
element (zero-
based)

Pointer to a double
that will receive the
value

Gets the selection status of the
manual measurement element.

M_SEL_SET Index of the
measurement
element (zero-
based)
Use M_ALL to
select or deselect
all objects

Double value:
0 = Deselect
1 = Select

Sets the selection status of the
manual measurement element.
Note that in Template mode the
prompt is displayed and the
macro continues only after
selecting/deselecting a manual
measurement element or
closing the Prompt dialog. If the
Prompt is closed by user, the
function returns -1, in other case
the ID of selected/unselected
object is returned

M_SHOW_GET Index of the
measurement
element (zero-
based)

Pointer to a double
that will receive the
value

Gets the visibility status of the
manual measurement element

M_SHOW_SET Index of the
measurement
element (zero-
based)
Use M_ALL to
select or deselect
all objects

Double value:
0 = Deselect
1 = Select

Sets the visibility status of the
manual measurement element

IpRendMMeas

Page 2-560

Command 1LOpt dParam Description

M_MEAS_LIST_
GET

Not used Pointer to an array of
doubles, large enough
to receive to receive
all coordinates. The
size of the array must
be not less than
3*NumPoints, where
NumPoints is the
number of points in
the element. The
points are in image
coordinates. Should
be one of the
following:
0 = IMM_POS_X
1 = IMM_POS_Y
2 = IMM_POS_Z
3 = IMM_LENGTH
4 =
IMM_START_POS_X
5 =
IMM_START_POS_Y
6 =
IMM_START_POS_Z
7 =
IMM_END_POS_X
8 =
IMM_END_POS_Y
9 =
IMM_END_POS_Z
10 = IMM_ANGLE
11 = IMM_AREA

Gets the list of active manual
measurements

Return Value 0 if successful, a negative error code if failed.

Example Please see Appendix A, Sample Macro Code

 IpRendMMeasGetStr

Page 2-561

IpRendMMeasGetStr
Syntax IpRendMMeaseGetStr(sCommand, 1Opt1, lpszDest)

Description This function gets various string parameters for the 3D manual measurements.

Parameters sCommand Integer See comments and list below.

 lOpt1 Long See comments and list below.

 lpszDest LPSTR See comments and list below.

Comments This macro takes the following commands:

Command lOpt 1 lpszDest Description

M_MEAS_PREF_GE
T

Type of manual
measurement,
should be one of the
following:
IP_REND_MM_
POINT
IP_REND_MM_LINE
IP_REND_MM_
POLY_LINE
IP_REND_MM_
ANGLE

String that will
receive the
measurement
prefix, the string
must be a fixed
length string long
enough to receive
the value

Gets manual measurement prefix

M_NAME _GET Index of the
measurement
element (zero-
based)

String that will
receive the
measurement
name, the string
must be a fixed
length string long
enough to receive
the value

Gets the name of the manual
measurement element

Return Value 0 if successful, a negative error code if failed.

See Also IpRendMeasSetStr

Example Dim Pref As String*100
ret = IpRendMMeasGetStr(M_MEAS_PREF_GET,IP_REND_MM_LINE,Pref)
Dim MName As String*100
ret = IpRendMMeasGetStr(M_NAME_GET,0,MName)

IpRendMMeasSet

Page 2-562

IpRendMMeasSet
Syntax IpRendMMeaseSet(sCommand, 1Opt1, dParam)

Description This function sets various parameters of the 3D manual measurements. This function is
a version of IpRendMMease used to pass parameters into the manual measurements.

Parameters sCommand Integer See comments and list below.

 lOpt1 Long See comments and list below.

 dParam Double See comments and list below.

Comments This macro takes the following commands:

Command lOpt 1 dParam Description

M_UPDATE Not used, should be
0

Not used, should
be 0

Updates the manual measurement
data tables and objects. Applies
new settings, should be called
after changing any manual
measurement lOptions from a
macro.

M_LINE_COLOR Not used, should be
0

Color in
hexadecimal
format as
&Hrrggbb, where
rr, gg,bb are Red,
Green and Blue
components of
color.

Sets the line color for manual
measurements.

M_SEL_COLOR Not used, should be
0

Color in
hexadecimal
format as
&Hrrggbb, where
rr, gg,bb are Red,
Green and Blue
components of
color

Selects color for manual
measurements

M_TEXT_COLOR Not used, should be
0

Color in
hexadecimal
format as
&Hrrggbb, where
rr, gg,bb are Red,
Green and Blue
components of
color

Sets label color for manual
measurements

M_EL_SIZE Not used, should be
0

Value Manual measurement element
size
(point, arrow)

M_FONT_SIZE Not used, should be
0

Value Sets font size for manual
measurement labels.

 IpRendMMeasSet

Page 2-563

Command LOpt 1 dParam Description

M_LABEL_TYPE Not used, should be 0 one of the following:
mmLabelsShowNam
e,
mmLabelsShowMea
surement,
mmLabelsShowNon
e

Sets label type of measurements
(name,first measurement,none)

M_RESET_MEAS Not used, should be 0 Not used, should be
0

Resets the list of selected
measurements

M_ADD_MEAS Should be one of the
following:
IMM_POS_X
IMM_POS_Y
IMM_POS_Z
IMM_LENGTH
IMM_START_POS_X
IMM_START_POS_Y
IMM_START_POS_Z
IMM_END_POS_X
IMM_END_POS_Y
IMM_END_POS_Z
IMM_ANGLE
IMM_AREA
IMM_NPOINTS

Not used, should be
1

Adds a measurement to the list of
selected measurements

M_SHOW_STATS Not used, should be 0 0 = Hide statistics
1 = Show statistics

Shows or hides the statistics pane of
the Manual Measurements window.

M_ACTION Not used, should be 0 Action type. Must be
one of the following:
mmActionSelect
mmActionAddPoint
mmActionAddLine
mmActionAddPolyLi
ne
mmActionAddAngle
mmActionSplitObject
mmActionAddOutlin
e
mmActionAddCurve

Sets measurement action

M_CREATE_MEAS Not used, should be 0 Type of new
measurement, must
be one of the
following:

Creates a new derived measurement
based on the selected objects

IpRendMMeasSet

Page 2-564

Command LOpt 1 dParam Description

 IMM_ADD_PP_DIST = distance between centers of 2

objects
IMM_ADD_PL_DIST = distance between point and
line
IMM_ADD_LL_ANGLE = angle between lines
IMM_ADD_CENTER = center point of the object
IMM_ADD_MIN_DIST = min distance between point
and surface
IMM_ADD_POLYLINE = merge object points to a
poly-line
IMM_SPLIT_POLYLINE = creates a new line
measurement from every segment of the selected
track/polyline
IMM_GET_POINTS = creates a new point
measurement for every coordinate of the selected
track/polyline

M_SHOW_ALL Not used, should
be 0

Not used,
should be 0

Shows all objects

M_SHOW_SELEC
TED

Not used, should
be 0

0 = Hide objects
1 = Show
objects

Shows or hides the selected
objects

M_DELETE_ALL Not used, should
be 0

Not used,
should be 0

Deletes all objects

M_DELETE_SELE
CTED

Not used, should
be 0

0 = Hide objects
1 = Show
objects

Deletes the selected objects

M_ALLOW_EDIT Not used, should
be 0

0 = Off
1 = On

Enables point position editing

M_ENABLE_
UPDATE

Not used, should be
0

0 = Disable
update
1 = Enable update

Enables/disables updating of
manual and volume
measurements data tables

M_SPH_SIZE Not used, should be
0

The size value Sets the size of spheres used to
display manual point
measurements

M_LINE_WIDTH Not used, should be
0

The width value Sets the wideth of lines connecting
the manual measurement points

M_EL_COLOR Index of the manual
measurement
element (o-based)

The color value as
long
0xrrggbb

Sets the color of a manual
measurement element.

M_RESET_ALL_US
R_MEAS

Not used, should be Not used, should
be

Resets all added user-defined
measurements

 IpRendMMeasSetStr

Page 2-565

Command LOpt 1 dParam Description

M_USR_MEAS_DAT
A_
SET

Measurement/eleme
nt index. The index
is combined
according to the
following formula:
MeasID+M_USR_M
EAS_MULT*MeasElI
ndex,
where MeasID is the
measurement index
returned by
M_ADD_USR_MEA
S and MeasElIndex
is the index of the
manual
measurement
element (line,
point,…), 0-based.

The selected
value

Sets the value for user-defined
measurements

Return Value 0 if successful, a negative error code if failed.

See Also M_MEAS_PREF_SET in IpRendMMeasSetStr and IpRendMeasGetStr

Example Please see Appendix A, Sample Macro Code

IpRendMMeasSetStr
Syntax IpRendMMeasSetStr(sCommand, 1Opt1, lpszDest)

Description This function sets various string parameters for the 3D manual measurements.

Parameters sComman
d

Integer See comments and list below.

 lLOpt1 Long See comments and list below.

 lpszDest LPSTR See comments and list below.

Comments This macro takes the following commands:

Command lOpt 1 lpszDest Description

M_MEAS_PREF_SET Type of manual
measurement,
should be one of
the following:
IP_REND_MM_
POINT
IP_REND_MM_
LINE
IP_REND_MM_
POLY_LINE
IP_REND_MM_
ANGLE

String with prefix Sets manual measurement prefix

IpRendMove

Page 2-566

Command lOpt 1 lpszDest Description

M_NAME _SET Index of the
measurement
element (zero-
based)

String with new
name

Sets the name of the manual
measurement element

M_TEMPLATE_
PROMPT

Not used String with text Sets the user prompt for template
mode

M_ADD_USR_MEAS Icon ID. The value
can be from 0 to 4

Measurement
name

Adds new user-defined
measurement to the manual
measurements list. If the
measurement already exists, it is
not added. The function just
returns the ID of the measurement.
The measurement values can be
then set from macro using
M_USR_MEAS_DATA_SET
constant (see IpRendMMeasSet)

Comments The example macro prompts the user to select 2 manual measurement elements from within the
measurements table.

Return Value Id of the measurement if successful, a negative error code if failed.

See Also IpRendMeasGetStr

Example ret = IpTemplateMode(1)
ret = IpRendMMeasSetStr(M_TEMPLATE_PROMPT,0,"Please select
first point")
ret = IpRendMMeasSet(M_SEL_SET,1,1)
ret = IpRendMMeasSetStr(M_TEMPLATE_PROMPT,0,"Please select
second point")
ret = IpRendMMeasSet(M_SEL_SET,2,1)
ret = IpTemplateMode(0)

IpRendMove
Syntax IpRendMove(Dialog, xPos, yPos)

Description This function moves windows and dialogs

Parameters sDialog Integer Indicates the dialog to move.

 xPos Integer Indicates the X window position

 yPos Long Indicates the Y window position

Return Value 0 if successful, a negative error code if failed.

Example ret = IpRendMove(REND_VIEWER, 632, 161)

 IpRendReload

Page 2-567

IpRendReload
Syntax IpRendReload()

Description This function reloads the active volume into 3D Constructor. Use this function to reload
volumes after they have been modificed

IpRendPaletteFile
Syntax IpRendPaletteFile (FileName,bSave)

Description This function loads or saves 3D palette files

Parameters szFileName String Indicates the name of the file

 bSave Integer Indicates if the file should be loaded or saved:
0 = load file
1 = save file

Return Value 0 if successful, a negative error code if failed.

Example ‘load palette

ret = IpRendPaletteFile("C:\Mediacy\Blue-RedBl.psc", 0)

’save palette

ret = IpRendPaletteFile("C:\Mediacy\NewPal.p3d", 1)

IpRendSet
Syntax IpRendSet (sCommand, dParam1, dParam2,dParam3)

Description This function sets various rendering commands

Parameters sCommand Integer See comments and list below.

 dParam1 Double See comments and list below.

 dParam2 Double See comments and list below.

 dParam3 double See comments and list below.

Comments See list below.

IpRendSet

Page 2-568

sCommand dParam1 dParam2 dParam3 Description

REND_CHANNEL dParam1: is one of
the following
REND_CH_COLO
R load image as
color
REND_CH_RED
load red channel
REND_CH_GREE
N load green
channel
REND_CH_BLUE
load blue channel

Not used Not used Sets the channel
which will be used to
load new volume into
3D Constructor
volume renderer
using IpRendLoad()
function. Note that if
the image is gray
REND_CHANNEL is
ignored.

REND_VOXEL_SIZ
E

Width of voxel in
calibrated units

Height of voxel
in calibrated
units

Depth of voxel
in calibrated
units

Sets voxel size for the
volume which will be
used to load new
volume into 3D
Constructor volume
renderer using
IpRendLoad()
function.Default
values 1,1,1 will be
used with
IpRendLoad if voxel
size is not set.

REND_SPIN XSpeed = rotation
about X axis

YSpeed =
rotation about Y
axis

ZSpeed =
rotation about
Z axis

Sets the Spin
animation for the
volume in revolutions
per second

REND_VIEWING_
MODE

0 = Viewer off
1 = Viewer on

Not used. Not used. Turns 3D Viewer off
or on.

REND_VIEW_ALL Not used Not used. Not Used View all actions.

 IpRendSet

Page 2-569

sCommand dParam1 dParam2 dParam3 Description

REND_ACTIVE_PO
RTION

Defines whether
to load an active
portion of the
sequence or the
stack. 1 – to load
active portion, 0 –
to load stack.

Not used. Not used Sets an lOption to
load an active portion
of the sequence or
the stack, which will
be used to load new
volume into 3D
Constructor volume
renderer using
IpRendLoad()
function.

REND_HI_COLOR 1 = Hi-color
2 = 256 colors

Not used. Not used. Sets the Hi-Color
mode for the new
image.

REND_BACK_COL
OR

Color in bbggrr
format where rr,
gg,bb are Red,
Green and Blue
components of
color.

Not used. Not used. Sets the background
color mode for the
Viewer.

REND_RESET_LOP
TIONS

1 = Reset
lOptions
0 = Do not reset

Not used. Not used. Resets all the
rendering lOptions
before loading a new
volume. Removes all
added elements.

REND_SUBSAMPLI
NG

Sub-sampling in X
direction

Sub-sampling
in Y direction.

Sub-sampling
in Z direction

Sets sub-sampling for
the volume which will
be used to load new
volume into 3D
Constructor volume
renderer using
IpRendLoad()
function.
Default values 1,1,1
will be used with
IpRendLoad if sub-
sampling is not set.

IpRendSet

Page 2-570

sCommand dParam1 dParam2 dParam3 Description

REND_ISO_
CHANNEL

dParam1: is one of
the following
REND_CH_GRAY =
-1
load gray channel as
weighted
combinations of red,
blue, and green
REND_CH_RED = 1
load red channel
REND_CH_GREEN
= 2
load green channel
REND_CH_BLUE =
3
load blue channel

Not used Not used Sets the channel
which will be used to
create new volume
measurements

 REND_RED_GREE
N = 4
red-green
colocalization
REND_BLUE_GRE
EN =5
blue-green
colocalization
REND_RED_BLUE
=6
red-blue
colocalization
REND_RED_GREE
N_
BLUE = 7
red-green-blue
colocalization

 Note that if the image
is gray,
IPRendElement
ignores this
parameter.

REND_ISO_SUB
SAMPLING

Sub-sampling in X
direction

Sub-sampling
in Y direction.

Sub-sampling
in Z direction

Sets sub-sampling for
new volume
measurements.
Default values 1,1,1
will be used with
IpRendLoad if sub-
sampling is not set.

 IpRendSet

Page 2-571

sCommand dParam1 dParam2 dParam3 Description

REND_ISO_
FILTER

FLT_3D_None
FLT_3D_LoPass_3x
3x3
FLT_3D_LoPass_5x
5x5
FLT_3D_LoPass_7x
7x7
FLT_3D_LoPass_9x
9x9
FLT_3D_Gauss_5x5
x5
FLT_3D_Gauss_7x7
x7
FLT_3D_Gauss_9x9
x9

Not used Not used Sets the filter type
which will be used to
create new volume
measurements

REND_ISO_
SIMPL

ISO_SIMPL_NONE
no simplification
ISO_SIMPL_MED
medium simplification
ISO_SIMPL_MAX
maximum
simplification

Not used Not used Sets the simplification
mode which will be
used to create new
volume
measurements.

REND_ISO_
CLOSE_EDGES

0 = Close edges off
1= Close edges on

Not used Not used Sets the Close edges
mode which will be
used to create new
volume measurements

IpRendSettingsFile

Page 2-572

sCommand dParam1 dParam2 dParam3 Description

REND_ISO_COUN
T

0 = Count off
1= Count on

Not used Not used Sets the Count mode
which will be used to
create new volume
measurements

REND_BACK_COL
OR2

Color in bbggrr
format where rr,
gg,bb are Red,
Green and Blue
components of
color.

Not used. Not used. Sets the gradient
background color for
the Viewer.

REND_GRADIENT
_BACK

0 = Gradient off
1= Gradient on

Not used. Not used. Turns the gradient
background color on
or off.

REND_IMAGE_BA
CK

0 = Image off
1= Image on

Not used. Not used. Turns the image
background on or off.

REND_IMAGE_BA
CK_
STYLE

Must be one of the
following:
value:
0 = None
1 = Center
2 = Lower left
3 = Upper left
4 = Upper right,
5 = Lower right
6 = Stretch
7 = Tile

Not used. Not used. Sets the position of
the background image

Return Value 0 if successful, a negative error code if failed, ICERR_INVARG if out of range.

Example Please see Appendix A, Sample Macro Code

IpRendSettingsFile
Syntax IpRendSettingsFile(szSettings, bSave)

Description This function loads or saves a set of 3D rendering options, including 3D Constructor files and
3D experiment sets.

Parameters szSettings String Indicates the file name. The file type is determined
by the extension:
*.REN = settings file
*.S3D = experiment set

 bSave Long Indicates whether to load or save the file:
0 = load file
1 = save file

Return Value 0 if successful, a negative error code if failed.

Example ret = IpRendSettingsFile(“def.ren”,0)

 IpRendSize

Page 2-573

IpRendSize
Syntax IpRendSize (sDialog, xSize, ySize)

Description This function resizes the toolbar and dialogs

Parameters sDialog Integer Indicates the dialog to resize. The
REND_LOPTIONS dialog cannot be resized.

 xSize Integer Indicates the dialog width

 ySize Long Indicates the dialog height

Return Value 0 if successful, a negative error code if failed.

Example ret = IpRendSize(REND_VIEWER,451,541)

IpRendShow

Page 2-574

IpRendShow
Syntax IpRendShow (sDialog, sShow)

Description This function hides or shows the dialog and viewer.

Parameters sDialog Integer A constant indicating what to show or hide. Must be
one of the following:
REND_VIEWER indicates the 3D Viewer window
REND_LOPTIONS indicates the rendering lOptions
dialog.
REND_MEAS_DATA_TABLE indicates the manual
measurements data table
REND_VMEAS_DATA_TABLE indicates the volume
measurements data table
REND_HISTOGRAM indicates the measurements
histogram
REND_CAMERA_DLG indicates the camera
parameters dialog
REND_BCG_DLG indicates the brightness, contrast
and gamma dialog.

 sShow Integer A constant indicating whether to show or hide the
dialog or window:
REND_HIDE = hide the window or dialog
REND_SHOW = show the window or dialog

Return Value 0 if successful, a negative error code if failed.

Example ret = IpRendShow(REND_VIEWER,REND_SHOW)

ret = IpRendShow(REND_LOPTIONS,REND_SHOW)

 IpRendVMeas

Page 2-575

IpRendVMeas
Syntax IpRendVMeas(sCommand, 1Opt1, dParam)

Description This function gets and sets various parameters of the 3D volume measurements.

Parameters sCommand Integer See comments and list below.

 IOpt1 Long See comments and list below.

 dParam Double See comments and list below.

Comments This macro takes the following commands:

sCommand IOpt1 dParam Description

M_MEAS_GET Manual measurement
element, should be one
of the following: Should
be one of the following:
IVM_SurfVolume
IVM_SurfArea
IVM_SizeX
IVM_SizeY
IVM_SizeZ
IVM_CenterX
IVM_CenterY
IVM_CenterZ
IVM_VolumeBox
IVM_BoxRatio
IVM_VolumeFraction
IVM_Diameter
IVM_Sphericity
IVM_MeanDensity
IVM_IOD
IVM_DensityStDev
IVM_RadiusMax
IVM_RadiusMin
IVM_RadiusRatio
IVM_Class
IVM_FeretMax
IVM_FeretMin
IVM_FeretRatio
IVM_SurfAngleA
IVM_SurfAngleG
IVM_SurfNormDev

Pointer to an array of
doubles, large enough to
receive all values. The size
of the array must be not
less than NumObj, where
NumObj is the number of
objects in the volume
measurements list
see
M_NUM_OBJECTS_GET

Gets the values of volume
measurement elements.

M_FILTER_RANGES_
GET

Measurement ID Pointer to an array of
doubles that will receive
the value

Gets volume measurement filter ranges

M_FILTER_RANGES_
SET

Measurement ID Pointer to an array of a
double [2] with min and
max values

Sets volume measurement filter ranges

IpRendVMeas

Page 2-576

sCommand 1Opt1 dParam Description

M_ADD_SPLIT ID of the object to split Pointer to an array of
doubles [9] that contain
point coordinates in world
coordinates (see
IpRendConvertCoord for
coordinate conversion if
necessary). Each point is
represented by 3 double
values with X,Y and Z
coordinates. Example of
the structure:
ipDArray(0) – X
coordinate of 1-st point
ipDArray(1) – Y
coordinate of 1-st point
ipDArray(2) – Z
coordinate of 1-st point
…

Adds split by the plane defined by 3
points (?).

Note that in Template mode the prompt
is displayed and the macro continues
only after splitting an object or closing
the Prompt dialog. If the Prompt is
closed by the user, the function returns -
1, otherwise, the ID of new
measurement object is returned.

M_ADD_OUT LINE Object ID Pointer to an array of
doubles [9] that contain
point coordinates in world
coordinates

Adds an outline crossing the surface of
the object in the plane defined by 3
points (?).Note that in Template mode
the prompt is displayed and the macro
continues only after creating an outline
or closing the Prompt dialog. If the
Prompt is closed by the user, the
function returns -1, otherwise, the ID of
new measurement object is returned.

M_ADD_CURVE Object ID Pointer to an array of
doubles [9] that contain
point coordinates in world
coordinates

Adds a curve crossing the surface of the
object the plane defined by 3 points
(?).Note that in Template mode the
prompt is displayed and the macro
continues only after creating a curve or
closing the Prompt dialog. If the Prompt
is closed by the user, the function
returns -1, otherwise, the ID of new
measurement object is returned.

M_SHOW_GET Object ID Pointer to a double that
will receive the value

Gets the visibility status of the volume
measurement element

M_SHOW_SET Object ID Double value:
0 = Deselect
1 = Select

Sets the visibility status of the volume
measurement element

 IpRendVMeas

Page 2-577

sCommand lOpt1 dParam Description

M_REF_VECT_GET Not used, should be 0 Pointer to an array of
doubles that will receive
the vector values. The
structure of the array is:
IpDArray(0) = x
coordinate
IpDArray(1) = y
coordinate
IpDArray(2) = z
coordinate

Gets the reference vector

M_DIR_VECT_GET Not used, should be 0 Pointer to an array of
doubles that will receive
the vector values. The
structure of the array is:
IpDArray(0) = x
coordinate
IpDArray(1) = y
coordinate
IpDArray(2) = z
coordinate

Gets the direction vector

M_OBJ_NORMAL_GET Index of the
measurement element

Pointer to an array of
doubles that will recive
the vector values

Gets the coordinates of the volume
measurement element.

M_REF_VECT_SET Not used, should be 0 Pointer to an array of
doubles that will receive
the vector values. The
structure of the array is:
IpDArray(0) = x
coordinate
IpDArray(1) = y
coordinate
IpDArray(2) = z
coordinate

Sets the reference vector

M_DIR_VECT_SET Not used, should be 0 Pointer to an array of
doubles that will receive
the vector values. The
structure of the array is:
IpDArray(0) = x
coordinate
IpDArray(1) = y
coordinate
IpDArray(2) = z
coordinate

Sets the direction vector

IpRendVMeas

Page 2-578

sCommand lOpt1 dParam Description

ELEM_COLOR_GET IP_REND_ISO_SURF or
IP_REND_VOLUME

ID of iso-surface Gets the color of the element

lParam Description

OutAr[0] Red component of ambient color in range from 0
to 1.

OutAr[1] Green component of ambient color in range from
0 to 1

OutAr[2] Blue component of ambient color in range from 0
to 1

OutAr[3] Red component of diffuse color in range from 0 to
1.

OutAr[4] Green component of diffuse color in range from 0
to 1.

OutAr[5] Blue component of diffuse color in range from 0
to 1.

OutAr[6] Red component of specular color in range from 0
to 1.

OutAr[7] Green component of specular color in range from
0 to 1

OutAr[8] Blue component of specular color in range from 0
to 1

OutAr[9] Red component of emissive color in range from 0
to 1.

OutAr[10] Green component of emissive color in range from
0 to 1

 IpRendVMeas

Page 2-579

OutAr[11] Blue component of emissive color in range from 0
to 1.

OutAr[12] Shininess in range from 0 to 1

OutAr[13] Transparency in range from 0 to 1

ELEM_COLOR_SET IP_REND_ISO_
SURF or
IP_REND_
VOLUME

ID of iso-surface Pointer to an array
of double[14] that
will receive the
information.

Sets color parameters

TR_SEARCH_RADIUS_
GET

Not used, should be 0 Pointer to a double that
will receive the value.

Gets search radius for auto-tracking

TR_USE_FROZEN_GET Not used, should be 0 Pointer to a double that
will receive the value.

Gets use frozen measurements

TR_ACCEL_LIMIT_GET Not used, should be 0 Pointer to a double that
will receive the value.

Gets acceleration limit for auto-tracking

TR_AUTO_ACCEL_
LIMIT _GET

Not used, should be 0 Pointer to a double that
will receive the value.

Gets auto acceleration limit for auto-
tracking

TR_PARTIAL_TRACKS_
GET

Not used, should be 0 Pointer to a double that
will receive the value.

Gets partial tracks

TR_MIN_TRACK_
LENGTH_GET

Not used, should be 0 Pointer to a double that
will receive the value.

Gets minium track length

TR_MOTION_TYPE_GET Not used, should be 0 Pointer to a double that
will receive the value.

Gets motion type for auto-tracking

TR_TRACK_
PREDICTION_GET

Not used, should be 0 Pointer to a double that
will receive the value.

Gets tracking prediction depth

TR_START_FIRST_GET Not used, should be 0 Pointer to a double that
will receive the value

Gets start time from the first time point

Return Value 0 if successful, a negative error code if failed.

Example Please see Appendix A, Sample Macro Code

IpRendVMeasGetStr

Page 2-580

IpRendVMeasGetStr
Syntax IpRendVMeasGetStr(sCommand, 1Opt1, lpszDest)

Description This function gets various string parameters for the 3D volume measurements.

Parameters sCommand Integer See comments and list below.

 lLOpt1 Long See comments and list below.

 lpszDest LPSTR See comments and list below.

Comments This macro takes the following commands:

sCommand lOpt 1 lpszDest Description

M_NAME _GET Index of the
measurement element
(zero-based)

String that will
receive the
measurement name,
the string must be a
fixed length string
long enough to
receive the value

Gets the name of the volume
measurement element

Return Value 0 if successful, a negative error code if failed.

See Also IpRendMeasSetStr

Example Dim MName As String*100
ret = IpRendVMeasGetStr(M_NAME_GET,0,MName)

 IpRendVMeasHist

Page 2-581

IpRendVMeasHist
Syntax IpRendVMeasHist (sCommand, 1Opt1 dParam)

Description This function gets and sets various parameters for the 3D volume measurements
histogram.

Parameters sCommand Integer See comments and list below.

 lOpt1 Long See comments and list below.

 dParam Double See comments and list below.

Comments This macro takes the following commands:

sCommand lOpt 1 dParam Description

HIST_RANGE_GET Not used, should be 0 Pointer to an array of
doubles [2] that will receive
the values.

Gets the range of the histogram

HIST_RANGE_SET Not used, should be 0 Pointer to an array of
doubles [2] that holds the
values

Sets the range of the histogram

Return Value 0 if successful, a negative error code if failed.

See Also IpRendVMeasHistSet

Example ipDArray(0)=1.000000
ipDArray(1)=100.000000
ret = IpRendVMeasHist(HIST_RANGE_SET,0,ipDArray(0))

IpRendVMeasHistSet

Page 2-582

IpRendVMeasHistSet
Syntax IpRendVMeasHistSet(sCommand, 1Opt1, dParam)

Description This function sets various parameters of the 3D measurements histogram.

Parameters sCommand Integer HIST_MEASUREMENT – sets the histogram
measurement

 lOpt1 Long Defines the type of measurement. Must be one of
the following:
 VOLUME_MEAS_TYPE
 MANUAL_MEAS_TYPE

 dParam Double Volume measurement ID. See list in M_MEAS_GET
of IpRendVMeas.

Comments This macro takes the following commands:

Return Value 0 if successful, a negative error code if failed.

See Also IpRendVMeasHist, IpRendVMeas

Example ‘select volume measurement Surface Area
ret =
IpRendVMeasHistSet(HIST_MEASUREMENT,VOLUME_MEAS_TYPE,IVM_SurfAr
ea)
‘select manual measurement Length
ret =
IpRendVMeasHistSet(HIST_MEASUREMENT,MANUAL_MEAS_TYPE,IMM_LENGTH
)

 IpRendVMeasSet

Page 2-583

IpRendVMeasSet
Syntax IpRendVMeasSet(sCommand, 1Opt1, dParam)

 Description This function sets various parameters of the 3D volume measurements. This function
is a version of IpRendVMeas used to pass parameters into the volume measurements.

Parameters sCommand Integer See comments and list below.

 lOpt1 Long See comments and list below.

 dParam Double See comments and list below.

Comments This macro takes the following commands:

sCommand lOpt 1 dParam Description

M_UPDATE Not used, should be 0 0 = filter objects with new
filter ranges
1 = recreate iso-surfaces
with parameters

Updates the volume measurement data
tables and objects. Applies new settings,
should be called after changing any
manual measurement lOptions from a
macro.

M_SEL_COLOR Not used, should be 0 Color in hexadecimal
format as &Hrrggbb,
where rr, gg,bb are Red,
Green and Blue
components of color

Selects color for volume measurements

M_TEXT_COLOR Not used, should be 0 Color in hexadecimal
format as &Hrrggbb,
where rr, gg,bb are Red,
Green and Blue
components of color

Sets label color for volume measurements

M_FONT_SIZE Not used, should be 0 Value Sets font size for volume measurement
labels.

M_LABEL_TYPE Not used, should be 0 one of the following:
mmLabelsShowName,
mmLabelsShowMeasure
ment,
mmLabelsShowNone

Sets label type of measurements
(name,first measurement,none)

M_RESET_MEAS Not used, should be 0 Not used, should be 0 Resets the list of selected measurements

M_ANGLE_RANGE Not used, should be 0 Angle value in degrees Sets angle range for orientation
measurements

IpRendVMeasSet

Page 2-584

sCommand lOpt 1 dParam Description

M_NORM_CALC_
METHOD

Not used, should be 0 0 = off
1 = on

Sets method of calculating normal surface

M_SHOW_NORMALS Not used, should be 0 0 = off
1 = on

Turns display of normal surface vectors
on or off

M_ADD_MEAS Should be one of the
following:
IVM_SurfVolume = 0
IVM_SurfArea = 1
IVM_SizeX = 2
IVM_SizeY = 3
IVM_SizeZ = 4
IVM_CenterX = 5
IVM_CenterY = 6
IVM_CenterZ = 7
IVM_VolumeBox = 8
IVM_BoxRatio =9
IVM_VolumeFraction
= 10
IVM_Diameter = 11
IVM_Sphericity = 12
IVM_MeanDensity = 13
IVM_IOD = 14
IVM_DensityStDev =
15
IVM_RadiusMax =16
IVM_RadiusMin = 17
IVM_RadiusRatio = 18
IVM_Class = 19
IVM_FeretMax = 20
IVM_FeretMin = 21
IVM_FeretRatio = 22
IVM_SurfAngleA = 23
IVM_SurfAngleG = 24
IVM_SurfNormDev =
25
IVM_Surf_Angle_T
=26

Not used, should be 1 Adds a volume measurement to the list of
selected (or available?) measurements

M_PREV_SHOW_HIST Not used, should be 0 0 = Hide histogram
1 = Show histogram

Shows or hides volume histogram at
threshold preview

M_PREV_SHOW_
PSEUDOCOL

Not used, should be 0 0 = Hide pseudocolor
1 = Show pseudocolor

Shows or hides pseudo-colored volume
during threshold preview

M_VOL_PRECISION Not used, should be 0 Should be either;
M_PR_SUBVOXEL or
M_ORE_VOXEL

Shows or hides volume measurements
precision

M_COMPL_LIMIT Not used, should be 0 Value (default = 50) Complexity limit for iso-surfaces

 IpRendVMeasSet

Page 2-585

sCommand lOpt 1 dParam Description

M_OBJ_COLORING Not used, should be 0 Should be either:
M_COLOR_MODE_SU
RF
or
M_COLOR_MODE_
RANDOM

Object coloring mode

M_CLEAN_BORDERS Not used, should be 0 Should be either:
M_CL_BORDERS_NON
E or
M_CL_BORDERS_ALL

Clean borders flag

M_APPLY_FILTER_
RANGES

Not used, should be 0 0 = Filter range off
1 = Filter range on

Apply filter range flag

M_SHOW_STATS Not used, should be 0 0 = Hide statistics
1 = Show statistics

Shows or hides the statistics pane of the
Volume Measurements window

M_ACTION Not used, should be 0 Action type. Must be one
of the following:
mmActionSelect
mmActionSplitObject

Sets measurement action

M_UNDO Not used, should be 0 Not used, should be 0 Undoes last split or merge function

M_CREATE_MEAS Not used, should be 0 Type of new
measurement, must be
one of the following:

Creates a new derived measurement based
on the selected objects

 IMM_ADD_PP_DIST distance between centers of 2 objects
IMM_ADD_CENTER center point of the object
IMM_ADD_MIN_DIST min distance between point and surface
IMM_MERGE_OBEJCTS merge selected objects

M_SHOW_ALL Not used, should be 0 Not used, should be 0 Shows all objects

M_SHOW_SELECTED Not used, should be 0 0 = Hide objects
1 = Show objects

Shows or hides the selected objects

TR_SEARCH_RADIUS Not used, should be 0 Value in calibrated units Sets search radius for auto-tracking

IpRendVMeasSet

Page 2-586

sCommand lOpt 1 dParam Description

TR_USE_FROZEN Not used, should be 0 0 = Off
1 = On

Use frozen measurements in tracking
lOptions

TR_ACCEL_LIMIT Not used, should be 0 Value in calibrated units Sets acceleration limit for auto-tracking

TR_AUTO_ACCEL_
LIMIT

Not used, should be 0 0 = Off
1 = On

Sets auto acceleration limit for auto-
tracking

TR_PARTIAL_TRACKS Not used, should be 0 0 = Off
1 = On

Sets partial tracks lOption

TR_MIN_TRACK_
LENGTH

Not used, should be 0 0 = Off
1 = On

Sets minium track length lOption

TR_MOTION_TYPE Not used, should be 0 0 = Chaotic
1 = Directional
2 = Straight

Sets motion type for auto-tracking

TR_TRACK_
PREDICTION

Not used, should be 0 Depth in time points Sets tracking prediction depth

TR_START_FIRST Not used, should be 0 0 = Off
1 = On

Sets start time from the first time point
lOption

Return Value 0 if successful, a negative error code if failed.

Example Please see Appendix A, Sample Macro Code

 IpRendVMeasSetStr

Page 2-587

IpRendVMeasSetStr
Syntax IpRendVMeasSetStr(sCommand, 1Opt1, lpszDest)

Description This function sets various string parameters for the 3D volume measurements.

Parameters sCommand Integer See comments and list below.

 lOpt1 Long See comments and list below.

 lpszDest LPSTR See comments and list below.

Comments This macro takes the following commands:

sCommand lOpt 1 lpszDest Description

M_NAME _SET Index of the measurement
element (zero-based)

String with new name Sets the name of the volume measurement element

M_TEMPLATE_PROMPT Not used String with text Sets the user prompt for template mode

Return Value 0 if successful, a negative error code if failed.

See Also IpRendMeasGetStr

Example ret = IpRendVMeasSetStr(M_NAME_SET,1,"Max distance")
ret = IpTemplateMode(1)
ret = IpRendVeasSetStr(M_TEMPLATE_PROMPT,0,"Please select trace
 object")
ret = IpRendVMeasSet(M_SEL_SET,1,1)

ret = IpTemplateMode(0)

IpRptClose

Page 2-588

IpRptClose
Syntax IpRptClose ()

Description This function closes the open report.

See Also IpRptNew, IpRptOpen, IpRptShow, IpRptSave, IpRptPrint

 IpRptNew
Syntax IpRptNew(szFileName)

Description This function opens a new report based on the specified template.

Parameters szFileName String Name of the template on which to base the new report.

Comments This command launches the report generator, if necessary. If FileName specifies a template
file (*.tpl) a new report (*.rpt) is opened from that template, and any placeholders are
automatically filled with current data. If FileName specifies a report (*.rpt), that report is
opened and any empty placeholders are automatically updated with current data. Failure will
be reported if specified file cannot be opened.

Example ret = IpRptNew("C:\IPWIN\Template\SAMPLE.tpl")

See Also IpRptClose, IpRptShow, IpRptOpen, ,IpRptSave, IpRptPrint,

 IpRptOpen
Syntax IpRptOpen(szFileName)

Description This function opens a report.

Parameters szFileName String Name of the report to open.

Example ret = IpRptOpen("C:\IPWIN\Template\TEST1.tpl")

Comments This command launches the report generator, if necessary. If FileName specifies a template file
(*.tpl) a new report (*.rpt) is opened from that template, and any placeholders are automatically
filled with current data. If FileName specifies a report (*.rpt), that report is opened and any empty
placeholders are automatically filled with current data. Note that objects containing saved data
will not be updated. Failure will be reported if specified file cannot be opened.

See Also IpRptShow, IpRptOpen, IpRptClose, IpRptSave, IpRptPrint

 IpRptPrint
Syntax IpRptPrint ()

Description This function prints the current report to the default printer.

See Also IpRptNew, IpRptOpen, IpRptShow, IpRptSave, IpRptClose

 IpRptSave

Page 2-589

 IpRptSave
Syntax IpRptSave (szFileName)

Description This function saves the current report.

Parameters szFileName String Name of the report to be saved.

Comments The current document is saved as a report, including all current data (if any).

See Also IpRptNew, IpRptOpen, IpRptShow, IpRptClose, IpRptPrint

 IpRptShow
Syntax IpRptShow ()

Description This function launches the report generator and/or brings the report generator to the top.

See Also IpRptNew, IpRptOpen, IpRptClose, IpRptSave, IpRptPrint

IpSCalCalibValues
Syntax IpSCalCalibValues (Calibration, NumPoints, PointlList, ValueList)

Description This function can be used to retrieve calibrated point locations.

Parameters Calibration Long The ID of the calibration of interest

 NumPoints Integer The number of points supplied in the PointList. See
comments.

 PointList Double Point locations or X/Y distances to calibrate.

 ValueList Double Calibrated points. See comments.

Comments The NumPoints parameter indicates the length of the PointList array. The ValueList array must
have NumPoints * 2 elements to receive the X and Y calibrated locations or distances. This
function can calibrate point locations, or distances. The point locations, or the X and Y distances,
are supplied in the PointList array. The calibrated values will be returned in the ValueList array,
with the first element being the X value for the first point, the second value the Y value for the
first point, etc.

IpSCalCreate

Page 2-590

IpSCalCreate
Syntax IpSCalCreate()

Description This function creates a new spatial calibration set. Equivalent to clicking New in the Spatial
Calibration dialog box.

Return Value The calibration ID of the new calibration if successful, a negative value if failed.

Comments The new calibration will be used as the current calibration.

See Also IpSCalSelect, IpSCalDestroy

IpSCalDestroy
Syntax IpSCalDestroy()

Description This function deletes the current spatial calibration set. Equivalent to clicking Deletein the
Spatial Calibration dialog box.

See Also IpSCalCreate, IpSCalSelect

IpSCalDestroyEx
Syntax IpSCalDestroyEx(Calibration)

Description This function deletes the specified calibration. Equivalent to clicking Delete in the Spatial
Calibration dialog box.

Parameters Calibration Long The ID of the calibration to delete, or one of the
following constants:
SCAL_CURRENT_CAL = Save the attributes of the
current calibration
SCAL_SYSTEM_CAL = Use to save theattributes of
the current system calibration
SCAL_ALL = Save all active calibrations
SCAL_ALL_REF = Save all reference calibrations

Return Value A negative value if the calibration file cannot be written.

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpSCalGetLong. The calibration
ID is also returned by functions such as IpSCalCreate and IpSCalLoad which create new
calibrations.

See Also IpSCalGetLong, IpSCalCreate, IpSCalLoad

 IpSCalGetLong

Page 2-591

IpSCalGetLong
Syntax IpSCalGetLong(Calibration, Attribute, Value)

Description This function retrieves the attributes of the specified calibration.

Parameters Calibration Long This parameter is only used by
SCAL_GET_ALL and SCAL_GET_REF. For these
attributes, the command is the index of the calibration
of interest

 Attribute Integer The attribute of interest, which must be one of the
following:
SCAL_NUM_ALL = The number of active calibrations
SCAL_NUM_REF = The number of reference
calibrations
SCAL_GET_ALL = Return the calibration ID of an
active calibration
SCAL_GET_REF = Return the calibration ID of a
reference calibration
SCAL_ONIMAGE_COLOR = Get the color used for
interactive lines and non-destructive calibration
markers
SCAL_CURRENT = Return the calibration ID of the
current calibration
SCAL_SYSTEM = Return the calibration ID of the
system calibration.

 SCAL_IS_REFERENCE = Indicates a reference
calibration.
SCAL_IS_SYSTEM = Indicates a system calibration.
SCAL_MARKER_STYLE = Return the selected marker
style. See comments below.
SCAL_UNIT_CONVERT = When non-zero, indicates
that when the units are changed (see
IpSCalSetUnitName and IpSCalSetStr
(SCAL_UNITS...)) the scaling factors should be
converted from the original absolute units to the new
units. For instance, if the original units were "mm" and
the new units are "cm", the scaling will be adjusted so
there will be 10 times as many pixels per unit. This
conversion can only be done if the units are recognized
as one of the set of absolute units.

 Value Long A long variable that will receive the requested
attribute’s value

IpSCalGetLong

Page 2-592

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations

currently in the active or reference lists can be retrieved using IpSCalGetLong. The calibration
ID is also returned by functions such as IpSCalCreate and IpSCalLoad which create new
calibrations.

 Marker styles include the following:
SCAL_MARKER_BONW Black text on white box, pasted on image
SCAL_MARKER_BONWB Black text on white box with black border, pasted on image
SCAL_MARKER_WONB White text on black box, pasted on image
SCAL_MARKER_WONBB White text on black box with white border, pasted on image
SCAL_MARKER_ND_X Non-destructive horizontal marker
SCAL_MARKER_ND_XY Non-destructive horizontal and vertical marker
SCAL_MARKER_ND_Y Non-destructive vertical marker

Return Value 0 if successful, a negative value if failed. If the active image is not calibrated, SCAL_CURRENT
will not return an error. Instead, it will return a Calibration ID of zero. This indicates that there is
no current calibration.

See Also IpSCalSetLong

 IpSCalGetSng

Page 2-593

IpSCalGetSng
Syntax IpSCalGetSng(Calibration, Attribute,Value)

Description This function retrieves the attributes of the specified calibration.

Parameters Calibration Long The ID of the calibration of interest. Calibration may
also be set to SCAL_CURRENT_CAL to get the
current calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
SCAL_SCALE_X - The number of horizontal pixels per
calibration unit
SCAL_SCALE_Y = The number of vertical pixels per
calibration unit
SCAL_ORIGIN_X = The horizontal coordinate of the
reference origin
SCAL_ORIGIN_Y = The vertical coordinate of the
reference origin

 SCAL_ANGLE = The angle of the reference angle
SCAL_ASPECT = The aspect ratio of the scaling. This
attribute is read-only - set by ratio of SCALE_X /
SCALE_Y.
SCAL_SYSTEM_MODIFIER = Use this to adjust the
system calibration both horizontally and vertically for
the effects of an optovar or anything else that affects
the overall magnification of the optical system.
SCAL_MARKER_WIDTH = The width of the marker in
calibration units.
SCAL_CONVERSION_TO_MM = Returns a value that
can be used to convert values expressed in the
calibration’s native units to millimeters. The native
value should be multiplied by the conversion value.
The IPCERR_EMPTY error code will be returned if the
specified calibration is not expressed in absolute units.

 Value Single A Single (single point) variable that will receive the
requested attribute’s value

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpSCalGetLong. The calibration
ID is also returned by functions such as IpSCalCreate and IpSCalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or
IPCERR_EMPTY if SCAL_CURRENT_CAL was specified and there is no calibration active.

See Also IpSCalSetSng

IpSCalGetStr

Page 2-594

IpSCalGetStr
Syntax IpSCalGetStr(Calibration, Attribute,Value)

Description This function retrieves the attributes of the specified calibration.

Parameters Calibration Long The ID of the calibration of interest. Calibration may
also be set to SCAL_CURRENT_CAL to get the
current calibration’s attributes, or to
SCAL_SYSTEM_CAL to get the current system
calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
SCAL_NAME = The name of the calibration
SCAL_UNITS = The name of the calibration units
SCAL_FIND_BY_NAME = see comments below

 Value String A fixed-length string variable that will receive the
requested attribute’s value

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpSCalGetLong. The calibration
ID is also returned by functions such as IpSCalCreate and IpSCalLoad which create new
calibrations.
The SCAL_FIND_BY_NAME command is handled different from the two inquiry functions.
This command can be used to locate a specific calibration from the list of reference
calibrations, or from the list of all calibrations (which includes any reference calibrations). The
Value string does not need to be a fixed length string and could even be a string constant. The
Calibration parameter is used to specify the list to search and should be set to SCAL_ALL or
SCAL_ALL_REF. The return value is the calibration ID for the first calibration of that name in
the specified list, or zero if none is found.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or IPCERR_EMPTY
if SCAL_CURRENT_CAL was specified and there is no calibration active

See Also IpSCalSetStr

IpSCalLoad
Syntax IpSCalLoad (Filename, Ref)

Description This function loads one or more calibration from a file to the list of available calibrations.

Parameters Filename String A string specifying the name of the file from which the
calibration values will be read. The filename must
include the path, such as C:\IPWIN|IpRef.cal

 Ref Integer A non-zero value indicates that the calibration should
be read into the list of reference calibrations. Otherwise
the calibration is only added to the list of active
calibrations.

Comments All of the calibrations found in the specified file will be added to the list specified by the Ref
parameter. None of the calibrations will be applied to the active image, or made the active
calibration. If the file contains a system calibration and is loaded into the reference calibration
list, it may replace the current system calibration.

 IpSCalMove

Page 2-595

Return Value Zero if successful, an error code if unsuccessful.

See Also IpSCalSetLong

IpSCalMove
Syntax IpSCalMove(x, y)

Description This function moves the Spatial Calibration dialog box to the specified screen position.
Equivalent to dragging the dialog box to a new position with the mouse.

Parameters x Integer An integer specifying the x-coordinate of the pixel to
which the upper-left corner of the Spatial Calibration
dialog box is to be moved.

 y Integer An integer specifying the y-coordinate of the pixel to
which the upper-left corner of the Spatial Calibration
dialog box is to be moved.

Example ret = IpSCalMove(6, 26)

This statement will move the Spatial Calibration window to screen position 6, 26 (near the
upper-left corner of the screen).

IpSCalReset
Syntax IpSCalReset()

Description This function resets the current calibration to default values. Equivalent to clicking Defaults in
the Spatial Calibration dialog box.

IpSCalSave
Syntax IpSCalSave(Calibration, FileName)

Description This function saves the specified calibration to a file.

Parameters Calibration Long The ID of the calibration of interest. May also be one of
the following constants:
SCAL_CURRENT_CAL = Save the attributes of the
current calibration
SCAL_SYSTEM_CAL = Use to save the attributes of
the current system calibration
SCAL_ALL = Save all active calibrations
SCAL_ALL_REF = Save all reference calibrations

 FileName String A string specifying the name of the file where the
calibration will be saved.

Return Value A negative value if the calibration file cannot be written.

IpSCalSelect

Page 2-596

IpSCalSelect
Syntax IpSCalSelect(szSCal)

Description This function activates the selected calibration set. Equivalent to selecting a set in the Name
field in the Spatial Calibration dialog box.

Parameters szSCal String A string specifying the name of the calibration set that
is to be made active.

Example ret = IpSCalSelect("Microns")

This statement will activate a spatial calibration set called “Microns”

Comments The activated calibration set becomes the calibration for the active image (if there is one), and all
image windows opened thereafter.

IpSCalSetAngle
Syntax IpSCalSetAngle(Angle)

Description This function defines the angle offset value. Equivalent to setting the Angle Offset value in
the Spatial Calibration dialog box.

Parameters Angle Single A single point number specifying the offset, in degrees,
from the vertical axis.

Example ret = IpSCalSetAngle(11.15466)

This statement will establish the angle offset at 11.15466 degrees from the vertical axis.

IpSCalSetAspect
Syntax IpSCalSetAspect(AspectRatio)

Description This function defines the spatial relationship between the horizontal and vertical axes.
Equivalent to setting the Aspect Ratio value in the Spatial Calibration dialog box.

Parameters AspectRatio Single A single point number representing the ratio between
the X and Y axes (as defined by X/Y).

Example ret = IpSCalSetAspect(1.50)

This statement will set the aspect ratio to 1.5.

 IpSCalSetLong

Page 2-597

IpSCalSetLong
Syntax IpSCalSetLong(Calibration, Attribute, Value)

Description This function sets the current or system calibration

Parameters Calibration Long The calibration ID of the calibration of interest, not used
for SCAL_ONIMAGE_COLOR. Calibration may also
be set to SCAL_CURRENT_CAL to get the current
calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
SCAL_APPLY = Applies the specified calibration to the
active image.
SCAL_APPLY_RESOLUTION = This command will
create a spatial calibration from the active image’s
resolution information and apply the new calibration to
the image.
SCAL_CURRENT =Set the current calibration to the
specified calibration
SCAL_SYSTEM = Set the system calibration to the
specified calibration
SCAL_ONIMAGE_COLOR = Set the color of
interactive lines and non-destructive calibration
markers.
SCAL_MARKER_STYLE = Sets the selected marker
style.
SCAL_ADD_TO_REF = Add the specified calibration to
the list of reference calibrations.
SCAL_REMOVE_FROM_REF = Remove the specified
calibration from the list of reference calibrations.

 SCAL_UNIT_CONVERT = When non-zero, indicates
that when the units are changed (see
IpSCalSetUnitName and IpSCalSetStr
(SCAL_UNITS...)) the scaling factors should be
converted from the original absolute units to the new
units. For instance, if the original units were "mm" and
the new units are "cm", the scaling will be adjusted so
there will be 10 times as many pixels per unit. This
conversion can only be done if the units are recognized
as one of the set of absolute units.

 Value Long The new value for the specified attribute.

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpSCalGetLong. The calibration
ID is also returned by functions such as IpSCalCreate and IpSCalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or IPCERR_EMPTY
if SCAL_CURRENT_CAL was specified and there is no calibration active.
If SCAL_APPLY_RESOLUTION was specified, the return value is the calibration ID of the
calibration that is created and attached to the image. A positive value indicates success, a negative
value is returned if there is an error.

IpSCalSetSng

Page 2-598

See Also IpSCalGetLong, IpSCalCreate

IpSCalSetSng
Syntax IpSCalSetSng(Calibration, Attribute,Value)

Description This function sets the attributes of the specified calibration.

Parameters Calibration Long The ID of the calibration of interest. Calibration may
also be set to SCAL_CURRENT_CAL to get the
current calibration’s attributes, or to
SCAL_SYSTEM_CAL to set the current system
calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
SCAL_SCALE_X - The number of horizontal pixels per
calibration unit
SCAL_SCALE_Y = The number of vertical pixels per
calibration unit
SCAL_ORIGIN_X = The horizontal coordinate of the
reference origin
SCAL_ORIGIN_Y = The vertical coordinate of the
reference origin
SCAL_ANGLE = The angle of the reference angle
SCAL_SYSTEM_MODIFIER = Use this command to
adjust the system calibration either vertically or
horizontally for the effects of an optovar or anything
else that affects the overall magnification of the optical
system.
SCAL_MARKER_WIDTH = The width of the marker in
calibration units.

 Value Single The new value for the specified attribute

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpSCalGetLong. The calibration
ID is also returned by functions such as IpSCalCreate and IpSCalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or
IPCERR_EMPTY if SCAL_CURRENT_CAL was specified and there is no calibration active.

See Also IpSCalGetSng

IpSCalSetStr

Page 2-599

IpSCalSetStr
Syntax IpSCalSetStr(Calibration, Attribute,Value)

Description This function sets the attributes of the specified calibration.

Parameters Calibration Long The ID of the calibration of interest. Calibration may
also be set to SCAL_CURRENT_CAL to get the
current calibration’s attributes or to
SCAL_SYSTEM_CAL to set the current system
calibration’s attributes.

 Attribute Integer The attribute of interest, which must be one of the
following:
SCAL_NAME = The name of the calibration
SCAL_UNITS = The name of the calibration units

 Value String The string containing the new value for the specified
attribute.

Comments The calibration ID of the active calibration or a list of calibration IDs for the calibrations
currently in the active or reference lists can be retrieved using IpSCalGetLong. The calibration
ID is also returned by functions such as IpSCalCreate and IpSCalLoad which create new
calibrations.

Return Value 0 if successful, IPCERR_NODOC if the specified calibration does not exist, or IPCERR_EMPTY
if SCAL_CURRENT_CAL was specified and there is no calibration active

See Also IpSCalGetStr

IpSCalSetName
Syntax IpSCalSetName(szSCal)

Description This function changes the name of the selected calibration set. Equivalent to retyping the name
in the Name field of the Spatial Calibration dialog box.

Parameters szSCal String A string specifying the new name of the selected
calibration set.

Example ret = IpSCalSetName("5000x Magnification")

This statement will change the name of the current calibration set to “5000x Magnification”.

IpSCalSetOrigin

Page 2-600

IpSCalSetOrigin
Syntax IpSCalSetOrigin(x, y)

Description This function calibrates the horizontal and vertical origin. Equivalent to setting the Origin
value in the Spatial Calibration dialog box.

Parameters x Single A single point number representing the offset to the X-
axis.

 y Single A single point number representing the offset to the Y-
axis.

Example ret = IpSCalSetOrigin(49, 40)

This statement will set the origin at position 49,40.

IpSCalSetUnit
Syntax IpSCalSetUnit(x, y)

Description This function calibrates the spatial unit in both the horizontal and vertical directions.
Equivalent to setting the Pixels/Unit value in the Spatial Calibration dialog box.

Parameters x Single A single point number specifying the number of pixels
representing a single unit in the horizontal direction.

 y Single A single point number specifying the number of pixels
representing a single unit in the vertical direction.

Example ret = IpSCalSetUnit(65.0, 75.0)

This statement will set the horizontal calibration to 65 pixels, and the vertical calibration to 75
pixels.

IpSCalSetUnitName
Syntax IpSCalSetUnitName(UnitName)

Description This function changes the name of the spatial unit. Equivalent to typing a name in the Unit
Name field within the Spatial Calibration dialog box.

Parameters UnitName String A string specifying the unit name.

Example ret = IpSCalSetUnitName("Microns")

This statement will set the spatial unit name to “Microns”.

IpSCalShow
Syntax IpSCalShow(bShow)

Description This function displays the Spatial Calibration dialog box. It is also used to close the dialog
box if it is open.

 IpSCalShowEx

Page 2-601

Parameters bShow Integer An integer value of 0 or 1 specifying whether to open or
close the Spatial Calibration dialog box. Where:
 0 - Closes the Spatial Calibration dialog
box if it is open.

1 - Opens the Spatial Calibration dialog box.

 Must be one of the following:
SCAL_HIDE = Hides the first visible calibration dialog
SCAL_DLG_MAIN = Shows the main calibration dialog
SCAL_DLG_SELECT = Shows the calibration Select
dialog
SCAL_ADD_MARKER = Adds a marker to the main
image
SCAL_MINIMIZE = Minimizes the main calibration
dialog
SCAL_DLG_WIZARD = Shows the calibration wizard
SCAL_DLG_SYSTEM = Shows the spatial calibration
system dialog.

Example ret = IpSCalShow(1)

This statement will display the Spatial Calibration dialog box.

Comments The dialog box must be opened before assigning and selecting spatial calibration values.

See Also IpSCalShowEx

IpSCalShowEx
Syntax IpSCalShowEx(Dialog, Show)

Description This function shows or hides the Spatial Calibration dialog box.

Parameters Dialog Integer The calibration dialog to be shown or hidden, using one
of the following constants:
SCAL_DLG_MAIN = The main calibration dialog
SCAL_DLG_SELECT = The spatial calibration Select
dialog
SCAL_DLG_WIZARD = The spatial calibration Wizard
SCAL_DLG_SYSTEM = The System Settings dialog

 Show Integer A value indicating how the dialog should be shown,
using one of the following constants:

 SCAL_SHOW = Shows the specified calibration dialog
SCAL_HIDE = Hides the specified calibration dialog
SCAL_HIDEALL = Hides all the calibration dialogs
SCAL_MINIMIZE = Minimizes the specified calibration
dialog

Comments This function is an improved version of IpSCalShow that provides more control over which
dialog is to be shown, hidden, or minimized. The SCAL_HIDEALL constant will hide all open
calibration dialogs, and the Dialog parameter may be zero or null for this command. The system
calibration dialog cannot be minimized.

IpScanSelect

Page 2-602

IpScanSelect
Syntax IpScanSelect()

Description This function invokes the TWAIN source-selection dialog box.

See Also IpScanShow

IpScanShow
Syntax IpScanShow()

Description This function is used to open the Scan dialog box. Equivalent to selecting the Scan command.

Comments When this function is executed in a macro, the Scan dialog box is presented, and the system waits
for user input. At this point the user may select scanner settings and acquire images interactively.
Macro execution will resume once an image is acquired or the Cancel button is clicked.

 IpScopeAcquire

Page 2-603

IpScopeAcquire
Syntax IpScopeAcquire(iDest)

Description This function is used to acquire an image.

Parameters iDest Integer Indicates the snap destination (new or current
image). An enumerated integer specifying the
window into which the image will be captured.
Must be one of the following:

 ACQ_CURRENT
 ACQ_NEW

where, ACQ_NEW saves the captured image to a
new image window and ACQ_CURRENT saves it
to the active image window.

Return Value This function returns the Document ID of the new image, which will be an integer greater than or
equal to 0. A negative return value indicates an error.

Example ret = IpScopeAcquire(ACQ_NEW)

Comments This function uses the ACQ_NEW and ACQ_CURRENT destinations that are also used with the
IpAcqSnap function. ACQ_FILE and ACQ_SEQUENCE are not supported. (For a full discussion
of IpAcqSnap, ACQ_NEW, and ACQ_CURRENT, please refer to the Auto-Pro Programming
Guide.)

There is no communication between the Acquire tab page in Scope-Pro and the Acquire tab page
in Stage-Pro. Using IpScopeAcquire will not affect or respect any of the settings in the Stage-Pro
Acquire tab page.

IpScopeComponentPresent

Page 2-604

IpScopeComponentPresent
Syntax IpScopeComponentPresent(iComponent, lpValue)

Description This function is used to specify a variety of Scope-Pro commands.

Parameters iComponent Integer An enumerated integer used to read and set Scope-
Pro options. Indicates the components by ID. Must
be one of the following:

SCP_ZFOCUS SCP_SLIDER1
 SCP_OBJECTIVE SCP_SLIDER2
SCP_CONDENSER SCP_LAMP1
SCP_CURRSHUTTER SCP_LAMP2
SCP_SHUTTER1 SCP_FWHEEL1
SCP_SHUTTER2 SCP_FWHEEL2
SCP_SHUTTER3 SCP_FWHEEL3
SCP_SHUTTER4 SCP_FWHEEL4
SCP_SHUTTER5 SCP_FWHEEL5
SCP_SHUTTER6 SCP_FWHEEL6
SCP_SHUTTER7 SCP_FWHEEL7
SCP_SHUTTER8 SCP_FWHEEL8
SCP_SHUTTER9 SCP_FWHEEL9
SCP_SHUTTER10 SCP_FWHEEL10
SCP_SHUTTER11 SCP_FWHEEL11
SCP_SHUTTER12 SCP_FWHEEL12
SCP_SHUTTER13 SCP_FWHEEL13
SCP_SHUTTER14 SCP_FWHEEL14
SCP_SHUTTER15 SCP_FWHEEL15
SCP_APERTURE1
SCP_APERTURE2
SCP_ZOOM

 lpValue LPVOID A integer value used to return
0 = not present or
1 = present

Return Value 0 if successful, a negative error code otherwise.

Comments In Scope-Pro 7.0, you may have up to 15 shutters and 15 filter wheels configured.

 IpScopeControl

Page 2-605

IpScopeControl
Syntax IpScopeControl(iCmd, iComponent, iPos, lpName, lpValue)

Description This function is used to specify a variety of Scope-Pro commands.

Parameters iCmd Integer The iCmd used determines the usage of the other
IpScopeControl parameters.
See definitions under Comments, below.

 iComponent Integer An enumerated integer used to read and set Scope-
Pro options. Indicates the components by ID.
See definitions under Comments, below.

 iPos Integer The use of this parameter with SCP_GETNAME is
explained for each component above. When iPos is
set to SCP_COMPONENTNAME, the name of the
component will be returned. Otherwise, the name of
the specified component position will be returned.
This parameter is also used to define settings for
the various SET commands.

 lpName String String to receive the component or position name
when used with SCP_GETNAME. The string should
be allocated to receive SCP_MAXNAMELEN
characters (currently 60). This parameter is not
used with any other commands.

 lpValue Any A pointer to an integer variable when used with the
various GET commands. Usage is explained under
iCmd.

Example Example of SCP_GETNAME command:

Dim CompName as string *60
Dim PosName as string *60

ret = IpScopeControl(SCP_GETNAME, SCP_FWHEEL1,
SCP_COMPONENTNAME, CompName, IPNULL)

ret = IpScopeControl(SCP_GETNAME, SCP_FWHEEL1, 0, PosName,
IPNULL)

Example of a SET command to select control of the shutter
during acquisition:

ret = IpScopeControl(SCP_ACQSETSHUTTER, 0, 1, “”, IPNULL)

Example of a GET command to inquire whether Scope-Pro will
auto-focus before acquisition:

Dim autofocus as integer

ret = IpScopeControl(SCP_ACQGETAUTOFOCUS, 0, 0, “”, autofocus)

IpScopeControl

Page 2-606

 "The following code will set the z-travel limits for a multi-
plane acquisition.

Sub SetLimits()

 Dim ZTop As Single

 Dim ZBot As Single

 Dim iPos As Integer

 Dim Str As String*256

 ZTop = 0.5 'NOTE: This is in mm

 ZBot = -0.5

 iPos = 0

 ret = IpScopeControl(SCP_ACQSETZTOP, 0, 0, Str, ZTop)

 Debug.Print ret

 ret = IpScopeControl(SCP_ACQSETZBOT, 0, iPos, Str, ZBot)

 Debug.Print ret

End Sub

"

 IpScopeControl

Page 2-607

Comments The following commands are used with the iCmd parameter:

SCP_GETNAME Return the specified component’s name (specified by iComponent), or the name of the specified
position (specified by iPos). Refer to the Additional Notes section below, detailing iComponent. LpName should point
to a string that is allocated to receive at least MAX_SCPNAME_LEN characters (currently 60).

SCP_AUTOFOCUS Requests Scope-Pro to auto-focus.

SCP_ACQMPFSETLIMITS Requests Scope-Pro to have the user set the limits for the extended depth of field.

SCP_ACQGETSHUTTER Inquire whether Scope-Pro will control the shutter during acquisition. LpValue must
be a pointer to an integer variable to receive the current setting.

SCP_ACQSETSHUTTER Set whether Scope-Pro will control the shutter during acquisition, where iPos of 0
indicates not to control the shutter, and any non-zero value indicates to control the shutter.

SCP_ACQGETAUTOFOCUS Inquire whether Scope-Pro will hardware auto-focus during acquisition. LpValue must
be a pointer to an integer variable to receive the current setting.

SCP_ACQSETAUTOFOCUS Set whether Scope-Pro will hardware auto-focus during acquisition; where iPos of 0
indicates not to auto-focus, and any non-zero value indicates to auto-focus.

SCP_ACQGETSWAUTOFOCUS Inquire whether Scope-Pro will software autofocus during acquisition. LpValue must
be a pointer to an integer variable to receive the current setting.

SCP_ACQSETSWAUTOFOCUS Set whether Scope-Pro will software auto-focus during acquisition, where iPos of 0
indicates not to extended depth of field, and any non-zero value indicates to extended depth of field.

SCP_ACQGETMPFPLANES Inquire the number of planes used for extended depth of field. LpValue must be a
pointer to an integer variable to receive the current setting.

SCP_ACQSETMPFPLANES Set the number of planes used for extended depth of field, where iPos indicates the
number of planes, which must be between 2 and 100.

SCP_GETCURRSHUTTER Inquire which shutter is currently the active shutter. LpValue must be a pointer to an
integer variable to receive the current setting.

SCP_SETCURRSHUTTER Set which shutter is currently the active shutter, where iPos indicates the shutter to
become the active shutter, which must be between 0 and the number of shutters installed.

IpScopeControl

Page 2-608

iCmd, continued:

SCP_ACQGETMPFNORMAL Inquire whether Scope-Pro will normalize illumination during a multi-plane or
software autofocus.

SCP_ACQSETMPFNORMAL Set whether Scope-Pro will normalize illumination during a multi-plane or software
autofocus; iPos of 1 is normalized and 0 is not normalized.

SCP_ACQGETMPACQUIRE Inquire whether Scope-Pro will acquire a Z stack.

SCP_ACQSETMPACQUIRE Set whether Scope-Pro will acquire a Z stack. Use iPos = 1 for stack,
iPos = 0 for no stack.

SCP_ACQGETMPSEQACQ Inquire whether Scope-Pro will acquire the Z stack as a sequence.

SCP_ACQSETMPSEQACQ Set whether Scope-Pro will acquire the Z stack as a sequence. Use iPos = 1 for
sequence, iPos = 0 for no sequence. Note: This is valid only if Scope-Pro is set to acquire EDFs.

SCP_ACQGETMPFOCUS Inquire whether Scope-Pro will use the extended depth of field during acquisition.
LpValue must be a pointer to an integer variable to receive the current setting.

SCP_ACQSETMPFOCUS Set whether Scope-Pro will use the extended depth of field during acquisition, where
iPos of 0 indicates not to extended depth of field, and any non-zero value indicates to extended depth of field.

SCP_ACQGETMPFTYPE Inquire the type of focus analysis used for extended depth of field. LpValue must be a
pointer to an integer variable to receive the current setting.

SCP_ACQSETMPFTYPE Set the type of focus analysis used for extended depth of field, where iPos indicates the
type, which must be EDF_MAX_LOCALCONTRAST (maximum texture), EDF_MAX_INTENSITY,
EDF_MIN_INTENSITY, or EDF_MAX_DEPTHCONTRAST.

SCP_ACQGETAFTYPE Inquire the range of auto-focus used. LpValue must be a pointer to an integer variable
to receive the current setting.

SCP_ACQSETAFTYPE Set the range of auto-focus analysis used, where iPos indicates the range, which must
be 0 (for low-power lenses), 1 (medium-power), or 2 (high-power).

SCP_ACQGETSLICESIZE Gets the current Z stack slice size. This is defined as
(Z top - Z bottom)/(number of planes – 1)

SCP_ACQGETZTOP Gets the position of the top Z plane in mm.

SCP_ACQGETZBOT Gets the position of the bottom Z plane in mm.

SCP_GETOBJCALIB Gets the name and calibration ID of the objective calibration. iPos should be set to
indicate the object that you want. LpName returns the calibration name, and LpValue returns the handle to the
calibration.

SCP_DUMP_SETTINGS Gets the current Scope-Pro settings and dumps them to the output window.

SCP_SETALLSHUTTERS Opens or closes all the shutters

SCP_SAVE_IN_SETTINGS Sets the flags on the Save Settings dialog box.

SCP_ZOOM Indicates the Zoom function

 IpScopeControl

Page 2-609

Example Dim szName As String * 255

Dim fCalID As Single
Dim iPos As Integer
iPos = 0 'to num objectives - 1
IpScopeControl(SCP_GETOBJCALIB, 0, iPos, szName, fCalID)

IpScopeShow(bShow)

 // constants for IpScopeShow
 #define SCP_HIDE 0
 #define SCP_SHOW 1
 #define SCP_CONFIG_TAB 2
 #define SCP_SCOPE_TAB 3
 #define SCP_ACQ_TAB 4

Sub dumptest()
IpScopeControl(SCP_DUMP_SETTINGS, 0, 0, "", IPNULL)
 End Sub

 Sub dumptest2()
IpScopeControl(SCP_DUMP_SETTINGS, 0, 0, "test", IPNULL)
IpScopeControl(SCP_DUMP_SETTINGS, 0, 0, "test.scp", IPNULL)
IpScopeControl(SCP_DUMP_SETTINGS, 0, 0, "L:\Documents and
Settings\test.scp", IPNULL)
 End Sub

Sub ShtrTest()
Dim bOpen As Integer
bOpen = 0
IpScopeControl(SCP_SETALLSHUTTERS, 0, bOpen, "", IPNULL)
bOpen = 1
IpScopeControl(SCP_SETALLSHUTTERS, 0, bOpen, "", IPNULL)
 End Sub

 Sub SetFlagTest()
Dim bSave As Integer
bSave = 0
IpScopeControl(SCP_SAVE_IN_SETTINGS, SCP_OBJECTIVE, bSave, "",
IPNULL)
bSave = 1
IpScopeControl(SCP_SAVE_IN_SETTINGS, SCP_OBJECTIVE, bSave, "",
IPNULL)
 End Sub

Additional Notes The iComponent parameter is used only with SCP_GETNAME or

SCP_SAVE_IN_SETTINGS and will be one of the following:

IpScopeControl

Page 2-610

SCP_ZFOCUS Indicates the name of the Focus component should be returned. iPos is not used and should be set
to 0.

SCP_OBJECTIVE With an iPos of SCP_COMPONENTNAME, indicates the name of the Objective set should be
returned. An iPos of between 0 and one fewer than the number of objectives will return the name of the objective in that
position.

SCP_CONDENSER With an iPos of SCP_COMPONENTNAME, indicates the name of the Condenser set should be
returned. An iPos of between 0 and one fewer than the number of condenser positions will return the name of the
condenser in that position.

SCP_CURRSHUTTER With an iPos of SCP_COMPONENTNAME, indicates the name of the current and returns current
position of shutter. An iPos of 0 or 1 will return the name of the shutter position.

SCP_SHUTTER1 See SCP_CURRSHUTTER, except that the name of shutter number 1 (or its positions) is returned.

SCP_SHUTTER2 As with SCP_SHUTTER1, but for Shutter number 2.

SCP_SHUTTER3 As with SCP_SHUTTER1, but for Shutter number 3.

SCP_SHUTTER4 As with SCP_SHUTTER1, but for Shutter number 4.

SCP_SHUTTER5 As with SCP_SHUTTER1, but for Shutter number 5.

Note that you may have up to 15 shutters….

SCP_SHUTTER15 As with SCP_SHUTTER1, but for Shutter number 15.

SCP_SLIDER1 With an iPos of SCP_COMPONENTNAME, indicates the name of Slider number 1 should be
returned. An iPos of 0 or 1 will return the name of the slider position.

SCP_SLIDER2 As with SCP_SLIDER1, but for Slider number 2.

SCP_LAMP1 With an iPos of SCP_COMPONENTNAME, indicates the name of Lamp number 1 should be
returned. An iPos between 0 and 1000 will return the name of that lamp intensity.

SCP_LAMP2 As with SCP_LAMP1, but for Lamp number 2.

SCP_APERTURE1 With an iPos of SCP_COMPONENTNAME, indicates the name of Aperture 1 should be returned. An
iPos between 0 and 1000 will return the name of that lamp intensity

SCP_APERTURE2 As with SCP_APERTURE1, but for Aperture number 2.

SCP_FWHEEL1 With an iPos of SCP_COMPONENTNAME, indicates the name of Filter set should be returned. An
iPos of between 0 and one fewer than the number of filter wheel positions will return the name of the filter in that
position.

SCP_FWHEEL2 As with SCP_FWHEEL1, but for filter wheel number 2.

SCP_FWHEEL3 As with SCP_FWHEEL1, but for filter wheel number 3.

SCP_FWHEEL4 As with SCP_FWHEEL1, but for filter wheel number 4.

SCP_FWHEEL5 As with SCP_FWHEEL1, but for filter wheel number 5.

Note that you may have up to 15 filter wheels:

SCP_FWHEEL15 As with SCP_FWHEEL1, but for filter wheel number 15.

 IpScopeControl

Page 2-611

The following commands have been added for Scope-Pro 7.0

SCP_CONTINUOUSFOCUS = 65

SCP_GET_CONTFOC_POS = 39

SCP_SET_CONTFOC_POS = 40

SCP_OFFSET_MEMORIZE = 1

SCP_OFFSET_RECALL = 2

GSCP_OFFSET_MOVE_MEMORIZE = 3

SCP_OFFSET_MOVE = 4

Use in macros are defined as follows:
ret = IpScopeSetPosition(SCP_CONTINUOUSFOCUS, 0)

The above macro will turn the PFS off.
ret = IpScopeSetPosition(SCP_CONTINUOUSFOCUS, 0)

The above macro will turn the PFS on.
ret = IpScopeControl(SCP_GET_CONTFOC_POS, SCP_CONTINUOUSFOCUS, 0, "",
IpStgVal)

The above macro will get the current position of the offset lens and return it in the single IpStgVal.
ret = IpScopeControl(SCP_SET_CONTFOC_POS, SCP_CONTINUOUSFOCUS,
SCP_OFFSET_MEMORIZE, "", IPNULL)

The above macro will “Memorize” the current offset lens position. The value will also be stored in a local array in the
driver.

ret = IpScopeControl(SCP_SET_CONTFOC_POS, SCP_CONTINUOUSFOCUS,
SCP_OFFSET_RECALL, "", IPNULL)

The above macro will “Recall” the currently memorized offset position.
ret = IpScopeControl(SCP_SET_CONTFOC_POS, SCP_CONTINUOUSFOCUS,
SCP_OFFSET_MOVE_MEMORIZE, "", IpVal)

The above macro will move the offset lens to the absolute position passed in, in the single IpStgVal. The position will
then be “Memorized” and also stored in the drivers local array.

ret = IpScopeControl(SCP_SET_CONTFOC_POS, SCP_CONTINUOUSFOCUS,
SCP_OFFSET_MOVE, "", IpStgVal)

The above macro will move the offset lens to the absolute position passed in, in the single IpStgVal. The position will
NOT be “Memorized” and will NOT be stored in the drivers local array.

IpScopeDocGet

Page 2-612

IpScopeDocGet
Syntax IpScopeDocGet(Setting, DocID, Value)

Description This function gets information on an image captured by Scope-Pro. This is similar to the
position information displayed by right clicking on the image.

Parameters Setting Integer Must be one of the following:

STGINF_Z_POS returns the Z position of the image
from the Z origin.
SCPINF_Z_FIELD returns the number of the plane.

SCPINF_Z_NUMPLANES returns the number of
planes in the Z stack.

SCPINF_Z_MIN returns the Z position of the lowest
plane with in-focus material. Will return 0 if the image
was not captured using either Extended depth of field
or Software Auto-Focus.

STGINF_Z_MAX returns the Z position of the highest
plane with in-focus material. Will return 0 if the image
was not captured using either Extended depth of field
or Software Auto-Focus.

SCPINF_Z_DIST returns the distance between the
lowest and highest planes with in-focus material. Will
return 0 if the image was not captured using either
Extended depth of field or Software Auto-Focus.

SCPINF_Z_BEST returns the Z position of the plane
with the most in-focus material. Will return 0 if the
image was not captured using Software Auto-Focus.

 DocID Integer Document ID of the image to get information on. Can
use DOCSEL_ACTIVE for current active image.

 Value Single Variable where the parameter value will be returned.

Example The following statement retrieves the Z field of the current active workspace.

DIM ZDist AS SINGLE

ret =IpScopeDocGet (SCPINF_Z_FIELD, DOCSEL_ACTIVE,
ZDist)

Comments This information will only be attached to an image captured through
Scope-Pro or Stage-Pro.

IpScopeEnumSettings
Syntax IpScopeEnumSettings(lpSzDirectory, bFirst, lpSzSettingsFile)

Description This function lists the Scope-Pro settings files found in a given directory

Parameters lpSzDirectory String Indicates where to look for the settings files.

 IpScopeEnumSettings

Page 2-613

 bFirst Integer Initializes the list and returns the first file
found (if 1) or the next file (if 0).

 lpSzSettingsFile String Receives the name of the specified settings
file (file name only, no path).

Return Value Returns the length of the settings file name, if found; or returns 0, if there are no more in the list.

Example Sub EnumAll()
dim settings as string*255
 ret = IpScopeEnumSettings("c:\ipwin7\", 1,
 settings)
 if (ret = 0) then
 ret = IpMacroStop("No settings found.",
 MS_MODAL)
 end if
 while ret > 0
 ret = IpMacroStop(settings, MS_MODAL)
 ret = IpScopeEnumSettings("c:\ipwin7\",
 0, settings)
 wend
End Sub

Comments Use this macro with bFirst TRUE to initialize the list, then loop while the return value is greater
than 0. The directory must include the trailing backslash (\).

IpScopeGetCount

Page 2-614

IpScopeGetCount
Syntax IpScopeGetCount(iComponent, iCnt)

Description This function gets the number of component positions

Parameters iComponent Integer Specifies the component by ID.

 iCnt Integer Returns the number of component position(s).

Example dim count as integer
ret = IpScopeGetCount (SCP_FWHEEL1, Count)

Comments This function uses the component identifiers described under IpScopeControl.

IpScopeGetPosition
Syntax IpScopeGetPosition(iComponent, iPos)

Description This function gets the index of the current component position

Parameters iComponent Integer Indicates the component by ID.

 iPos Integer Returns the index of the current component
position.

Example dim position as integer
ret = IpScopeGetPosition (SCP_FWHEEL1, Position 1)

Comments This function uses the component identifiers described under IpScopeControl.

 IpScopeRead

Page 2-615

IpScopeRead
Syntax IpScopeRead(iComponent, lpString, iNumChar, iTimeout)

Description This function allows your application to receive characters from the specified component’s
controller.

Parameters iComponent Integer Indicates the component by ID.

 lpString String String that receives characters from the controller.

 iNumCharacters Integer The number of characters to attempt to read from
the controller.

 iTimeout Integer The maximum time in seconds to wait for the string
to be read.

Return Value Returns the number of characters read if successful; returns a negative value if failed. A return of
0 (zero) means no characters were read.

Comments This function uses the component identifiers described under IpScopeControl. The existing XY
stage function, IpStgXYWrite, will be used to access that component; and where the Stage-Pro
interface is installed, the Z Focus function, IpStgZWrite, can also be used. The Z Focus
component will also be identified by ID and accessible through this function as well. When the
Scope-Pro interface is installed, this function must be used to access the Z Focus controller.

See Also IpScopeWrite

IpScopeSettings
Syntax IpScopeSettings(lpName, iSave)

Description This loads or saves a Scope-Pro settings file (*.scp).

Parameters lpName String The name of the Scope-Pro settings file.

 iSave Integer Constants will be defined for the following:
SCP_LOAD
SCP_SAVE

Example The following statement will save the current stage settings:
ret = IpScopeSettings(“c:\Ipwin7\test.scp”, SCP_SAVE)

IpScopeSetPosition
Syntax IpScopeSetPosition(iComponent, iPos)

Description This function moves the specified component to the desired position

Parameters iComponent Integer Indicates the component by ID.

 iPos Integer Indicates the desired component position.

Page 2-616

Example ret = IpScopeSetPosition(SCP_FWHEEL1, 2).
This will move the filter wheel to position 3.

Comments This function uses the component identifiers described under IpScopeControl.

 IpScopeShow

Page 2-617

IpScopeShow
Syntax IpScopeShow(bShow)

Description This function displays or hides the Scope-Pro user interface.

Parameters bShow Integer An integer value specifying whether the Scope-Pro
dialog should be shown or hidden. Must be one of
the following:
SCP_HIDE = 0
SCP_SHOW = 1
SCP_CONFIG_TAB = 2
SCP_SCOPE_TAB = 3
SCP_ACQ_TAB = 4

Example The following statement will open the Scope-Pro window.
ret = IpScopeShow(SCP_SHOW)

Comments It is not necessary to display the Scope-Pro dialog when executing any of the microscope
controller functions from a macro. Its disposition, shown or hidden, is entirely up to you. You
will want to display the dialog if your program requires the user to make choices within it,
however, if your purpose is merely to move the microscope hardware in a predefined manner,
there is no need to display the dialog.

Previous versions of Scope-Pro allowed only 0 or 1 in the bShow parameter. Version 7.0 now
allows you to display a specific tab within the dialog using the values indicated above.

IpScopeWrite

Page 2-618

IpScopeWrite
Syntax IpScopeWrite(iComponent, lpString,iTimeout)

Description This function allows your application to send a string to the specified component’s controller.

Parameters iComponent Integer Indicates the component that should receive the
string by ID.

 lpString String Identifies the ASCII Z string that should be sent to
the controller.

 iTimeout Integer The maximum time in seconds to wait for the string
to be sent.

Return Value Returns the number of characters read, if successful; returns a negative value, if failed.

Comments Use IpScopeRead to receive the results of the command. This macro command should be
followed by a pause or IpMacroStop to give the Write macro time to communicate with the
controller and for the controller to process the command.

This function uses the component identifiers described under IpScopeControl. The existing XY
stage function, IpStgXYWrite, will be used to access that component; and where the Stage-Pro
interface is installed, the Z Focus function, IpStgZWrite, can also be used. The Z Focus
component will also be identified by ID and accessible through this function as well. When the
Scope-Pro interface is installed, the function must be used to access the Z Focus controller.

Note: Success of this function does not assure that Scope-Pro can communicate with the
component’s controller.

See Also IpScopeRead

IpSegCreateMask
Syntax IpSegCreateMask(MaskType, MaskMethod, MaskClass)

Description This function creates the specified mask from the current color list. Equivalent to clicking the
New Mask button in the Segmentation dialog box.

Parameters MaskType Integer An enumerated integer specifying how the color list is
to be applied against the active image. Must be one of
the following:

 MASK_BILEVELNEW
 MASK_BILEVELINPLACE
 MASK_COLORNEW

See definitions under Comments, below.

 MaskMethod Integer Not used in IPP 4.0 OR HIGHER. Retained for
backward compatiblity. Program will load current
selection in segmentation data structure.

 MaskClass Integer Not used in IPP 4.0 OR HIGHER. Retained for
backward compatiblity.

 IpSegCreateMask

Page 2-619

Example Dim i As Integer
 Dim DocId As Integer

 For i = 0 To 2
 ret = IpSegSetAttr(SETCURSEL, i)
 ret = IpSegSetAttr(CHANNEL, 0)
 ret = IpSegPreview(CURRENT_W_B)
 DocId = IpSegCreateMask(MASK_COLORNEW,
 0, 0)
 ret = IpWsConvertToGray()
 ret = IpDocCloseEx(DocId)
 Next i

These statements will iterate through 3 segmentation classes, creating a mask of each class and
converting the mask to grayscale. Once the gray scale conversion is complete, the RGB
version of the mask is destroyed.

Comments Image-Pro 4.0 or higher does not use the MaskMethod and MaskClass paremeters. MaskType
options are as follows:

VALUE DESCRIPTION

MASK_BILEVELNEW Applies the class list such that all pixels
contained in a class are set to white (255) and all
others are set to black (0). Writes the result to a
new image window. This is the same as pressing
the New Mask button.

MASK_BILEVELINPLACE Applies the color list such that all pixels
contained in a classs are set to white (255) and all
others are set to black (0). Writes the results to
the original image window. This is the same as
pressing the Apply Mask button.

IpSegDelete

Page 2-620

VALUE DESCRIPTION

MASK_COLORNEW Applies the class list in the method selected for
Preview and writes the image to a new image
window. Identical to pressing the Create
Preview Image button in the Segmentation
dialog.

See Also IpSegSelectArea, IpSegPreview

IpSegDelete
Syntax IpSegDelete(ClassName, nIndex)

Description This function deletes the specified class.

Parameters ClassName String A string specifying the name of the class to be
deleted. This takes precedence over the nIndex
parameter.

 nIndex Integer Index of the class to be deleted. Ignored unless
ClassName is an empty string.

Example ret = IpSegDelete ("Green Object", 0)

ret = IpSegDelete ("", 1)

Comments The last class can’t be deleted.

See Also IpSegNew, IpSegRename

IpSegGetRange
Syntax IpSegGetRange(nChannel, FromVal, To Val)

Description This function returns the starting and ending values of the specified channel of the current class
in the histogram-based segmentation.

Parameters nChannel Integer The channel index.

 FromVal Single The name of the variable that will receive the starting
value.

 ToVal Single The name of the variable that will receive the ending
value.

Comments Use the IpSegSetAttr function with the SETCURSEL command to set the current range.

See Also IpSegSetRange, IpSegSetAttr

 IpSegLoad

Page 2-621

IpSegLoad
Syntax IpSegLoad(ColorRangesFile)

Description This function loads a class list file to the active image. Equivalent to selecting the File: Load
File button in the Segmentation window.

Parameters ColorRangesFile String A string specifying the name of the file from which
the color-range list will be read.

Example ret = IpSegLoad("C:\IPWIN\HSIREDS.RGE")

This statement will load the class list list from the file HSIREDS.RGE in the \IPWIN directory
on the C: drive.

Comments The loaded class list list will replace the current list. If you want to add the contents of a class list
file to the current list, use the IpSegMerge function.

See Also IpSegMerge, IpSegSave

IpSegMerge

Page 2-622

IpSegMerge
Syntax IpSegMerge(ColorRangesFile)

Description This function adds the class list file to the current class list.

Parameters ColorRangesFile String A string specifying the name of the file from which
the class list will be read.

Example ret = IpSegMerge("C:\IPWIN\HSIREDS.RGE")

This statement will combine the contents of the HSIREDS.RGE file with the current class list.

Comments The loaded class list will be added to the current list. If you want to replace the current list with
the contents of a class list file, use the IpSegLoad function. This function will not work with 8-
bit grayscale images.

See Also IpSegLoad, IpSegSave

IpSegNew
Syntax IpSegNew(ClassName)

Description This function adds a new class to the current list. All channel values for the new class will be
set to default values.

Parameters ClassName String A string specifying the name of the class to be
added. A null string will allow program to set a
default name to the new class.

Example ret = IpSegPreview (0) // no preview while adding new class

ret = IpSegNew("Green Objects")

ret = IpSegSetRange(0, 0, 255)

ret = IpSegSetRange(1, 128, 255)

ret = IpSegSetRange(2, 0, 255)

ret = IpSegPreview (1) // turn on preview

Comments The new class will become current class. Use IpSegSetRange or IpSegSelectArea to set the
value for this class.

See Also IpSegSetRange, IpSegDelete, IpSegSelectArea

 IpSegPreview

Page 2-623

IpSegPreview
Syntax IpSegPreview(bShow)

Description This function indicates how the class list is previewed on the active image.

Parameters bShow Integer An integer value of 0 through 16 specifying how the
image is to be rendered. See table below:

 Predefined
Constant

Value Apply Range Meaning

 PREVIEW_NONE 0 N/A No preview, shows original image

 CURRENT_C_T 1 Current Preview class color on transparent

 ALL_C_T 2 All Preview class colors on transparent

 ALL_T_W 3 All Preview transparent on white

 CURRENT_W_B 4 Current Preview white on black

 CURRENT_B_W 5 Current Preview black on white

 CURRENT_C_B 6 Current Preview class color on black

 CURRENT_C_W 7 Current Preview class color on white

 CURRENT_B_T 8 Current Preview black on transparent

 CURRENT_T_B 9 Current Preview transparent on black

 CURRENT_T_W 10 Current Preview transparent on white

 ALL_W_B 11 All Preview white on black

 ALL_B_W 12 All Preview black on white

 ALL_C_B 13 All Preview class colors on black

 ALL_C_W 14 All Preview class colors on white

 ALL_B_T 15 All Preview black on transparent

 ALL_T_B 16 All Preview transparent on black

Example ret = IpSegPreview(2)

This statement will display the active image in segmentation-preview mode using class colors,
thereby de-emphasizing any colors that are not contained in the current color list.

IpSegRename

Page 2-624

IpSegRename
Syntax IpSegRename(nIndex, ClassName)

Description This function renames a class.

Parameters nIndex Integer Index of the class to be renamed.

 ClassName String A string specifying the new name of the class to be
renamed.

Example ret = IpSegRename (0,"Green Object").

Comments If index is incorrect, it will return IPCERR_INVARG. Class names cannot be longer than 15
characters.

See Also IpSegNew, IpSegDelete

IpSegReset
Syntax IpSegReset()

Description This function clears the current color list of current class. Equivalent to clicking the Remove
Color button in the Segmentation dialog box.

See Also IpSegSelectArea, IpSegLoad

IpSegSave
Syntax IpSegSave(ColorRangesFile, bUnused)

Description This function saves the current color-range list to a file. Equivalent pressing the File:Save
File buttons in the Segmentation dialog.

Parameters ColorRangesFile String A string specifying the name of the file to which the
color-range list will be written.

 bUnused Integer Unused. Provided for backward compatibility.

Example ret = IpSegSave("C:\IPWIN\HSIREDS.RGE",0)

This statement will save the current color-range list, to a file called HSIREDS.RGE in the
\IPWIN directory on the C: drive.

See Also IpSegLoad, IpSegMerge

 IpSegSelect

Page 2-625

IpSegSelect
Syntax IpSegSelect(SelectionType, Sensitivity)

Comments This function is not supported in IPP 4.0 OR HIGHER. Use IpSegSelectArea instead.

See Also IpSegSelectArea, IpSegPreview, IpSegCreateMask

IpSegSelectArea
Syntax IpSegSelect(SelectionType, Sensitivity, xPos, yPos, nSize)

Description This function adds or deletes the colors encompassed by the area to/from the current color
range list. Equivalent to clicking the Eyedropper or Eraser button in the Color
Segmentation dialog box.

Parameters SelectionType Integer An enumerated integer specifying how the colors in the
active AOI are to be applied to the color list. Must be
one of the following:

 SEG_SELADD
 SEG_SEGSUBTRACT

See definitions under Comments, below.

 Sensitivity Integer An integer from 1 to 5 (inclusive) specifying how much
deviation from the selected colors is to be allowed. 5
indicates that no deviation from the specified colors will
be allowed, and 1 indicates that the maximum amount
of deviation will be tolerated. Changing this value will
reset Segmentation and reset the class list.

 xPos Integer Central x coordinate of the area where colors should
be selected from the image.

 yPos Integer Central y coordinate of the area where colors should be
selected from the image.

 nSize Integer Size of rectangle from which colors are selected.
Should be 1, 3, 5 or 7.

Example ret = IpSegSelectArea(SEG_SELSUBTRACT, 5, 100, 100, 5)

This set of statements will remove from the color list, just the colors contained in the image
rectangle (98, 98, 102, 102). No deviation from these colors will be permitted.

IpSegSetAttr

Page 2-626

Comments SelectionType options are as follows:

VALUE DESCRIPTION
SEG_SELADD Adds the colors in the specified region to the current color

list. Equivalent to using the eyedropper tool.

SEG_SEGSUBTRACT Removes the colors in the specified region from the current
color list. Equivalent to using the eraser tool.

 This function only works if the data structure is using the color cube model.

See Also IpSegPreview, IpSegCreateMask

IpSegSetAttr
Syntax IpSegSetAttr(AttrType, AttrValue)

Description This function set the channel’s range values of current class in the histogram-based
segmentation.

Parameters AttrType Integer An enumerated integer specifying the option to be set.
Must be one of the following:
CHANNEL
COLORMODEL
SEGCLR_RED
SEGCLR_GREEN
SEGCLR_BLUE
CURSORSIZE
DEGREE
INVERT
SETCURSEL
SEGMETHOD
THRESHOLD
See definitions under Comments, below.

 AttrValue Integer An integer specifying how the AttrType option is to be
set. See definitions under Comments, below, for the
values allowed by each option.

Example ret = IpSegSetAttr (COLORMODEL, CM_HSI).

This statement changes the color model used in histogram-based segmentation to HSI.

 IpSegSetAttr

Page 2-627

Comments AttrType options as follows:

AttrType DESCRIPTION ALLOWED VALUES
CHANNEL Select the active channel for display

purpose in the histogram-based
segmentation historgram mode. This
only applies to RGB image.

0 - Channel 1 (Red/Hue)

1 - Channel 2(Green/Saturation)

2 - Channel 3 (Blue/Intensity)

3 - All channels will be
previewed.

4 - Only the current channel. All
others will be hidden.

COLORMODEL Select the color model in which the
histogram-based segmentation is based
on.

CM_RGB

CM_HSI

SEGCLR_RED Records the red color level for the
current channel.

0 -255

SEGCLR_GREEN Records the green color level for the
current channel.

0-255

SEGCLR_BLUE Records the blue color level for the
current channel.

0-255

CURSORSIZE Sets the eyedropper and eraser cursor
size in pixels

1,3,5,or 7

DEGREE Sets the degree of variance for the
eyedropper and eraser.

0 -1 0

INVERT Indicates if channel is inverted or not Channel 1 - 1 = inverted
 0 = not inverted

Channel 2 - 3 = inverted
 2 = not inverted

Channel 3 - 5 = inverted
 4 = not inverted

SETCURSEL Set the current selected class. 0-based index

 (0 to NumOfClasses - 1)

SEGMETHOD Method used to do the segmentation.
This only applies to RGB images.

0 - Histogram-based

1 - Color Cube-based

THRESHOLD Sets the threshold value for dropping
extraneous (noise) pixels

1 -100

See Also IpSegPreview, IpSegCreateMask, IpSegGetRange, IpSegSetRange

IpSegSetRange

Page 2-628

IpSegSetRange
Syntax IpSegSetRange(nChannel, FromVal, ToVal)

Description This function sets the channel values of the current class in the histogram-based segmentation.

Parameters nChannel Integer The channel index. If equal to -1, use autoselect.

 FromVal Single The starting point of the range.

 ToVal Single The ending point of the range.

Comments Turn off and on the preview before and after you set all values to avoid unnecessary overlay class
redraw. Class ranges may not overlap on gray images. Use the IpSegSetAttr function with
the SETCURSEL command to set the current range.

See Also IpSegSelectArea, IpSetGetRange, IpSegSetAttr

IpSegShow
Syntax IpSegShow(bShow)

Description This function is used to open or close the Segmentation command window. Equivalent to
selecting the Segmentation command to open the window, and clicking the Close button
within it to close it.

Parameters bShow Integer An integer value of 0, 1, or 2 specifying how the
Segmentation command window is to be shown.
Where:
 0 - Closes the window if it is already open.
 1 - Opens the window to the Histogram tab.
 2 - Opens the window to the Color Cube tab.

Example ret = IpSegShow(1)

This statement will make the Segmentation command window Histogram tab visible during
execution of the macro.

Comments The Color Segmentation command window does not have to be open during execution of the
segmentation functions. Its disposition, visible or hidden, is entirely your choice. You will
want to display the window if your users will be required to make choices within it, but if your
objective is simply to obtain a mask, you may want to run without opening it.

 IpSeqAverage

Page 2-629

IpSeqAverage
Syntax IpSeqAverage (lStart, lNumber)

Description This function averages the frames of a sequence into a single image.

Parameters lStart Long Indicates the first frame to average.

 lNumber Long Indicates the number of frames to analyze, -1
indicates the entire sequence

Return Value This function returns the workspace Document ID if successful, -1 if failed.

Example ret = IpSeqAverage(4,7)
This statement averages 7 frames in the sequence, starting with frame #4.

Comments Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpSeqDifference, IpSeqRunning Average

IpSeqDifference
Syntax IpSeqDifference(lStart, lNumber)

Description This function creates a new sequence, where each frame represents the difference between two
adjacent frames.

Parameters lStart Long Indicates the first frame to analyze.

 lNumber Long Indicates the number of frames to analyze, -1
indicates the entire sequence

Return Value This function returns the workspace Document ID if successful, -1 if failed.

Example ret = IpSeqDifference(4,7)

This statement analyzes 7 frames in the sequence, starting with frame #4.

Comments Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpSeqAverage, IpSeqRunning Average

IpSeqDifferenceEx

Page 2-630

IpSeqDifferenceEx
Syntax IpSeqDifferenceEx(lStart, lNumber,DiffType)

Description This function creates a new sequence, where each frame represents the difference between two
adjacent frames.

Parameters lStart Long Indicates the first frame to analyze.

 lNumber Long Indicates the number of frames to analyze, -1
indicates the entire sequence

 DiffType Long Calculates the sequence differing options, as follows:
SEQDIFF_WRAP - The last frame is calculated as
the difference between last frame and first frame
(previous behavior)
SEQDIFF_DIFFONLY - The new sequence is one
frame shorter than original, returning only
difference frames

SEQDIFF_PADFIRST - The first frame of result is
zero difference frame (filled with the median
intensity for the image type)

SEQDIFF_PADLAST - The last frame of result is
zero difference frame.

Return Value This function returns the workspace Document ID if successful, -1 if failed.

Example ret = IpSeqDifference(4,7)

This statement analyzes 7 frames in the sequence, starting with frame #4.

Comments Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpSeqAverage, IpSeqRunning Average

IpSeqExtractFrames
Syntax IpSeqExtractFrames (lStart, lNumber)

Description This function extracts the specified number of frames from the sequence.

Parameters lStart Long indicates the first frame to extract.

 lNumber Long Indicates the number of frames to extract, -1 to
extract all.

Return Value Returns the Document ID of the first workspace if successful, -1 if failed.

Example This statement will extract 5 frames, starting with frame #10:

ret = IpSeqExtractFrames (10,5)

 IpSeqGet

Page 2-631

Comments This function creates a new workspace for each frame extracted from the sequence. The
sequence itself remains unchanged.
Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with
0 (zero), but the workspace title bar and the sequencer tool bar start frame numbers with
frame 1.
If -1 is used for lNUMBER, lSTART is ignored.

IpSeqGet
Syntax IpSeqGet (sAttr, lpValue)

Description This function retrieves information about the sequence.

Parameters sAttr Integer Determines the sequence attribute to get. Must be
one of the following:
SEQ_NUMFRAMES = number of frames
SEQ_ACTIVEFRAME = current active frame
SEQ_FRAMETIME = current delay time
SEQ_SKIP = number of frames to skip
SEQ_START = current starting frame
SEQ_END = current ending frame
SEQ_PLAYTYPE = current play type, where 1 = wrap
around at end, 2 = play to end, 3 = autoreverse
SEQ_PLAYUPDATE = determines if the current
frame controls are updated, where 0 = no update, 1 =
update
SEQ_APPLY = determines if operations will apply to
entire sequence, where 0 = apply to current frame, 1
= apply to entire sequence
SEQ_ADJUST_RATE = determines whether to
automatically adjust the Sequence play rate, where 0
= do not adjust, 1 = adjust rate

IpSeqGet

Page 2-632

Parameters sAttr Integer SEQ_EDIT_PROMPT = Determines whether to
display prompts while editing sequences (e.g.
Cut/Copy/Paste Frames)
SEQ_AVG_PROMPT - Determines whether to display
prompting dialog when running the Sequence
Running Average operation. If the dialog is not
displayed, the operation will use the last-used
settings. See also SEQ_AVG_FRAMES and
SEQ_AVG_DROP_INCOMPLETE.
SEQ_AVG_FRAMES = Determines the default value
for the number of frames to average for the Running
Average operation.
SEQ_AVG_DROP_INCOMPLETE = Determines
whether to drop the incomplete frames at the start of
the sequence.
SEQ_DIFF_PROMPT = Determines whether to
display prompting dialog when running the Sequence
Difference operation. If the dialog (illustrated in
Interface/Functionality) is not displayed, the operation
will use the last-used settings. See also
SEQ_DIFF_TYPE.
SEQ_DIFF_TYPE = Determines whether/how to
calculate the difference. The value can be one of the
SEQDIFF constants described above for use with
IpSeqDifferenceEx.

 SEQ_FRAMES_DISPLAYED - This read-only value
reports the number of frames displayed the last time a
sequence was displayed. Not supported for use with
IpSeqSet.
SEQ_FRAMES_DROPPED = This read-only value
reports the number of frames dropped (not displayed)
the last time a sequence was displayed. Not
supported for use with IpSeqSet.
SEQ_CURRENT_FRAMETIME = gets the duration
that each frame is displayed when playing a
sequence. This time may be different from the
nominal frame rate if the SEQ_ADJUST_RATE (auto-
adjust) is active.

 lpValue LONG Pointer to a long variable to receive the attribute’s
current setting.

Example This code will get the active frame number and report it to the output window:

Dim seqinfo as Long
ret = IpSeqGet(SEQ_ACTIVEFRAME, seqinfo)
ret = IpOutPut(str$ (seqinfo))

Comments Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame
1.

See Also IpSeqSet

 IpSeqMerge

Page 2-633

IpSeqMerge
Syntax IpSeqMerge(lpszFileName, lpszLibrary, lStartNumber, lNumFrames)

Description This function appends one or more images in an image sequence into the currently active
sequence.

Parameters lpszFileName String Indicates the name of the file containing
the image sequence to be merged.

 lpszLibrary String Specifices the file format library used to
open the specified file.

 lStartNumber Long An integer specifying the first frame in the
sequence that will be merged i.e. 0, 1, 2,
etc.

 lNumFrames Long An integer specifying the total number of
frames that will be merged.

Return Value This function returns the workspace Document ID if successful, -1 if failed.

Example ret = IpSeqMerge ("Heart.seq", “SEQ” 0,3)

This statement merges 3 frames from the sequence file “Heart.seq” starting with frame 0, into the
current sequence. If a workspace is not open, a new one will be opened.

Comments IpSeqMerge always appends the new frames to the end of the existing sequence.
Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpSeqOpen, IpSeqPlay, IpSeqSave

IpSeqOpen
Syntax IpSeqOpen (lpszFileName, lpszFileFormt, lStartFrame, lNumFrames)

Description This function opens an image sequence.

Parameters lpszFileName String Indicates the name of the file holding the image
sequence to be opened.

 lpszFileFormat String Specifices the file format library used to open the
specified file.

 lStartFrame Long An integer specifying the first frame in the
sequence that will be opened i.e. 0, 1, 2, etc.

 lNumFrames Long An integer specifying the total number of frames
to read in.

Return Value This function returns the workspace Document ID if successful, -1 if failed.

Example ret = IpSeqOpen ("Heart.seq", "SEQ",10,10)

This statement opens 10 frames from the sequence file “Heart.seq” starting with frame 10.

IpSeqOpenEx

Page 2-634

Comments Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.
The file format must be either TIF or SEQ.

See Also IpSeqMerge, IpSeqPlay, IpSeqSave

IpSeqOpenEx
Syntax IpSeqOpenEx(lpszFileName, lpszFileFormt, lStartFrame, lNumFrames, Interval)

Description This function opens and subsamples an image sequence.

Parameters lpszFileName String Indicates the name of the file holding the image
sequence to be opened.

 lpszFileFormat String Specifices the file format library used to open the
specified file.

 lStartFrame Long An integer specifying the first frame in the
sequence that will be opened i.e. 0, 1, 2, etc.

 lNumFrames Long An integer specifying the total number of frames
to read in.

 Interval Integer An integer indicating if the sequence should be
subsampled while opening. If the interval = 1,
then all frames are opened; 2 = every other
frame, and so on.

Return Value This function returns the workspace Document ID if successful, -1 if failed.

Example ret = IpSeqOpen ("Heart.seq", "SEQ",10,10)

This statement opens 10 frames from the sequence file “Heart.seq” starting with frame 10.

Comments Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.
The file format must be either TIF or SEQ.

See Also IpSeqMerge, IpSeqPlay, IpSeqSave

IpSeqOptions
Syntax IpSeqOptions ()

Description This function displays the Sequence Options dialog, which allows you to change any of the
sequence settings.

Example ret = IpSeqOptions

 IpSeqPlay

Page 2-635

IpSeqPlay
Syntax IpSeqPlay (sPlayCommand)

Description This function plays an image sequence, or displays a frame in that sequence.

Parameters sPlayCommand Integer An integer specifying how to play the specified
sequence. May be the frame to display, or one
of the following:
SEQ_STOP - stop play
SEQ_FOR - play sequence forward
SEQ_REV - play sequence in reverse
SEQ_FFOR - play sequence in fast forward
SEQ_FREV - play sequence in fast reverse
SEQ_FFRA - jump to first frame
SEQ_LFRA - jump to last frame
SEQ_PREV - step to previous frame
SEQ_NEXT - step to next frame

Return Value This function returns the current frame after the operation, if successful, -1 if failed.

Example ret = IpSeqPlay(SEQ_FOR)
This statement starts a sequence playing forward.

ret = IpSeqPlay(10)
This statement displays frame #10 of the sequence.

Comments SEQ_PREV and SEQ_NEXT do not wrap around at the end of a sequence.
Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpSeqOpen, IpSeqMerge, IpSeqSave

IpSeqReslice

Page 2-636

IpSeqReslice
Syntax IpSeqReslice(Start, Number, SliceType,Resample)

Description This function creates a new sequence,resampled along the X, Y, or Z axis.

Parameters Start Long Indicates the first frame to use in the resampling
process, or use -1 to use the starting frame of the
currently-selected portion of the sequence.

 Number Long Indicates the number of frames to use for
resampling,or -1 To use the number of frames in
the currently-selected portion of the sequence.

 SliceType Integer The type of resampling, must be one of the
following:

SEQSLICE_XZ: This resampling creates an X/Z
axis view of the original sequence, with the new
sequence having one frame for each pixel along
the Y axis.

SEQSLICE_YZ:This resampling creates a Y/Z
axis view of the original sequence, with the new
sequence having one frame for each pixel along
the Z axis.

SEQSLICE_REVERSEZ: This resampling
creates a new sequence with the same X/Y
dimensions as the original sequence, but with the
frame order reversed

 Resample Double A scaling factor for resampling the Z axis. See
comments.

Comments The Z axis is often sampled at a much lower resolution than the X/Y sampling (the pixel size
along these dimensions). An X/Z or Y/Z view will end up quite thin in relation to the original
sequence size, and pixels in the view will not be square. A scaling factor > 1 can be provided to
resize the new view along the Z axis.

IpSeqRunningAvg
Syntax IpSeqRunningAvg (lStart, lNumber, lAvgWindow, bDropFrames)

Description This function creates a new sequence where each frame represents an average of a specified
number of frames from the original sequence.

Parameters lStart Long Indicates the first frame to average.

 lNumber Long Indicates the number of frames to analyze,
 -1 indicates the entire sequence.

 lAvgWindow Long Indicates the number of frames to use to
calculate the running average. Must be a number
greater than 1. -1 opens the sequence image
selection dialog.

 IpSeqSave

Page 2-637

 bDropFrames Integer Indicates whether or not to include partial
averages at the beginning and end of the new
sequence.

Return Value This function returns the workspace Document ID if successful, -1 if failed.

Example ret = IpSeqRunningAvg (0,-1, 3, 0)
This example calculates the running average of the entire sequence, averaged over 3 frames.
Since the partial frames are dropped (2 at the beginning), the resulting sequence will be 2 frames
shorter than the original sequence.

ret = IpSeqRunningAvg (2, 10, 2, 1)
This example uses only frames 2 through 12 and retains the partial frames so the resulting
sequence will be 10 frames long.

Comments Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpSeqDifference, IpSeqAverage

IpSeqSave
Syntax IpSeqSave(lpszFileName, lpszLibrary, lStartNumber, lNumFrames)

Description This function saves an image sequence to a file.

Parameters lpszFileName String Indicates the name of the file holding the image
sequence to be saved

 lpszLibrary String Indicates the format of the image sequence.
Must be a SEQ, TIF, or IPW file.

 lStartNumber LONG An integer specifying the first frame in the
sequence that will be saved, i.e. 0, 1, 2, etc.

 lNumFrames LONG An integer specifying the number of frames to
save, -1 indicates the entire sequence.

Example ret = IpSeqSave("TestSequence.seq", "SEQ", 0,4)

This statement saves the current sequence as TestSequence.seq, starting from frame 0
and saving 4 frames.

Comments Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpSeqOpen, IpSeqPlay, IpSeqMerge

IpSeqSet

Page 2-638

IpSeqSet
Syntax IpSeqSet (sAttr, lNewAttr)

Description This function determines the sequence attribute to set.

Parameters sAttr Integer Determines the sequence attribute to set. Must be
one of the following:
SEQ_ACTIVEFRAME = current active frame
SEQ_FRAMETIME = current delay time
SEQ_SKIP = number of frames to skip
SEQ_START = current starting frame
SEQ_END = current ending frame
SEQ_PLAYTYPE = current play type
SEQ_PLAYUPDATE = determines if the current
controls are updated where 0 = no update, 1 =
update
SEQ_APPLY = = determines if operations will
apply to the active portion of the sequence, where
0 = apply to current frame, 1 = apply to active
portion.

 When the attribute is SEQ_PLAYTYPE, the
attribute should be one of the following:

SEQ_PLAYWRAP = wraps sequence around at
end

SEQ_PLAYTOEND = plays the sequence to the
end

SEQ_PLAYAUTOREV = autoreverses the
sequence.

SEQ_ADJUST_RATE = determines whether to
automatically adjust the Sequence play rate,
where 0 = do not adjust, 1 = adjust rate.

 SEQ_EDIT_PROMPT = Determines whether to

display prompts while editing sequences (e.g.
Cut/Copy/Paste Frames)

SEQ_AVG_PROMPT - Determines whether to
display prompting dialog when running the
Sequence Running Average operation. If the
dialog is not displayed, the operation will use the
last-used settings. See also SEQ_AVG_FRAMES
and SEQ_AVG_DROP_INCOMPLETE.

SEQ_AVG_FRAMES = Determines the default
value for the number of frames to average for the
Running Average operation.

SEQ_AVG_DROP_INCOMPLETE = Determines
whether to drop the incomplete frames at the start
of the sequence.

 IpSeqSet

Page 2-639

 SEQ_DIFF_PROMPT = Determines whether to
display prompting dialog when running the
Sequence Difference operation. If the dialog
(illustrated in Interface/Functionality) is not
displayed, the operation will use the last-used
settings. See also SEQ_DIFF_TYPE.

SEQ_DIFF_TYPE = Determines whether/how to
calculate the difference. The value can be one of
the SEQDIFF constants described above for use
with IpSeqDifferenceEx.

 SEQ_CURRENT_FRAMETIME = sets the duration
that each frame is displayed when playing a
sequence. This time may be different from the
nominal frame rate if the SEQ_ADJUST_RATE
(auto-adjust) is active.

 LNewAttr Long The attribute’s new setting.

Example This statement will set the “play to end” option:
ret = IpSeqSet(SEQ_PLAYTYPE, SEQ_PLAYTOEND)

This statement will turn off the “Update Frame Slider” option”
ret = IpSeqSet(SEQ_PLAYUPDATE, 0)

This statement will turn on the “Update Frame Slider” option”
ret = IpSeqSet(SEQ_PLAYUPDATE, 1)

Comments Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame
1.
SEQ_START and SEQ_END are used to set the active portion of the sequence. When
SEQ_APPLY is TRUE, the active portion determines the portion of the sequence that will be
played. Many Image-Pro operations such as conversion, filtering, and image operations will
alos respect the active portion of the sequence.

IpSeqShow

Page 2-640

IpSeqShow
Syntax IpSeqShow(bShow)

Description This function displays or hides the sequence tool bar.

Parameters bShow Integer A value of 0 or 1 specifying whether the toolbar
is to be displayed or suppressed.
 0 = hide the toolbar
 1 = show the toolbar

Example ret = IpSeqShow(1)

This statement opens the Sequencer tool bar.

ret = IpSeqShow(0)

This statement closes the Sequencer tool bar.

IpSeqGCreate
Syntax IpSeqGCreate()

Description This function creates a sequence gallery for the active image.

Return Value Document ID of the new sequence gallery if successful, a negative error code if failed

Comments The sequence galleries themselves are Image-Pro workspaces, and can be manipulated with the
normal set of IpDoc and IpWs Auto-Pro functions.

IpSeqGGet
Syntax IpSeqGGet(Attribute, DocID, Value)

Description This function gets a sequence gallery attribute.

Parameters Attribute Integer Attribute indicates the sequence gallery attribute
to get, from the following:

SEQG_TRACKENABLE Indicates whether
the gallery will track changes in the sequence

SEQG_ISTRACKED Indicates whether
the specified workspace is a sequence and is
tracked by a sequence gallery

SEQG_ISGALLERY Indicates whether the
specified workspace is a sequence gallery

 DocID Integer DocId is ignored for SEQG_TRACKENABLE.
For SEQG_ISTRACKED and
 SEQG_ISGALLERY,

DocId indicates the document ID of the
workspace to inquire about. DOCSEL_ACTIVE
can be used to inquire about the active
workspace.

 IpSeqGSet

Page 2-641

 Value Integer Value is an integer variable in your script to
receive the attribute’s value.

Return Value 0 if successful, a negative error code if failed

See Also IpSeqGUpdate

IpSeqGSet
Syntax IpSeqGSet(Attribute, Value)

Description This function sets a sequence gallery attribute.

Parameters Attribute Integer Attribute indicates the sequence gallery attribute
to set, from the following:

SEQG_TRACKENABLE Indicates whether
the gallery will track changes in the
sequence.

 Value Integer Value is the value to set the attribute to, where 1
indicates to track sequences changes, and 0
indicates that the function should wait for a call to
IpSeqGUpdate.

Return Value 0 if successful, a negative error code if failed

See Also IpSeqGUpdate

IpSeqGShow
Syntax IpSeqGShow(Show)

Description This function displays or hides the sequence gallery dialog.

Parameters Show Integer A value of 0 or 1 specifying whether the sequence
gallery dialog is to be displayed or hidden.
 0 = hide the dialog
 1 = show the dialog

Example ret = IpSeqGShow(1)

This statement opens the Sequence Gallery dialog

ret = IpSeqGShow(0)

This statement closes the Sequence Gallery dialog.

Return Value 0 if successful, a negative error code if failed

IpSeqGUpdate
Syntax IpSeqGUpdate(DocId)

Description This function updates the sequence gallery to reflect any changes to the sequence itself.

Parameters DocId Integer Indicates the document ID of the sequence
gallery to update.

Return Value 0 if successful, a negative error code if failed

IpSmAdd

Page 2-642

IpSmAdd
Syntax IpSmAdd (SetId, DocId,DimCount, Dim Type, PosCount, Position)

Description This function adds all the frames of the specified image to an existing set.

Parameters SetId Integer Indicates the set where the frames will be added.

 DocId Integer Indicates the document to add to the set.

 DimCount Integer Indicates the number of dimensions in the DimType
array. DimCount may be 0 in a single-frame image.
See Comments, below.

 DimType Integer Array that indicates the dimensions that the image
contains.
New dimensions will be added to the set if
necessary. See Comments, below.

 PosCount Integer Indicates the number of set positions in the Position
array.See Comments, below

 Position Long Array that indicates the position along each
dimension where the image should be added.See
Comments, below

Return Value 0 if successful, a negative error code if failed.

Comments This function will respect Apply to Sequence, so the portion of the image that is added will
depend on the Apply to Sequence status and either the active frame of the sequence (if Apply
to Sequence is not selected) or the active portion of the sequence. The IpSMAddFrame
function can be used to guarantee that a given frame is added to the set.

 IpSmAdd

Page 2-643

Comments For multi-frame images, DimType must be used and DimCount must be greater than or equal to
one. DimType is used to describe the matrix structure of the multi-frame image. For each
dimension contained in the image, there should be two elements in the DimType array. The
first is the dimension type and the second is the number of elements along that direction. The
Dimension ID should be one of the following:

SMDIM_C The image contains the specified number of channels
SMDIM_G The image contains the specified number sampling positions (of wells or
slides in a Stage-Pro sample pattern, or user-defined positions)
SMDIM_The image contains the specified number of time points
SMDIM_XY The image contains the specified number of X/Y scan area positions
SMDIM_Z The image contains the specified number of Z stage positions

If all of the frames will be added to a single dimension, the DimType array can specify the type
from this list and a length of SMDIM_ALL (–1), but if more than one dimension is specified,
the lengths along each dimension must be specified. For example, an X/Y scan area or Z stack
can have one set of DimType elements indicating the XY or Z dimension ID, and the total
length of the sequence. For a two-dimensional (or higher) sequence, the first set of elements
indicates the dimension that is traversed first, the second the next, etc. So for a sequence that
captures a Z-stack of 5 frames at each of 4 X/Y scan positions (in that order), the DimCount
would be 2, and the DimType array would have four elements: SMDIM_Z, 5, SMDIM_XY, 4.

The PosCount and Position parameters are used to indicate the insertion position of the
image’s frames. PosCount should be equal to the number of dimensions in the set after
insertion of the frames. For each position that will be specified, there should be two elements
in the Position array. The first is the dimension ID and the second is the insertion position
along that dimension, which may be –1 if the frames should be inserted at the end. For the
example above, if the image’s frames should be inserted at the 2nd time point for the 3rd
channel, the PosCount would be 4, and the Position array would have 6 elements: SM_DIM_Z,
0, SMDIM_XY, 0, SMDIM_T, 1, SMDIM_C, 2. It will be an error to insert at a position where
the previous elements are missing, e.g. in the previous example, the 1st time point and first two
channels must already have been added. Note that a position of SMPOS_END (–1) should
only be used for dimensions where the image will add frames at the end of the dimension – all
other dimensional positions should be specified. It is also possible to specify the next position
along a dimension.

Note: A given image can only be a member of a single set. This function will return an error if
the specified image is part of a set and you then try to add it to another set.

See Also IpSmAddFrame, IpSmNew

IpSmAdd

Page 2-644

Example The following example opens one of the sample images, and creates a 3-
site set:

ret = IpWsLoadNumber(1)

ret = IpSMShow(SM_SELECT)
ipLArray(0) = IpSMNew()
ret = IpSMSetStr(ipLArray(0), SM_TITLE, 0,
"RebuiltSampleSet")
' the following two commands are optional
ret = IpSMSetStr(ipLArray(0), SM_EXPERIMENTER, 0, "John")
ret = IpSMSetStr(ipLArray(0), SM_DESCRIPTION, 0, "")
' Set up ipArray to describe the organization of the

' sample image .In this case, 16 Z positions
 repeated for each of 3 sites
ipArray(0) = SMDIM_Z
ipArray(1) = 16
ipArray(2) = SMDIM_G
ipArray(3) = 3
' Set up ipLArray to describe the position in the set
' where this image should be added
' Since the set is new, add at the beginning (see also
IpSMAddFrame)
ipLArray(0) = SMDIM_C
ipLArray(1) = 0
ipLArray(2) = SMDIM_Z
ipLArray(3) = 0
IpLArray(4) = SMDIM_XY
IpLArray(5) = 0
IpLArray(6) = SMDIM_G
IpLArray(7) = 0
IpLArray(8) = SMDIM_T
IpLArray(9) = 0
ret = IpSMAdd(3, 0, 2, IpArray(0), 5, IpLArray(0))

 IpSmAddFrame

Page 2-645

IpSmAddFrame
Syntax IpSmAddFrame (SetId, DocId, Frame, PosCount, Position)

Description This function adds a frame from the specified image to an existing set.

Parameters SetId Integer Indicates the set where the frames will be added.

 DocId Integer Indicates the document to add to the set.

 Frame Long Indicates the frame of the document that should be
added to the set.

 PosCount Integer Indicates the number of set positions in the Position
array.

 Position Long Array that indicates the position along each
dimension where the image should be added.See
Comments, below

Return Value 0 if successful, a negative error code if failed.

Comments The PosCount and Position parameters are used to indicate the insertion position of the frame.
PosCount should be equal to the number of dimensions in the set after insertion of the frames.
For each position that will be specified, there should be two elements in the Position array. The
first is the dimension ID and the second is the insertion position along that dimension, which
may be –1 if the frames should be inserted at the end.

For example, to add the frame as the 2nd time point for the third channel, the PosCount would
be Z and the Position array would have 4 elements:

SmDim_T, 1, SmDim_C, 2.

It will be an error to insert at a position where the previous elements are missing, e.g. in the
previous example, the 1st time point and first two channels must already have been added. Note
that a position of SMPOS_END (–1) should only be used for dimensions where the image will
add frames at the end of the dimension – all other dimensional positions should be specified. It
is also possible to specify the next position along a dimension.

Note: A given image can only be a member of a single set. This function will return an error if
the specified image is part of a set and you then try to add it to another set.

See Also IpSmAdd, IpSmNew

IpSmAddFrame

Page 2-646

Example Example:
This example opens one of the sample images, and adds the
contents of the image a frame at a time to the existing set.
This example will run best after running the example for
IpSMAdd.

Dim lCurrSet As Long
Dim lZ As Integer
Dim lSite As Integer
Dim lDocID As Long
Dim lFrame As Long

' Get the set ID for the current set
ret = IpSMGet(-1, SMGET_ACTIVE_SET, 0, 0, lCurrSet)
If (lCurrSet < 0) Then
 MsgBox("No active set")
 Exit Sub
End If
' load the second sample image
lDocID= IpWsLoad ("C:\Ipwin71\Images\PollenRed.seq","seq")
' We know that the image is organized as 16 Z
' positions repeated for each of 3 sites, so add the
' frames accordingly
' Initialize the position array
' We are only going to specify the 2 dimensions whose '
locations are changing
' and the Channel dimension, because we are adding a '
new channel
ipLArray(0) = SMDIM_Z
ipLArray(1) = 0
' this is where the Z location should go
ipLArray(2) = SMDIM_G
ipLArray(3) = 0
' and this is where the site location should go
ipLArray(4) = SMDIM_C
ipLArray(5) = 1 ' adding channel 1

' Start with frame 0
lFrame = 0
' loop for the number of sites
For lSite = 0 To 2
 ipLArray(3) = lSite
 ' loop for the number of Z positions
 For lZ = 0 To 15
 ipLArray(1) = lZ
 ret = IpSMAddFrame(lCurrSet, lDocID, lFrame, 3,
ipLArray(0))
 Next lZ
 lFrame = lFrame + 1 ' move to next image frame
Next lSite

 IpSmBackgroundCorr

Page 2-647

IpSmBackgroundCorr
Syntax IpSmBackgroundCorr(DocId, Type, ActivePortion, NewImage)

Description This function applies background correction to the seleted image in your set.

Parameters DocId Integer Specifies the document to use as the background
image.

 Type Integer Indicates the type of correction to apply. Must be
one of the following:
SM_SUBTRACTION Background subtraction
SM_FLATFIELD Background correction
 through division

 ActivePortion Integer ActivePortion can be used to override the Z stack
determination. If ActivePortion is non-zero, the
correction will be applied to the active portion of the
image.
If ActivePortion is zero and the image is a member
oft a set, this correction would be applied to the Z
stack where the actual frame is a member.

 NewImage Integer NewImage determines whether to create a new
document with the corrected results (if NewImage is
non-zero) or to apply the correction to the existing
image.

Return Value The document ID of the corrected image if successful, a negative error code if failed.

See Also IpSmDespeckle, IpSmNormalize

IpSmBackgroundCorrShow
Syntax IpSmBackgroundCorrShow(Show)

Description This function shows or hides the background correction dialog.

Parameters Show Integer SM_SHOW Show the dialog
SM_HIDE Hide the dialog

Return Value The document ID of the corrected image if successful, a negative error code if failed.

Comments Any value other than SM_HIDE will show the dialog.

IpSmDelete

Page 2-648

IpSmDelete
Syntax IpSmDelete(SetID)

Description This function deletes the specified set.

Parameters SetId Integer Specifies the set that will be deleted.

Return Value 0 if successful, a negative error code if failed.

See Also IpSmRemove

IpSmDespeckle
Syntax IpSmDespeckle(Size, Sensitivity, ActivePortion, NewImage)

Description This function applies the despeckling filter to the seleted image in your set.

Parameters Size Integer Specifies the size of the filter kernel to use and must
be 3, 5 , or 7 (3x3, 5x5, or 7x7)

 Sensitivity Integer Determines how different the intensity of the center
pixel in the filtering region must be before it is
replaced by the region’s median value.

 ActivePortion Integer ActivePortion can be used to override the Z stack
determination. If ActivePortion is non-zero, the
correction will be applied to the active portion of the
image.
If ActivePortion is zero and the image is a member
of a set, this correction would be applied to the Z
stack where the actual frame is a member.

 NewImage Integer NewImage determines whether to create a new
document with the corrected results (if NewImage is
non-zero) or to apply the correction to the existing
image.

Return Value The document ID of the despeckled document, if successful, a negative error code if failed.

See Also IpSmBackgroundCorr, IpSmNormalize

 IpSmDespeckleShow

Page 2-649

IpSmDespeckleShow
Syntax IpSmDespeckleShow(Show)

Description This function shows or hides the despeckle dialog.

Parameters Show Integer SM_SHOW Show the dialog
SM_HIDE Hide the dialog

Return Value 0 if successful, a negative error code if failed.

Comments Any value other than SM_HIDE will show the dialog.

IpSmExtract
Syntax IpSmExtract(Dimension, Options)

Description This function extracts a new workspace consisting of the frames along a specific dimension.

Parameters Dimension Integer Indicates the dimension along which to “play” the
set. Dimension may be a dimension index or one of
the dimension types used by IpSmAdd.

 Options Integer Allows you to set the Z options for extraction.

Comments The frames are extracted from the current location (see IpSmSet).

Return Value The document ID of the extracted image if successful, a negative error code if failed.

See Also IpSmSet

IpSmGet

Page 2-650

IpSmGet
Syntax IpSmGet (SetId, Attribute,Param, Position, Value)

Description This function gets the current set attributes

Parameters SetId Integer Indicates the set to examine.

 Attribute Integer Indicates the attribute that will be returned. See list
below.

 Param Integer Param is used to specify additional information
about the attribute. See table under Comments.

 Position Long Position is a long array that indicates the frame or
matrix position to inquire. See Comments.

 Value any Value is the user variable to receive the attribute.
See Comments.

Return Value 0 if successful, a negative error code if failed.

Comments Unless otherwise indicated, SetID must indicate the Set to inquire. The Param and Position
parameters are not used by all commands. Refer to the command of interest to see if the
arguments are used.

 Several of the Attribute parameters require that a set location is specified, i.e.
SM_ELEMENT_DOC. A set location is specified by an array of two Longs with 2 elements
per dimension of interest: the dimension identifier (i.e. SM_DIM_Z), followed by the location
along the dimension. There are 5 dimensions supported at present, so a fully-specified location
will require an array of 10 longs. The locations can be specified in any order, and dimensions
may be omitted, in which case a location of zero is assumed. The number of dimensions (half
the number of elements in the position array) must be specified in the Param argument.
The Set Manager attribute SM_LOCK_WORKSPACES has been changed to
SM_LOCK_WORKSPACES. For backward compatibility, the original constant is still
defined, but in the enumerations only the new one is used (e.g.
SMGET_LOCK_WORKSPACES)

 Basically, in a compact set, there may be multiple image workspaces that are part of the set,
but each workspace represents one position along the "document dimension". In the past, the
assumption was that this dimension was channels (because AFA builds sets that way, with
one workspace per channel), but actually it could be any one of the 5 dimensions.
So the SM_LOCK_WORKSPACES attribute will synchronize the playing of all of the set
workspaces, as long as the conditions explained above for a compact set apply (that there is
one workspace for each position along the "document dimension").

 The SM_DOC_DIMENSION attribute will return the document dimension for the specified

set - this is a read-only attribute as the dimension cannot be set arbitrarily. The document
dimension is saved with the set, and an attempt will be made to figure out the document
dimension for pre-existing sets.

There is one way to set the document dimension, however. If you select the dimension of
interest using SM_COMPACT_DIM, and then use SM_COMPACT to compact the set along
that dimension, the document dimension will be set by the compaction operation.

The Attribute parameter determines the type of data returned to the user’s variable, and
therefore the data type of the value variable, and can be one of the following:

 IpSmGet

Page 2-651

Attribute Type Descrption

SM_NUMDIMS Long Get the total number of dimensions in the
set. Param and Position arrays are not used.

SM_DIMTYPE Long Get the dimension type (see IpSMAdd).
Param and Position arrays are not used.

SM_DIMLENGTH Long Get the length of the dimension at the
location specified by the Position array, as
described above. Indicate the dimension of
interest by specifing SM _DIMAOI for the
location along this dimension.

SM_ELEMENT_DOC Long Get the document ID of the element
specified by the location in the Position
array, as described above.

SM_ELEMENT_FRAME Long Get the frame number of the element
specified by the location in the Position
array.

SM_AUTO_CREATE Controls whether to create new sets from N-

D images.

SM_AUTO_ADD_TO_SET Controls whether to add images to exisitng
sets. Can be ond of the following;
SM_AA_NONE = do not add images to
exiting sets
SM_AA_AS_CHANNEL = add images as
new channel
SM_AA_PROMPT = prompt for dimension to
add

SM_ADJUST_RATE Controls whether to automatically adjust the
Set play rate

IpSmGet

Page 2-652

Attribute Type Descrption

SM_DISPTIMESTAMPS This command selects whether to display time point time
stamps on the set images. The value in Param indicates
whether to display time stamps, and if so, what to display,
and can be any combination of the following:
SM_STAMP_NONE = When used alone, turn off
time stamps.
SM_STAMP_TIME_POINT = Display time stamp for the
current time point.
SM_STAMP_CAPTURE_TIME = Display acquisition time
of the current frame.
SM_STAMP_SEP_LINES = When both time point and
acquisition time stamps are selected, specifies how the
two time stamps will be separated. If this value is not
specified, the two stamps will be combined in one line
across the image. When this value is specified, the two
time stamps will be displayed on separate lines.
SM_STAMP_BURN_IN = Controls whether to burn the
stamps into the set image(s).
SM_STAMP_LEFT = Positions the time stamp at the left
edge of the image(s).
SM_STAMP_RIGHT = Positions the time stamp at the
right edge of the image(s).
SM_STAMP_CENTER = Positions the time stamp at the
horizontal center of the image(s).
SM_STAMP_TOP = Positions the time stamp at the top
of the image(s).
SM_STAMP_BOTTOM = Positions the time stamp at the
bottom of the image(s).
SM_STAMP_VCENTER =Positions the time stamp at the
vertical center of the image(s).

 IpSmGet

Page 2-653

Attribute Type Descrption

SM_TIMESTAMPCOLOR Displays the time stamp color. Should be one of the following:
DISPCOLOR_RED
DISPCOLOR_GREEN
DISPCOLOR_BLUE
DISPCOLOR_YELLOW
DISPCOLOR_CYAN
DISPCOLOR_MAGENTA
DISPCOLOR_WHITE
DISPCOLOR_BLACK

SM_IS_SET_MEMBER Long SetID can be the set to search, or can be –1
to find out if the specified frame of the
specified image document is a part of any
active set. Param specifies a document ID of
the image document. Position(0) specifies
the frame of interest, which can be –1 to
check whether any frame of the image is a
set member. The Set ID of the set that
contains the specified frame of the specified
document is returned in the Value variable.

SM_GET_POSITION Array Param specifies a document ID and
Position(0) the frame of interest. Value
should be an array of 5 longs that will receive
the location of the specified frame in its set.
The Value will be arranged as follows, where
any dimension’s position may be –1 if the set
does not contain the dimension:

 Value(0) Channel position
Value(1) Position in Z stack
Value(2) Position along X/Y scan area
Value(3) Sampling position
Value(4) Time point

SM_IS_SET_COMPLETE Long The Value variable will be set to indicate
whether the set is complete (well-formed,
with all dimensions filled equally). Param and
Position are not used.

SM_DIMMAXLENGTH Long Get the maximum length of the dimension
which is specified as described in
SM_DIMLENGTH. If the set is complete
(well-formed), this will be the same as the
value returned by SM_DIMLENGTH. If the
set is incomplete, then the maximum length
found along the specified dimension will be
returned.

IpSmGet

Page 2-654

Attribute Type Descrption

SM_NUMDOCUMENTS Long Get the number of documents in the set.
Param and Position are not used.

SM_DOCUMENTID Long Get the document ID of the specified
document in the set. Param should indicate
which document to inquire, from 0 (zero) to
the number of documents – 1. Position is not
used.

SM_DIMSTART Long Get the start position of the specified
dimension. Param should indicate the
dimension to inquire, and Position is not
used.

SM_DIMEND Long Get the end position of the specified
dimension. Param should indicate the
dimension to inquire, and Position is not
used.

SM_ACTIVEDIM Long Get the active dimension. Param and
Position are not used.

SM_IS_SET_LOADED Long The Value variable will be set to indicate
whether all of the images of the set are
currently loaded. Param and Position are not
used. See also the IpSMSet command
SM_RELOAD

SM_CURRENT_LOCATION Array The Value variable should be an array of 5
longs that will get the current location in the
set. This is the location from which the set
can be played.

SM_FRAME_RATE Long The Value variable will be set to indicate the
specified set’s current frame rate. Param and
Position are not used

SM_WRAP_TYPE Long The Value variable will be set to indicate the
specified set’s wrap type (see IpSMSet for
details). Param and Position are not used

SM_EXTRACT_Z_TYPE Long The Value variable will be set to indicate the
type of Z dimension compression that will be
applied when another dimension is extracted
(see IpSMSet for details). Param and
Position are not used.

 IpSmGet

Page 2-655

Attribute Type Description

SM_EXTRACT_FOC_TYPE Long The Value variable will be set to indicate the
type of Extended Depth of Field focus
analysis that will be applied if the Z
dimension compression is used (see
IpSMSet for details). Param and Position are
not used.

SM_IS_COMPACT Long The Value variable will be set to indicate if
the set is compact. A set is considerd
compact if there is one separate workspace
or image document for each element along
one dimension of the set, with elements from
all other dimensions represented as frames
in the sequence. Param and Position are not
used.

SM_ACTIVE_SET Long Get the active set, or the set ID of the set
that contains the active document. If the
active document is not a member of a set, -1
is returned. Param and Position are not
used.

SM_BACKGROUND_ID Long The Value variable will contain the set ID fot he
background images set, or –1 if no set of
background images os currently associated with
the specificed set.

SM_LOCK_CHANNELS Long Gets whether to lock channel workspaces for
synchronous display.Note that synchronous
display is ignored when the active dimension
is Channel or if the channel dimension is not
used in the specified set.

SM_NUMSETS Long The Value variable will contain the number of
open sets. The SetID, Param and Position
are not used.

SM_SETID Long The Value variable will contain the set ID for
the set specified by Param, which must be
from zero to the number of open sets –1.
The SetID and Position parameters are not
used.

SM_IS_MODIFIED Long The Value variable will be set to indicate
whether all of the set has been modified and
has not been saved to file or the database.
Param and Position are not used.

SM_SELECTED_Z_PLANE Long Gets the selected Z plane. The location of
interest must be specified as described
previously, except that the Z location must
be set to zero.

SM_Z_PLANE_CONFIG Long Gets the EDF confidence for a given
location, which must be specified as
described previously, except that the Z
location must be set to zero.

IpSmGet

Page 2-656

Attribute Type Description

SM_PLAYING Long Gets the current play command (See
IpSmPlay). Param and Position are not
used.

SM_UPDATE_FRAME Long Get the information to update the dialog’s
frame slider and edit control while playing.
Param and Position are not used.

SM_FRAME_SKIP Long Get the number of frames to skip for fast
forward and/or fast reverse. Param and
Position are not used.

SM_USE_SELECTED_Z Long Get whether to use the selected Z plane
when navigating in other dimensions.
Otherwise, navigation uses the current Z
position.

SM_ZLOCK_TIME_POINTS Long Get indication of whether to set all time points to
the same Z position when using the
SM_SELECTED_Z_PLANES command.

SM_ZLOCK_SITES Long Get indication of whether to set all sites to
the same Z position when using the
SM_SELECTED_Z_PLANES command.

SM_ZLOCK_XY_POS Long Get indication of whether to set all X and Y
positions to the same Z position when using
the SM_SELECTED_Z_PLANES command.

SM_ZLOCK_CHANNELS Long Get indication of whether to set all channels
to the selected Z plane to an offset of the Z
plane, or not to lock at all, when using the
SM_SELECTED_Z_PLANES command.

 IpSmGet

Page 2-657

Attribute Type Descrption

SM_CHANNEL_OFFSETS Long Get the channel offsets use if
SM_ZLOCK_CHANNELS is set to
SM_CHL_USE_CH_OFFSETS. The Value
parameter should be an array of Longs. The
SM-NUM_CH_OFFSETS can be used with
SpSmGet to determine the array size prior to
using this command.

SM_NUM_CH_OFFSETS Long Get the number of channel offsets that have
been defined using
SM_CHANNEL_OFFSETS.
Param and Position are not used.

ISM_COMPACT_DIM Integer Returns the currently-selectted compaction
dimension. Param is not used and must be
0, position is not used and must be IPNULL.

See Also IpSmGetStr, IpSmSet

IpSmGetStr

Page 2-658

IpSmGetStr
Syntax IpSmGetStr(SetId, Attribute, Param, Position, Value)

Description This function gets the current set string information.

Parameters SetId Integer Indicates the set to examine.

 Attribute Integer Indicates the attribure that will be returned. See list
below.

 Param Integer Not used

 Position Long For SM_CHANNELNAME, Position is a long array
that indicates the channel name to inquire. See
Comments.

 Value String Value is the user-defined fixed-length string to
receive the attribute. See Comments.

Return Value 0 or 1 if successful, a negative error code if failed.

Comments The Attribute parameter determines the type of data returned to the user’s variable, and can be
one of the following:

Attribute Descrption

SM_SETNAME Get the set/file name. The set name will be the
name of the set file if the set has been saved to or
load from disk. Otherwise the set title is used.
Param and Position are not used.

SM_TITLE Get the set title. Param and Position are not used.
SM_EXPERIMENTER Get the set owner’s name. Param and Position

are not used.
SM_DESCRIPTION Get the set description. Param and Position are

not used.
SM_CREATIONDATE Get the date the set was created, in the format

YYYY/MM DDH:MM:S
SM_MODIFIEDDATE Get the date that the set was last changed, in the

format YYYY/MM/DD/HH:MM:SS . Any
modification to the set changes this date
automatically. Param and Position are not used.

SM_CHANNELNAME Get the name of the specificed channel. Position
should be an array of one long that indicates the
channel of interest.

 IpSmGetStr

Page 2-659

Attribute Descrption

SM_DOCUMENT_FILE Get the file name fo the specified document.
Position should be an array of one long that
indicates the document of interest (see
SM_NUMDOCUMENTS to get the number of
documents in the set).

SM_TIMESTAMP Set the time stamp of the specified time point. The
Position parameter should be an array of one long
that indicates the time point of interest.

SM_BACKGROUND_SET Get the file name of the background images set. If
the specified set does not have a set of
background images associated with it, or if the
background images set was not save, the string
will be empty. Param and Position are not used.

SM_CHANNEL_BY_NAME For this command, the name of the channel is
provided in the string, and the return code
indicates the channel index (if the specified name
matches an existing channel), IPCERR_EMPTY if
there are no channel names defined, or -1 if the
specified name cannot be found among the
existing channels.

SM_DISPTIMESTAMPS Displays the time stamp. Should be one of the
following:
SM_STAMP_BURN_IN = Controls whether to
burn the stamps into the set image(s).

SM_STAMP_LEFT = Positions the time stamp
at the left edge of the image(s).

SM_STAMP_RIGHT = Positions the time stamp
at the right edge of the image(s).

SM_STAMP_CENTER = Positions the time
stamp at the horizontal center of the image(s).

SM_STAMP_TOP = Positions the time stamp at
the top of the image(s).

SM_STAMP_BOTTOM = Positions the time
stamp at the bottom of the image(s).

SM_STAMP_VCENTER =Positions the time
stamp at the vertical center of the image(s).

Page 2-660

Attribute Descrption

SM_TIMESTAMPCOLOR Display the time stamp color. Should be one of
the following:

DISPCOLOR_RED
DISPCOLOR_GREEN
DISPCOLOR_BLUE
DISPCOLOR_YELLOW
DISPCOLOR_CYAN
DISPCOLOR_MAGENTA
DISPCOLOR_WHITE
DISPCOLOR_BLACK

IpSmInfo
Syntax IpSmInfo(Show)

Description This function displays or hides Set Information dialog.

Parameters Show Integer SM_SHOW Show the dialog.
SM_HIDE Hide the dialog.

Return Value 0 if successful, a negative error code if failed.

Comments Any value other than SM_HIDE will show the dialog.

 IpSmNew
Syntax IpSmNew

Description This function creates a new, empty set.

Return Value A positive Set ID if successful, a negative error code if failed.

Comments A new set will have 0 dimensions initially.

IpSmNormalize
Syntax IpSmNormalize(ActivePortion, NewImage)

Description This function applies illumination normalization to the specified image or frames.

Parameters ActivePortion Integer ActivePortion can be used to override the Z stack
determination. If ActivePortion is non-zero, the
correction will be applied to the active portion of the
image.

 NewImage Integer NewImage determines whether to create a new
document with the corrected results (if NewImage is
non-zero) or to apply the correction to the existing
image.

Return Value The document ID of the normalized document, if successful, a negative error code if failed.

 IpSmNormalizeShow

Page 2-661

See Also IpSmBackgroundCorr, IpSmDespeckle

IpSmNormalizeShow
Syntax IpSmNormalizeShow(Show)

Description This function shows or hides the normalization dialog.

Parameters Show Integer SM_SHOW Show the dialog
SM_HIDE Hide the dialog

Return Value 0 if successful, a negative error code if failed.

Comments Any value other than SM_HIDE will show the dialog.

IpSmOpen
Syntax IpSmOpen(Type, FileName)

Description This function loads the specified set

Parameters Type Integer Indicates the source of the set, and the options for
loading:
SM_FILE = The set is loaded from the file
 specified by FileName.
SM_DATABASE = The set is loaded from the
 database.

 FileName String Specifies the set file name and may be empty
(“ “) if loading the set from the database.

Comments Type may also include a SM_COMPACTLOAD flag to compact the set as it is loaded.

Return Value The set ID as a positive value if successful, a negative error code if failed.

See Also IpSmRemove

IpSmPlay
Syntax IpSmPlay(Command)

Description This function plays the set along the specified dimension at the specified position.

Parameters Command Integer Command starts the play command, must be a
location along the active dimension or one of the
following:
SM_STOP Stop play
SM_FORWARD Play set forward
SM_REVERSE Play set in reverse
SM_FIRST Move to first location
SM_LAST Move to last location
SM_PREVIOUS Move to the previous location
SM_NEXT Move to the next location

Return Value 0 if successful, a negative error code if failed.

IpSmRemoveImage

Page 2-662

Comments Use the IpSMSet SM_ACTIVEDIM command to set the dimension that will be played. Use
the IpSMSet SM_CURRENT_LOCATION command to set the location along all the set’s
dimensions. A particular dimension may be played by sequentially activating the appropriate
workspaces and/or by activating the appropriate frame of a single workspace

See Also IpSmSet

IpSmRemoveImage
Syntax IpSmRemoveImage(SetID, DocID)

Description This function removes all the frames of the specified image from an existing set.

Parameters SetID Integer Indicates the set from which the image should be
removed.

 DocID Integer Indicates the document to remove from the set.

Return Value 0 if successful, a negative error code if failed.

IpSmRemoveFrame
Syntax IpSmRemoveFrame(SetID, DocID,Frame)

Description This function removes the specified frame of the specified document from the specified set.

Parameters SetID Integer Indicates the set from which the image should be
removed.

 DocID Integer Indicates the document to remove from the set.

 Frame Long Indicates the frame of the document to remove.

Return Value 0 if successful, a negative error code if failed.

IpSmSave
Syntax IpSmSave(SetID, Type, FileName)

Description This function saves the specified set.

Parameters SetID Integer Indicates the set that should be saved.

 Type Integer Indicates the source of the set and the options for
saving:
SM_FILE The set in the file specified
 by FileName.
SM_DATABASE The set is saved in the
 database.

 FileName String Specifies the set file name if saving to a file, or
the database record number if saving to the
database.

 IpSmSet

Page 2-663

Comments Type can also include a SM_AUTOSAVE_DOCS flag to automatically save all of the set
image documents as the set is saved, and/or SM_AUTOSAVE_BKGND to automatically save
the associated background images set (if there is one).

Return Value 0 if successful, a negative error code if failed.

IpSmSet
Syntax IpSmSet (SetId, Attribute, Param, Value)

Description This function sets the set attributes.

Parameters SetId Integer Indicates the set to receive the data.

 Attribute Integer Indicates the attribure that will be changed. See list
below.

 Param Integer Param is used to specify additional information
about the attribute. See table under Comments.

 Value Any Value is the user variable to receive the attribute.
See Comments.

Return Value 0 if successful, a negative error code if failed.

Comments Several of the Attribute parameters require that a set location is specified, i.e.
SM_ELEMENT_DOC. A set location is specified by an array of two Longs with 2 elements
per dimension of interest: the dimension identifier (i.e. SM_DIM_Z), followed by the location
along the dimension. There are 5 dimensions supported at present, so a fully-specified location
will require an array of 10 longs. The locations can be specified in any order, and dimensions
may be omitted, in which case a location of zero is assumed. The number of dimensions (half
the number of elements in the position array) must be specified in the Param argument.

The Set Manager attribute SM_LOCK_CHANNELS has been changed to
SM_LOCK_WORKSPACES. For backward compatibility, the original constant is still defined, but
in the enumerations only the new one is used (e.g. SMGET_LOCK_WORKSPACES).

 Basically, in a compact set, there may be multiple image workspaces that are part of the set, but
each workspace represents one position along the "document dimension". In the past, the assumption
was that this dimension was channels (because AFA builds sets that way, with one workspace per
channel), but actually it could be any one of the 5 dimensions.

So the SM_LOCK_WORKSPACES attribute will synchronize the playing of all of the set
workspaces, as long as the conditions explained above for a compact set apply (that there is one
workspace for each position along the "document dimension").

The SM_DOC_DIMENSION attribute will return the document dimension for the specified set - this
is a read-only attribute as the dimension cannot be set arbitrarily. The document dimension is saved
with the set, and an attempt will be made to figure out the document dimension for pre-existing sets.

There is one way to set the document dimension, however. If you select the dimension of interest
using SM_COMPACT_DIM, and then use SM_COMPACT to compact the set along that
dimension, the document dimension will be set by the compaction operation.

The Attribute parameter determines the type of data returned to the user’s variable, and can be one
of the following:

IpSmSet

Page 2-664

Attribute Descrption

SM_DIMSTART Set the starting position of the dimension in Param.
Value should be a long variable to receive the location.
The start position is used only for IpSmPlay.

SM_DIMEND Set the ending position of the dimension in Param.
Value should be a long variable to receive the location.
The end position is used only for IpSmPlay.

SM_ACTIVEDIM Set the active dimension for IpSmPlay to the dimension
specified in Param. The Value parameter is not used.

SM_RELOAD Set Manager will load any of the set images that are
not currently open in Image-Pro. The Param and Value
parameters are not used. SM_RELOAD is not
supported by IpSMGet.

SM_CURRENT_LOCATION The Value argument should be an array of 5 longs
indication the new location. The SM_DIM constants
can be used to index the array, i.e. IpZArray
(SM_DIM_Z) = Z location.

 IpSmSet

Page 2-665

Attribute Descrption

SM_FRAME_RATE Param should be set to indicate the specified set’s frame
rate. Value is not used.

SM_WRAP_TYPE Param indicates the new wrap type, from one of the
following values:
SM_WRAP_AT_END = When playing, wrap around from the
end to the beginning of the active dimension.
SM_WRAP_NONE = Stop at the end of the active dimension.
SM_WRAP_AUTO_REV = Auto-reverse at the end of the active
dimension.
Value is not used

SM_EXTRACT_Z_TYPE Param indicates the type of Z dimension compression that will
be applied when another dimension is extracted:
SM_EXTRACT_ONE_Z No Z compression = extract a single Z
frame.
SM_EXTRACT_COMPOSIT_Z = Compress Z dimension using
Extended Depth of Field Composite option.
SM_EXTRACT_BEST_Z = Compress Z dimension using
Extended Depth of Field Best Focus option.
Value is not used

SM_EXTRACT_FOC_TYPE Param indicates the type of Extended Depth of Field
focus analysis that will be applied if the Z dimension
compression is used:
SM_FOCUS_LOCAL_CONTRAST = Local contrast
SM_FOCUS_MAX_DEPTH_CONTRAST = Local depth
contrast.
SM_FOCUS_MAX_INTENSITY = Maximum intensity.
SM_FOCUS_MIN_INTENSITY = Minimum intensity.
Value is not used

SM_UPDATE_FRAME Param indicates whether to update the dialog’s frame
slider and edit control while playing. Value is not used

SM_FRAME_SKIP Param indicates the number of frames to skip for fast
forward and/or fast reverse. Value is not used.

SM_ADJUST_RATE Controls whether to automatically adjust the Set play
rate

SM_ZLOCK_XY_POS Param indicates whether to set all X and Y positions to
the same Z position when using the
SM_SELECTED_Z_PLANES command. Value is not
used.

IpSmSet

Page 2-666

Attribute Descrption

SM_DISPTIMESTAMPS This command selects whether to display time point time
stamps on the set images. The value in Param indicates
whether to display time stamps, and if so, what to
display, and can be any combination of the following:
SM_STAMP_NONE = When used alone, turn off
time stamps.
SM_STAMP_TIME_POINT = Display time stamp for the
current time point.
SM_STAMP_CAPTURE_TIME = Display acquisition
time of the current frame.
SM_STAMP_SEP_LINES = When both time point and
acquisition time stamps are selected, specifies how the
two time stamps will be separated. If this value is not
specified, the two stamps will be combined in one line
across the image. When this value is specified, the two
time stamps will be displayed on separate lines. Value is
not used.

 SM_STAMP_BURN_IN = Controls whether to burn the
stamps into the set image(s).
SM_STAMP_LEFT = Positions the time stamp at the
left edge of the image(s).
SM_STAMP_RIGHT = Positions the time stamp at the
right edge of the image(s).
SM_STAMP_CENTER = Positions the time stamp at the
horizontal center of the image(s).
SM_STAMP_TOP = Positions the time stamp at the top
of the image(s).
SM_STAMP_BOTTOM = Positions the time stamp at
the bottom of the image(s).
SM_STAMP_VCENTER =Positions the time stamp at
the vertical center of the image(s).

SM_USE_SELECTED_Z Param indicates whether to use the selected Z plane to
use when navigating in other dimensions. Otherwise,
navigation uses the current Z position. Value is not
used.

SM_ZLOCK_TIME_POINTS Param indicates whether to set all time points to the
same Z position when using the
SM_SELECTED_Z_PLANES command. Value is not
used.

Attribute Descrption

SM_ZLOCK_SITES Param indicates whether to set all sites to the same Z
position when using the SM_SELECTED_Z_PLANES
command. Value is not used.

 IpSmSet

Page 2-667

SM_TIMESTAMPCOLOR Sets the time stamp color.The value in Param should be
one of the following:
DISPCOLOR_RED
DISPCOLOR_GREEN
DISPCOLOR_BLUE
DISPCOLOR_YELLOW
DISPCOLOR_CYAN
DISPCOLOR_MAGENTA
DISPCOLOR_WHITE
DISPCOLOR_BLACK

SM_ZLOCK_CHANNELS Param indicates whether to set all channels to the
selected Z plane, to an offset of the Z plane, or not to
lock at all, when using the SM_SELECTED_Z_PLANES
command. Use one of the following constants:

 SM_CHL_NO_LOCK = Do not set other channels to the
same Z position.
SM_CHL_SEL_Z_PLANES = Set other channel
locations to the same Z plane.
SM_CHL_USE_CH_OFFSETS = Set other channel
locations to the selcted Z position plus the offset
specified for that channel using
SM_CHANNEL_OFFSETS.
Value is not used.

SM_CHANNEL_OFFSETS Set the channel offsets to use if
SM_LOCK_CHANNELS is set to
SM_CHL_USE_CH_OFFSETS. The Value parameter
should be an array of Longs. The size of the arry
provided must be passed in through the Param
parameter.

SM_AUTO_CREATE Controls whether to create new sets from N-D images.

IpSmSet

Page 2-668

Attribute Descrption

SM_AUTO_ADD_TO_SET Controls whether to add images to exisitng sets. Can be
ond of the following;
SM_AA_NONE = do not add images to exiting sets
SM_AA_AS_CHANNEL = add images as new channel
SM_AA_PROMPT = prompt for dimension to add

SM_COMPACT_DIM Selects the dimension along which the set will be

compacted. Param must be one of the following:
SMDIM_C (Channel),
SMDIM_Z (Focus),
SMDIM_XY (Site),
SMDIM_G (Scan position) or
SMDIM_T (Time).
Value is not used and must be IPNULL.

See Also IpSmGetStr, IpSmGet, IpSmSetStr

 IpSmSetEx

Page 2-669

IpSmSetEx
Syntax IpSmSet (SetId, Attribute, PositionCount, Position, By Ref New Value)

Description This function sets the set attributes.

Parameters SetId Integer Indicates the set to receive the data.

 Attribute Integer Indicates the attribure that will be changed. Must be
either:
SM_SELECTED_Z_PLANE to set the selected Z
plane or SM_Z_PLANE_CONFIG to set the EDF
confidence for a given location.

 PositionCount Integer PositionCount is used to indicate the number of set
positions included in the Position array. 5 is a typical
value.

 Position Long Position is a long array that indicates the set location
to inquire.

 NewValue Any A variable containing the new value for the attribute.

Return Value 0 if successful, a negative error code if failed.

Comments This function is similar to IpSmSet, except that the position information can be provided to
indicate the location where the attribute should be set.

IpSmSetStr

Page 2-670

IpSmSetStr
Syntax IpSmSetStr (SetId, Attribute, Channel,,Data)

Description This function sets the attributes in the set.

Parameters SetId Integer Indicates the set to examine.

 Attribute Integer Indicates the set attribure that will be changed. See
list below.

 Channel Long Channel is used only for SM_CHANNELNAME.
Indicates the channel name to set. See comments
below.

 Data String Data is string to set the attribute. See Comments.

Return Value 0 or 1 if successful, a negative error code if failed.

Comments The Attribute parameter determines the type of data returned to the user’s variable, and can be
one of the following. Note that not all of the attributes supported by IpSmGetStr can be set
using IpSmSetStr.

Attribute Descrption

SM_TITLE Set the set title.
SM_EXPERIMENTER Set the set owner’s name.
SM_CHANNELNAME Set the name of the specificed channel.
SM_DESCRIPTION Set the set description
SM_TIMESTAMP Set the time stamp of the specified time point. The

Position parameter indicates the time point of interest.

 IpSmShow

Page 2-671

IpSmShow
Syntax IpSmShow(Show)

Description This function show or hides the Set Manager dialog.

Parameters Show Integer Shows or hides the Set Manager dialog, as
follows:
SM_SHOW Show the last-used page of
 the dialog
SM_HIDE Hide the dialog
SM_SELECT Show the Select Set page
 of the dialog
SM_INFO Show the Info/File page of
 the dialog.
SM_NAVIGATOR Show the Navigator page
 of the dialog.

Return Value 0 if successful, a negative error code if failed.

IpSmShowNav
Syntax IpSmShowNav(Show)

Description This function show, minimizes, or hides the Set Navigator dialog.

Parameters Show Integer Shows or hides the Set Manager dialog, as
follows:
SM_SHOW Displays the Navigator
 dialog in the most
 appropriate form for the
 active image.
SM_HIDE Hides the Navigator dialog
SM_MINIMAL Displays the Navigator
 minimal dialog in the most
 appropriate form for the
 active image
SM_SEQUENCE Displays the minimal
 Navigator dialog in
 sequence toolbar mode
 even if the image is part of
 a set.

Return Value 0 if successful, a negative error code if failed.

IpSnap
Syntax IpSnap()

Description This function captures the currently-displayed state of the active workspace to a new image.

Comments IpSnap creates a new 24-bit color single-frame workspace the same width and height as the
active image. The new workspace represents the currently displayed state of the active
workspace, including any contrast enhancements and/or display range, measurement
overlays, and annotations.

IpSortAttr

Page 2-672

Return Value The document ID of the new workspace with the snapped image.

IpSortAttr
Syntax IpSortAttr(sAttr, sValue)

Description Changes the various attributes of the sorted objects.

Parameters sAttr Integer Attribute to be changed. Must be one of the following:
SORT_ROTATE - 0 = do not rotate, 1 = rotate
SORT_MEAS - Measurements to be sorted by
 (i.e. BLBM_AREA, etc.)
SORT_LABELS - 0 = labels off, 1 = labels on
SORT_COLOR 0 = red
 1 = green
 2 = blue
 3 = yellow
SORT_INDEX - sorted image background gray level
SORT_AUTO - 0 = user-defined background index
 1 = automatic background index

 sValue Integer

See Also IpSortShow, IpSortObjects

IpSortObjects
Syntax IpSortObjects ()

Description This function sorts the objects in the Image-Pro workspace

See Also IpSortShow, IpSortAttr

IpSortShow
Syntax IpSortShow(bShow)

Description This function displays or hides the object sorting dialog

Parameters bShow Integer A value of 0 or 1 specifying whether the object
sorting dialog is to be displayed or suppressed.
Where:
0 - hides the dialog
1 - shows the dialog

See Also IpSortObjects, IpSortAttr

 IpStAutoName

Page 2-673

IpStAutoName
Syntax IpStAutoName(Format, Number, FileName)

Description This function generates a file name by combining a character string that you provide with the
string value of an integer variable. It is typically used to create file names automatically in a
loop that processes and saves multiple images (e.g., IMAGE001, IMAGE002, IMAGE003...).
There is no Image-Pro equivalent to this function; it is one that must be manually edited into
your macro.

Parameters Format String A string specifying the literal characters that are to
make up the file name, and the position at which the
number is to be inserted. The “#” character is used to
represent the insert position for the numeric digits. See
Example and Comments, below.

 Number Integer An integer specifying the number that is to be
converted into a string and combined with Format to
create the file name.

 FileName String The name of a fixed-length, string variable into which
the final file name will be written.

Example Dim X As Integer
Dim Iname As String * 255
For X = 1 To 10
 ret = IpAcqSnap(ACQ_CURRENT)
 ret = IpHstEqualize(BEST_FIT)
 ret = IpStAutoName("C:\IPWIN\IMAGES\EXP#.TIF",X,Iname)
 ret = IpWsSaveAs(Iname, "TIF")
 ret = IpDocClose()
Next

The set of statements above will capture, enhance and save 10 images. The file name will be
composed by the IpStAutoName function and stored to a variable called

 Iname. This variable is then specified in the FileName parameter of the IpWsSaveAs
statement. The ten file names generated will be: EXP1.TIF to EXP10.TIF.

 IpStAutoName("C:\IPWIN\IMAGES\EXP###B.tif", X, Iname)

If the statement above were used in the first example, the numeric digits would occupy three
places in the file name, and the ten file names would be: EXP001B.TIF to EXP010B.TIF.

 IpStAutoName("C:\IPWIN\IMAGES\###EXP.tif", X, Iname)

If the statement above were used in the first example, the numeric digits would occupy the first
three places in the file name, and the ten file names would be: 001EXP.TIF to
010EXP.TIF.

Comments The “#” character in the format string is used to denote the position at which the numeric digits
are to be inserted. Multiple “#” characters can be used to specify that the number be expanded,
with leading zeros if necessary, to fill all #- marked positions (see examples above).
Take care not to generate a file name that is longer than that allowed by DOS. The
IpStAutoName function does not do any error checking for length.
Before calling IpStAutoName, the variable into which the file name is written must be
declared as a fixed-length string (be sure to allocate sufficient space for it). In the example
above, this was done with the Dim Iname As String * 255 statement.

IpStGetSingle

Page 2-674

IpStGetSingle
Syntax IpStGetSingle(Prompt, SingleRet, InitVal, MinVal, MaxVal, IncVal)

Description This function issues a dialog box that prompts the user for a single-point value. There is no
Image-Pro equivalent to this function; it is one that must be manually edited into your macro.

Parameters Prompt String A string specifying the message to be displayed in the
dialog box.

 SingleRet Single (Basic)

LPSINGLE
(C)

The address (name) of the single-point variable that will
receive the value entered by the user.

 InitVal Single (Basic)

LPSINGLE
(C)

The initial (default) single-point value.

 MinVal Single
((Basic)

LPSINGLE
(C)

The smallest value that can be entered by the user.

 MaxVal Single (Basic)

LPSINGLE
(C)

The largest value that can be entered by the user.

 IncVal Single (Basic)

LPSINGLE
(C)

The increment by which the value will be increased or
decreased by one click of the or button,
respectively, in the dialog box.

Return Value This function will return a 1 if user clicks OK; a 0 if the user clicks “Cancel.”

Example The following example prompts the user for a gamma value.

Dim GValue as single
ret=IpStGetSingle("Enter gamma value",GValue,1.0,0.2, 2.5,
0.1)
if ret=1 Then' user pressed OK
 ret = IpLutSetAttr(LUT_GAMMA, GValue * 100)
End If

See Also IpStGetString, IpStGetInt, IpMacroStop

 IpStGetInt

Page 2-675

IpStGetInt
Syntax IpStGetInt(Prompt, IntRet, InitVal, MinVal, MaxVal)

Description This function issues a dialog box that prompts the user for an integer value. There is no Image-
Pro equivalent to this function; it is one that must be manually edited into your macro.

Parameters Prompt String (Basic)

LPSTR (C)

A string specifying the message to be displayed in the
dialog box.

 IntRet Integer The address (name) of the integer variable that will
receive the value entered by the user.

 InitVal Integer The initial (default) integer value.

 MinVal Integer The smallest value that can be entered by the user.

 MaxVal Integer The largest value that can be entered by the user.

Return Value This function will return a 1 if user clicks OK; a 0 if the user clicks Cancel.

Example The following example prompts the user for a filter strength.
Sub StGetInt()
Dim FtrStrength as integer
ret=IpStGetInt("Enter filter strength",FtrStrength,5,1,10)
if ret=1 then 'user pressed OK
 ret=IpFltLoPass(3,FtrStrength,1)
End If
End Sub

See Also IpStGetString, IpStGetSingle, IpMacroStop

IpStGetString

Page 2-676

IpStGetString
Syntax IpStGetString(Prompt, RetString, MaxLen)

Description This function issues a dialog box that prompts the user for a string. There is no Image-Pro
equivalent to this function; it is one that must be manually edited into your macro.

Parameters Prompt String A string specifying the message to be displayed in the
dialog box.

 RetString String The address (name) of a fixed-length, string variable
that will receive the string entered by the user.

 MaxLen Integer The maximum number of characters that can be stored
in RetString.

Return Value This function will return a 1 if user clicks OK; a 0 if the user clicks Cancel.

Example The following example prompts the user for a file name.
Dim filename as string * 20
ret = IpStGetString("Please enter file name", filename, 20)
if ret = 1 then' user pressed OK

.

.

.
End If

Comments In BASIC, RetString should be pre-dimensioned to at least the length specified in MaxLen.

See Also IpStGetInt, IpStGetSingle, IpMacroStop

IpStGetName
Syntax IpStGetName(Title, Default, Filter, Filename)

Description This function displays a standard “Open File” dialog box to prompt the user for a file name.
There is no Image-Pro equivalent to this function; it is one that must be manually edited into
your macro.
Note - this function will return a 0 if the user cancels the dialog box.

Parameters Title String A string that will appear as the Title of the “Open File”
dialog box.

 Default String A string specifying the directory for which the “Open File”
dialog box will be opened.

 Filter String A pattern string specifying the types of file names to be
listed in the dialog box. The standard DOS wildcard
characters can be used to define this pattern string
(e.g.," *.*", "*.TIF", "IMG*.TIF"). A zero-length
string (e.g., "") defaults to a pattern of "*.*".

 Filename String The name of a fixed-length, string variable into which the
file name, selected by the user, will be written.

 IpStSearchDir

Page 2-677

Example Dim Iname As String * 255
Dim More As Integer = IpStGetName
 ("Select Slide","C:\RESULTS","*.TGA", Iname)
Do While More <> 0
 ret = IpWsLoad(Iname, "TGA")
 ret = IpHstEqualize(BEST_FIT)
 ret = IpWsSave()
 ret = IpDocClose()
 More = IpStGetName("Select Slide","C:\RESULTS",*.TGA",Iname)
Loop

This set of statements will open, enhance and save each image selected by the user, until the user
clicks the Cancel button in the “Select Slide” dialog box.

Comments The return code for this function denotes whether the user has selected a file or clicked Cancel.
You can use this return code to determine when to end a loop that is being applied to all images
selected by a user (see example above). Be sure to assign the return code to a variable other than
the one used by the other functions in your macro (i.e., do not use ret). If the name is not unique,
there is no guarantee that it is IpStGetName's return code that you are testing.
Before calling IpStGetName, the variable into which the file name is written must be declared as
a fixed-length string (be sure to allocate sufficient space for it). In the example above, this was
done with the Dim Iname As String * 255 statement.

Return Value Returns 1 if the file does not exist, 2 if the file exists, If you cancel, the function returns 0.

IpStSearchDir
Syntax IpStSearchDir(Directory, Filter, Number, Filename)

Description This function obtains a file's name from its position in a directory list. It can be used to process
the entire contents of a directory. There is no Image-Pro equivalent to this function; it is one
that must be manually edited into your macro.

Parameters Directory String A string specifying the directory from which file names
are to be obtained.

 Filter String A pattern string specifying the types of file names that
are to be included when the directory is searched. The
standard DOS wildcard characters can be used to
define this pattern string (e.g.," *.*", "*.TIF",
"IMG*.TIF"). A zero-length string (e.g., "") defaults
to a pattern of "*.*".
The specified pattern is used to produce the list of files
referenced by the Number parameter.

 Number Integer An integer specifying the entry in the directory list (as
produced by Filter) for which the file name is to be
obtained. The first position in the list is considered
position 0.

 Filename String The name of a fixed-length string variable into which
the file name will be written.

Return Value This function will return special integer values to indicate whether a file name was found at the
specified position. This return code can be tested by your macro to determine whether you want
to process the contents of FileName. The possible return values are:

A Return Value Of... Means That...

IpStSearchDir

Page 2-678

0 There is no entry at the specified position.

1 The specified position contains a file name. The name
of the file will be written to the variable specified in
FileName.

2 The specified position contains a subdirectory entry.
The name of the subdirectory will be written to the
variable specified in FileName.

3 The specified position contains a Volume Label. The
Volume ID will be written to the variable specified in
FileName.

Example Dim X As Integer
Dim DStat As Integer
Dim Iname As String * 255
X = 0
DStat = IpStSearchDir("C:\IPWIN7\IMAGES","*.TIF",X,Iname)
debug.print Dstat,Iname
Do While DStat = 1
 ret = IpWsLoad(Iname, "TIF")
 ret = IpHstEqualize(BEST_FIT)
 ret = IpWsSave()
 ret = IpDocClose()
 X = X + 1
 DStat = IpStSearchDir("C:\IPWIN7\IMAGES", "*.TIF",X,Iname)
debug.print Dstat,Iname
Loop

The set of statements above will open, enhance and save all TIF images in the
C:\IPWIN7\IMAGES directory.

 ret = IpStSearchDir("C:\IPWIN7\IMAGES","*.*",2,Iname)
 ret = IpWsLoad(Iname, "")

The pair of statements above will load the first file in the C:\IPWIN7\IMAGES directory.

Comments Before calling IpStSearchDir, the variable into which the file name is written must be
declared as a fixed-length string (be sure to allocate sufficient space for it). In the first example
above, this was done with the Dim Iname As String * 255 statement.

The first example also shows how to test the return code to determine when to end a loop that is
to be applied to all images in a directory list. Be sure to assign the return code to a variable other
than the one used by the other functions in your macro (i.e., do not use ret). If the name is not
unique, there is no guarantee that it is IpStSearchDir's return code you are testing.

If you are using IpStSearchDir to process an entire subdirectory list (i.e., Filter specifies
"*.*") consider starting your search at entry position 2, as positions 0 and 1

 generally contain directory entries — 0 contains the subdirectory's entry (i.e., “.”) and 1 contains
the parent directory's entry (i.e., “..”). If you choose to begin your search at position 0, be sure to
include instructions that test IpStSearchDir's return code and take appropriate action if a
subdirectory or volume ID is encountered.

See Also IpStSortedList

 IpStSortedList

Page 2-679

IpStSortedList
Syntax IpStSortedList (Directory, Filter, Attribute, List)

Description This function returns a sorted list of files from a directory. The file names for the list can be
retrived using IpStSearchDir.

Parameters Directory String A string specifying the directory from which file names
are to be obtained.

 Filter String A pattern string specifying the types of file names that
are to be included when the directory is searched. The
standard DOS wildcard characters can be used to
define this pattern string (e.g.," *.*", "*.TIF",
"IMG*.TIF"). A zero-length string (e.g., "") defaults
to a pattern of "*.*".

 Attribute Integer Attribute, which can be one of the following constants,
all of which will return a sorted list of image numbers to
List except for SORT_GET_NFILES (see notes for that
attribute).
SORT_GET_NFILES = returns number of files in the
Directory. pList is ignored, should be IPNULL.
SORT_BY_NAME_ASC = sort by file name
ascending
SORT_BY_NAME_DEC = sort by file name
descending
SORT_BY_SUFF_ASC = sort by file name numerical
suffix ascending (e.g. image1.tif, image2.tif,
image10.tif)
SORT_BY_SUFF_DEC = sort by file name suffix
descending
SORT_BY_DATE_ASC = sort by file time ascending
SORT_BY_DATE_DEC = sort by file time descending

 List Any The List should be an array of integers that will receive
the file indexes, sorted according to the selected
sAttribute. The array must be large enough to
accommodate all file indexes. The number of images
can be retrieved using SORT_GET_NFILES. The
values from the list can be used to retrieve image
names using IpStSearchDir (Directory, Filter, Number,
FileName) function, where Number is an element of
List.

Return Value This function returns the number of files in the folder, sorted in the order specified.

IpStSortedList

Page 2-680

Example Sub GetSortedList()

Dim sDirectory As String
Dim sFilter As String, NFiles%, i%
Dim FileName As String*255

sDirectory="L:\Images\Sort"
sFilter="*.*"

‘get number of files
NFiles=IpStSortedList(sDirectory,sFilter,SORT_GET_NFILES,IpNULL
)

ReDim FileList(NFiles) As Integer
'get list sorted by name
ret=IpStSortedList(sDirectory,sFilter,SORT_BY_NAME_ASC,FileList
(0))
'print list
Debug.Print "File list sorted by name"
For i=0 To NFiles-1
 ‘get file name
 If IpStSearchDir (sDirectory,sFilter, FileList(i),
Filename)=1 Then 'print only files, skip folder names
Debug.Print i & " " & FileName
 End If
Next

'get list sorted by time
ret=IpStSortedList(sDirectory,sFilter,SORT_BY_TIME_ASC,FileList
(0))
'print list
Debug.Print "File list sorted by time"
For i=0 To NFiles-1
 'get file name
 If IpStSearchDir(sDirectory,sFilter,FileList(i), Filename)=1
Then
'print only files, skip folder names
Debug.Print i & " " & FileName
 End If
Next

 IpStSortedList

Page 2-681

Examples,
con’t.

'get list sorted by suffix
ret=IpStSortedList(sDirectory,sFilter,SORT_BY_SUFF_ASC,FileList
(0)) 'print list
Debug.Print "File list sorted by suffix"
For i=0 To NFiles-1
'get file name
 If IpStSearchDir (sDirectory,sFilter, FileList(i),
Filename)=1 Then
'print only files, skip folder names
Debug.Print i & " " & FileName
 End If
Next
End Sub

‘**
Original list:
L:\Images\Sort\file1.TIF
L:\Images\Sort\file10.TIF
L:\Images\Sort\file2.TIF
L:\Images\Sort\file1.jpg

 Output:

File list sorted by name
2 L:\Images\Sort\file1.jpg
3 L:\Images\Sort\file1.TIF
4 L:\Images\Sort\file10.TIF
5 L:\Images\Sort\file2.TIF
File list sorted by time
0 L:\Images\Sort\file2.TIF
1 L:\Images\Sort\file10.TIF
2 L:\Images\Sort\file1.TIF
3 L:\Images\Sort\file1.jpg
File list sorted by suffix
2 L:\Images\Sort\file1.jpg
3 L:\Images\Sort\file1.TIF
4 L:\Images\Sort\file2.TIF
5 L:\Images\Sort\file10.TIF

Note: These examples illustrate the value of properly
formatting image file names as they are saved. If the files
were created using a zero-padded name format, they would sort
correctly, e.g. if the file names were file001.jpg,
file001.tif, file010.tif and file002.tif, then sort by name
would return:

2 L:\Images\Sort\file001.jpg
3 L:\Images\Sort\file001.TIF
5 L:\Images\Sort\file002.TIF
4 L:\Images\Sort\file010.TIF

IpStageAbsZ

Page 2-682

IpStageAbsZ
Syntax IpStageAbsZ(Abs ZPos)

Description This functions moves the stage to an absolute Z position, thereby changing the focus.

Parameters AbsZPos Single The position (in millimeters) from the origin of the
vertical (Z) axis to which the stage is to be moved.

Example The following example moves the stage to a position 50 microns from the focus origin and away
from the lens (down).

ret = IpStageAbsZ(-0.05)
See Also IpStageZ

IpStageAbsZEx
Syntax IpStageAbsZEx(Z, Fine Z, uiFlags)

Description This function moves the stage to the absolute Z position.

Parameters Z Float The position (in millimeters) from the origin of the
vertical (Z) axis to which the stage is to be moved.

 Fine Z Float Position of the fine Z, if used.

 uiFlags Integer Flags are defined as follows:
STG_USE_ORIGINAL_XYZ 1
STG_USE_COARSE_XY 2
STG_USE_COARSE_Z 4
STG_USE_FINE_X 8
STG_USE_FINE_Y 16
STG_USE_FINE_Z 32
STG_USE_CONTINUOUS_FOCUS 64
STG_AFA_LIST_RESERVED_1 128
STG_AFA_LIST_RESERVED_2 256
STG_AFA_LIST_RESERVED_3 512
STG_AFA_LIST_RESERVED_4 1024
STG_AFA_LIST_RESERVED_5 2048
STG_AFA_LIST_RESERVED_6 4096
STG_AFA_LIST_RESERVED_7 8192
STG_AFA_LIST_RESERVED_8 16384
STG_AFA_LIST_RESERVED_9 32768

Example The following example moves the stage to a position 50 microns from the focus origin and
away from the lens (down).

ret = IpStageAbsZEx(-0.0, 0.1, STG_USE_FINE_Z)

See Also IpStageAbsZ, IpStageZ

 IpStageAcq

Page 2-683

IpStageAcq
Syntax IpStageAcq(DbSpec, FileSpec, UseDb)

Description This function starts the Acquire process.

Parameters DbSpec String Indicates the database name and path

 FileSpec String Indicates the file name and path

 UseDb Integer Indicates whether to use a database (STG_DB) or
not to use a database (STG_NO_DB).

Example The following statement will acquire to the current database:

ret = IpStageAcq(“c:\ipwin7\test.mdb”, “c:\ipwin7\test.tif”,
 STG_DB)

Entering “\\” in lieu of a file name will acquire image to a workspace without writing it to a
file.

Comments If template mode is off, the macro will use the file and database names passed in the string. If
template mode is on, the file name passed in the string is ignored, and a Windows file box is
displayed; the user is forced to enter the path and name.

This command is equivalent to clicking on the Acquire button of the Acquire tab page in the
Stage-Pro dialog box. All currently selected acquisition parameters on this page will be executed.
All images will be tagged with the Stage-Pro location information.

IpStageAcqFrame

Page 2-684

IpStageAcqFrame
Syntax IpStageAcqFrame(AcqType)

Description This function will acquire a single frame and tag that frame with the Stage-Pro properties.

Parameters AcqType Integer This can acquire to a new workspace or to the
current active workspace.

ACQ_NEW

ACQ_CURRENT

Example The following statement will snap a frame into a new workspace and tag it with Stage-Pro’s
property list:

ret = IpStageAcqFrame(ACQ_NEW)

Return Value This function returns the Document ID, which will be an integer greater than or equal to 0. A
negative return value indicates an error.

Comments To retrieve the Stage-Pro properties use the functions IpStageDocGet() and IpStageDocGetStr().
See these functions for specific details.

If Tile Images is selected, a Stage-Pro will create a tiled image. If Multi-Plane or Software
Auto-focus is selected, EDFs will be acquired in the in-focus image created.

Otherwise, a single image will be generated (as in IpAcqSnap), and the Stage-Pro location
information will be added to the image.

 IpStageAddListPoint

Page 2-685

IpStageAddListPoint
Syntax IpStageAddListPoint (ListID, Index, Position, PointAry)

Description This function adds a point to an existing AFA point list.

Parameters ListID Integer Indicates the ID of the existing list where the point
should be added.

 Index Integer Indicates the position in the list where the point
should be added:

-1 = add to end of list
n = specific position in the list

 Position Integer STG_AT_CUR_STG_POS = Use the current
stage position for the position of the point

STG_AT_GIVEN_POS = Use the values in
PointAry as the position of the point.

 PointAry Any Can be null if Position =
STG_AT_CUR_STG_POS

Must be an array of 3 single giving the X, Y, and Z
position of the point (as an absolute XYZ position
with respect to the defined area of travel) to add
for STG_AT_GIVEN_POS .

Return Value 0 if successful, a negative error code if failed.

IpStageAddListPointEx

Page 2-686

IpStageAddListPointEx
Syntax IpStageAddListPointEx (ListID, Index, Where, PointAry, Flags)

Description This function adds a point to an existing AFA point list.

Parameters ListID short Indicates the ID of the existing list where the point
should be added.

 Index short Indicates the position in the list where the point
should be added:

-1 = add to end of list
n = specific position in the list

 Where Integer STG_AT_CUR_STG_POS = Use the current
stage position for the position of the point

STG_AT_GIVEN_POS = Use the values in
PointAry as the position of the point.

 PointAry LPFloat Can be null if Position =
STG_AT_CUR_STG_POS

Must be an array of 3 single giving the X, Y, and Z
position of the point (as an absolute XYZ position
with respect to the defined area of travel) to add
for STG_AT_GIVEN_POS .

 uiFlags Integer
Flags are defined as follows:

STG_USE_ORIGINAL_XYZ 1
STG_USE_COARSE_XY 2
STG_USE_COARSE_Z 4
STG_USE_FINE_X 8
STG_USE_FINE_Y 16
STG_USE_FINE_Z 32
STG_USE_
CONTINUOUS_FOCUS 64
STG_AFA_LIST_RESERVED_1 128
STG_AFA_LIST_RESERVED_2 256
STG_AFA_LIST_RESERVED_3 512
STG_AFA_LIST_RESERVED_4 1024
STG_AFA_LIST_RESERVED_5 2048
STG_AFA_LIST_RESERVED_6 4096
STG_AFA_LIST_RESERVED_7 8192
STG_AFA_LIST_RESERVED_8 16384
STG_AFA_LIST_RESERVED_9 32768

Return Value 0 if successful, a negative error code if failed.

 IpStageControl

Page 2-687

IpStageControl
Syntax IpStageControl(Setting, OutVal)

Description This function is used to set the origin and logical step size. It is also used to query the current
position of the stage, and to turn various attributes on or off.

Parameters Setting Integer An enumerated integer used to read and set stage
controller options. See list and definitions under
Comments, below.

 OutVal Single Variable that will pass in or receive the value with
which Setting will operate. See definitions under
Comments, below, for the values required by each
Setting option.

Example The following example sets the origin of the X/Y axis to the current position.

IpStgVal = STG_CURRENT
ret = IpStageControl(SETORIGIN, IpStgVal)
Set fine coarse
IpStgVal = STG_FINE_Z
IpStgVal = STG_COARSE_Z
ret = IpStageControl(STG_SELECT_FINE_FOCUS, IpStgVal)

IpStgVal = STG_FINE_X
IpStgVal = STG_COARSE_X
IpStageControl(STG_SELECT_FINE_XY, IpStgVal)

Set use totals.
IpStgVal=TRUE
IpStgVal=FALSE
ret=IpStageControl(STG_GET_XY_DISPLAY_TOTAL, IpStgVal)
ret=IpStageControl(STG_GET_Z_DISPLAY_TOTAL, IpStgVal)

The following example sets the XY origin to the center of the stage.
IpStgVal = STG_CENTER
ret = IpStageControl(SETORIGIN, IpStgVal)

The following example sets the X-axis step size to 500 microns
(.5 millimeters).
IpStgVal = 0.5
ret = IpStageControl(SETSTEPX, IpStgVal)

The following statements get the X, Y, and Z positions of the stage.
Dim XPos as single, YPos as single, ZPos as single
ret = IpStageControl(GETX, XPos)
ret = IpStageControl(GETY, YPos)
ret = IpStageControl(GETZ, ZPos)
“The following code will set the z-travel limits for a multi-
plane acquisition.
Sub SetLimits()
 Dim ZTop As Single
 Dim ZBot As Single
 ZTop = 1.0 ‘NOTE: This is in mm
 ZBot = -1.0

IpStageControl

Page 2-688

 ret = IpStageControl(STG_SET_Z_TOP, ZTop)
 Debug.Print ret
 ret = IpStageControl(STG_SET_Z_BOT, ZBOT)
 Debug.Print ret
 End Sub”
Examples:
‘Select random pattern
IpStgVal = STG_RANDOM
IpStageControl(STG_SET_SCAN_PATTERN, IpStgVal)

‘Use 5 frames out of current scan area
IpStgVal = 5
IpStageControl(STG_NUM_RND_FRAMES, IpStgVal)

‘Recalculate the random list
IpStgVal = 0
IpStageControl(STG_RECALC_RND, IpStgVal)

Comments The following table describes the values allowed in the Setting and Outval parameters.

Setting DESCRIPTION OutVal

SETSTEPX This command sets the X-axis
logical step size, which is used by
the IpStageStepXY function.

The logical step size, in
millimeters.

SETSTEPY This command sets the Y-axis
logical step size, which is used by
the IpStageStepXY function.

The logical step size, in
millimeters.

SETSTEPZ This command sets the Z-axis
logical step size, which is used by
the IpStageStepZ function.

The logical step size, in
millimeters.

SETORIGIN This command sets the origin of the
X, Y, and Z-axes. The X/Y origin is
set as specified in the Outval
parameter.

The position to which the
X/Y origin is to be set. Must
be one of the following:
STG_UPLEFT - sets X/Y
origin at the upper-left corner
of the stage.
STG_CENTER - sets X/Y
origin at the center of the
stage.
STG_CURRENT - sets X/Y
origin at the controller’s
current X/Y position.
STG_ZCURRENT - sets Z
origin at the controller’s
current Z position.

 IpStageControl

Page 2-689

GETX This command gets the current X
position of the stage, in millimeters.
The value is written to the variable
you specify in OutVal.

The name of the variable
receiving the X location
value. Be sure this variable is
of BASIC type Single.

GETY This command gets the current Y
position of the stage, in millimeters.
This value is written to the variable
you specify in OutVal.

The name of the variable
receiving the Y location
value. Be sure this variable is
of BASIC type Single.

Setting DESCRIPTION Outval

GETZ This command gets the current Z
position of the stage, in millimeters.
This value is written to the variable
you specify in OutVal.

The name of the variable
receiving the Z location
value. Be sure this variable is
of BASIC type Single.

STG_GET_OFF
SET_CORR

Gets the information to turn
objective offset off or on

0 = off, 1 = on

STG_GET_3_
POINT_PLANE

Gets the information to turn the 3
point plane off or on

0 = off, 1 = on

STG_PRESENT This command checks to see if there
is a stage present.

Returns a boolean value of 1
if a stage is present, 0 if not.

STG_FOCUS_
PRESENT

This command checks to see if there
is a focus drive present. It may be
anywhere in Stage-Pro or Scope-Pro.

Returns a boolean value of 0
if a focus drive is present
anywhere in the
configuration, 1 if not.

STG_SET_XY_
SPEED

This command sets the speed of
travel in the X and Y directions.

The speed of travel from 1 to
100 as a percentage of
maximum speed. Be sure that
this variable is of the BASIC
type Single.

STG_SET_Z_
SPEED

This command sets the speed of
travel in the Z and Y direction. This
function works only if your stage
supports separate XY and Z speed
settings

The speed of travel from 1 to
100 as a percentage of
maximum speed. Be sure that
this variable is of the BASIC
type Single.

STG_SET_
SCANAREA_X_

FRAMES

This command sets the width of the
scan area in number of frames .

The scan area width in
frames.

IpStageControl

Page 2-690

Setting DESCRIPTION Outval
STG_SET_

SCANEARA_Y_
FRAMES

This command sets the height of the
scan area in number of frames

The scan area height in
frames.

STG_SET_
SCANAREA_X_M

M

This command sets the width of the
scan area in millimeters.

The scan area width in
millimeters.

STG_SET_
SCANAREA_Y_M

M

This command sets the height of the
scan area in millimeters.

The scan area height in
millimeters.

STG_SET_Z
_TOP

This command sets the top value of
the Z stack in millimeters.

The top value of the Z stack
in millimeters.

STG_SET_OFFS
ET_CORR

Sets the information to turn objective
offset off or on

0 = off, 1 = on

STG_SET_Z_
BOT

This command sets the bottom value
of the Z stack in millimeters.

The bottom value of the Z
stack in millimeters.

STG_SET_NUM_
PLANES

This command sets the number of
planes in the Z stack.

The number of planes in the
Z stack.

STG_SELECT_B
G_WS

This command is used to select the
current workspace as the
background.

Returns the doc ID for a
valid workspace, or an error
message.

STG_SELECT_B
G_SUBTRACT

This command turns background
subtraction on or off.

Returns a boolean value of 1
if background subtraction is
on, 0 it it’s off.

STG_SELECT_B
G_

FLATFIELD

This command turns background
flatfield correction on or off.

Returns a boolean value of 1
if flatfield correction is on, 0
it it’s off.

STG_SELECT_T
ILE

This command turns image tiling on
or off.

Returns a boolean value of 1
if image tiling is on, 0 it it’s
off.

STG_SELECT_U
SE_BG_

CORRECTION

This command indicates if
background correction should be
used.

Returns a boolean value of 1
if background correction is
on, 0 it it’s off.

STG_SELECT_U
SE_SAMPLE_

PATTERNS

This command indicates if pattern
sampling should be used.

Returns a boolean value of 1
if pattern sampling is on, 0 it
it’s off.

 IpStageControl

Page 2-691

Setting DESCRIPTION Outval
STG_SELECT_U

SE_ALL_
GROUPS

This command indicates if all groups
should be used.

Returns a boolean value of 1
if use all groups is on, 0 if
it’s off.

STG_SELECT_U
SE_RESET_

SWAF_ORIGIN

This command will reset the Z origin
after a software autofocus operation.

STG_GET_3_
POINT_PLANE

Gets the information to turn the 3
point plane off or on

0 = off, 1 = on

STG_SET_XY_S
EQ

This command turns the ability to
save XY as a sequence.

Returns a boolean value
of 1 if save XY as a
sequence is on, 0 if it’s
off

STG_SET_
GUARD_PIX

This command sets the guard frame
in pixels.

The size of the guard
frame in pixels.

STG_NUM_RND_
FRAMES

This command sets the number of
frames to be used in the random
pattern.

The number of frames to use.

STG_RECALC_R
ND

This command recalculates the
number of frames to be used in the
random pattern.

The number of frames to use.

STG_SET_
SCAN_

PATTERN

This command sets the type of scan
pattern

Must be one of the following:
STG_SNAKE
STG_SNAKE_90
STG_ONE_WAY
STG_RANDOM

STG_SEELCT_F
INE_XY

This command gets the fine or
course X and/or Y values

0 = off, 1 = on

STG_GET_OBJ_
OFFSET_CORR

Moves the stage to recent the view
when an objective changes

0 = off, 1 = on

STG_SET_OBJ_
OFFSET_CORR

Moves the stage to recent the view
when an objective changes

0 = off, 1 = on

See Also IpStageStepXY, IpStageXY, IpStageStepZ, IpStageZ

IpStageCreateList

Page 2-692

IpStageCreateList
Syntax IpStageCreateList ()

Description This function creates an empty AFA site list.

Return Value A zero-based list ID if successful, a negative error code if failed.

IpStageDeleteList
Syntax IpStageDeleteList (ListID, PointsOnly)

Description This function deletes all the points in the list.

Parameters ListID Integer Indicates the ID of the existing list to be deleted

 PointsOnly Integer True = Remove all the points, keep empty list.
False = Remove all points, remove empty list.

Return Value 0 if successful, a negative error code if failed.

IpStageDeletePoint
Syntax IpStageDeletePoint (ListID, Index)

Description This function deletes specific points in an existing list.

Parameters ListID Integer Indicates the ID of the existing list from which the
points will be deleted.

 Index Integer Index of the point to remove, from zero to the
number of points in the list minus one.

Return Value 0 if successful, a negative error code if failed.

 IpStageDocGet

Page 2-693

IpStageDocGet
Syntax IpStageDocGet(Setting, DocID, Value)

Description This function gets information on an image captured by Stage-Pro. This is similar to the
position information displayed by right clicking on the image.

Parameters Setting Integer Must be one of the following:

STGINF_X_POS returns the X offset of the image
from the origin of the Area of Travel.

STGINF_Y_POS returns the Y offset of the image
from the origin of the Area of Travel.

STGINF_Z_POS returns the Z position of the image.

STGINF_XY_FIELD returns the number of the field
in the Scan Area.

STGINF_Z_FIELD returns the number of the plane.

STGINF_Z_NUMPLANES returns the number of
planes in the Z stack.

STGINF_Z_MIN returns the Z position of the lowest
plane with in-focus material. Will return 0 if the image
was not captured using either Multi-Plane Focus or
Software Auto-Focus.
STGINF_Z_MAX returns the Z position of the highest
plane with in-focus material. Will return 0 if the
image was not captured using either Multi-Plane
Focus or Software Auto-Focus.
STGINF_Z_DIST returns the distance between the
lowest and highest planes with in-focus material. Will
return 0 if the image was not captured using either
Multi-Plane Focus or Software Auto-Focus.
STGINF_Z_BEST returns the Z position of the plane
with the most in-focus material. Will return 0 if the
image was not captured using Software Auto-Focus.

IpStageDocGet

Page 2-694

 DocID Integer Document ID of the image to get information on. Can

use DOCSEL_ACTIVE for current active image.

 Value Single Variable where the parameter value will be returned.

Example The following statement will get the absolute X offset of the current active workspace.
Dim xPos As Single
ret = IpStageDocGet (STGINF_X_POS, DOCSEL_ACTIVE, xPos)

Comments This information will only be attached to an image captured through
Stage-Pro.

 IpStageDocGetStr

Page 2-695

IpStageDocGetStr
Syntax IpStageDocGetStr(Setting, DocID, String)

Description This function gets information on an image captured by Stage-Pro. This is similar to the
position information displayed by right clicking on the image.

Parameters Setting Integer Must be one of the following:

STGINF_PATTERNNAME returns the name of the
Sample Pattern that was active when the image was
captured.

STGINF_GROUPNAME returns the name of the Group
in Sample Pattern that was active when the image
was captured.

STGINF_SAMPLENAME returns the name of the well.

 DocID Integer Document ID of the image to get information
on. Can use DOCSEL_ACTIVE for current active
image.

 String String Variable where the string will be returned.

Example The following statement will get the name of the well in which the current active image was
captured:
Dim MyString As String *60
ret = IpStageDocGetStr(STGINF_SAMPLENAME, DOCSEL_ACTIVE,
MyString)
The following statement will get the pattern name in which a
given image was captured:
Dim DocID As Short
Dim szPtn As String *255
DocID = IpStageAcqFrame (ACQ_NEW)
ret = IpStageDocGetStr (STGINF_PATTERNNAME, DocID,
 szPtn)

Comments This information will only be attached to an image captured through
Stage-Pro.

IpStageField

Page 2-696

IpStageField
Syntax IpStageField(FieldNum)

Description This function moves the stage to a specific field.

Parameters FieldNum Integer Number of the field to move to. Can also be one
of the following:

STG_BEGINNING
STG_END
STG_NEXT
STG_PREVIOUS

Example The following statement will move to the third field in the current Scan Area:

ret = IpStageField(2)

Comments Field numbers start at 0 and go to n –1, where n is the number of fields defined. The IpStageGet
command STG_NUM_FIELDS can be used to determine the number of fields in the current
Scan Area.

DESCRIPTION Value
STG_BEGINNING This will move to the first frame in

the current Scan Area.

STG_END This will move to the last frame in the
current Scan Area.

STG_NEXT This will move to the next frame in
the current Scan Area

STG_PREVIOUS This will move to the previous frame
in the current Scan Area.

 IpStageFocusLimits

Page 2-697

IpStageFocusLimits
Syntax IpStageFocusLimits()

Description This function invokes the routine that prompts the user to set the upper and lower limits for the
Z travel.

IpStageGet
Syntax IpStageGet(Setting, Arg, Value)

Description This function gets information on the current stage parameters

Parameters Setting Single Must be one of the following:
STG_NUM_FIELDS returns the total number of fields
in the current Scan Area.
Note: STG_NUM_FIELDS returns 1 (one) if Tile
Images is selected on the Acquire tab page.

STG_X_FIELDS returns the number of fields in the X
direction in the current Scan Area.
STG_Y_FIELDS returns the number of fields in the Y
direction in the current Scan Area.
STG_GUARD_PIX returns the width of the guard
frame in pixels.

STG_GET_RAW_X reports the raw X position
information returned by the controller in the
controller’s native units, normally pulses or motor
steps.

STG_GET_RAW_Y reports the raw Y position
information returned by the controller in the
controller’s native units, normally pulses or motor
steps.

STG_GET_RAW_Z reports the raw Z position
information returned by the controller in the
controller’s native units, normally pulses or motor
steps.

STG_GET_SLICE_SIZE reports the size of a single
Z slice.

STG_GET_Z_TOP returns the current upper limit of
the Z stack.

IpStageGet

Page 2-698

Parameters Setting Single STG_GET_Z_BOT returns the current lower limit of
the Z stack.

STG_GET_X_CORRECTION returns the difference
between the origin of the area of travel and the
origin of the scan area.

STG_GET_Y_CORRECTION returns the difference
between the origin of the area of travel and the
origin of the scan area.
STG_TOTAL_AREA returns the total area of the Scan
Area in square mm.

STG_X_MM returns the width of the frame in mm
STG_Y_MM returns the height of the frame in mm
STG_X_PIX returns the width of the frame in pixels
STG_Y_PIX returns the height of the frame in pixels

STG_NUM_GROUPS returns the number of groups that
are defined in the current Sample Pattern.
Note: If Use Sample Pattern is not selected on the
Acquire tab page, STG_NUM_GROUPS returns 0
(zero). If Use All Groups is not selected,
STG_NUM_GROUPS returns 1 (one).

STG_CURR_GROUP returns the number (0 to n-1) of
the current Group in the current Sample Pattern.

STG_NUM_WELLS returns the number of wells in the
current Sample Pattern.

STG_NUM_WELLS_X returns the number of wells in X
in the current Sample Pattern.

STG_NUM_WELLS_Y returns the number of wells in Y
in the current Sample Pattern.

STG_CURR_WELL returns the number (0 to n-1) of the
current well in the current Sample Pattern.

STG_CURR_XY_FIELD returns the number (0 to n-1)
of the current frame in the current Scan Area.

STG_WELLS_IN_CURR_GROUP returns the number of
wells in the current Group in the current Sample
Pattern.
Note: If Use Sample Pattern is not selected,

 IpStageGet

Page 2-699

 STG_WELLS_IN_CURR_GROUP returns 1 (one).

STG_NUM_PLANES returns the number of Z planes.
Note: STG_NUM_PLANES returns 0 (zero) if there is
no Z focus control or if Control Z Plane or Auto-
Focus When Acquiring is not selected.
STG_NUM_PLANES returns 1 (one) if EDF Capture is
not selected.

STG_NUM_SCAN_AREAS returns the number of
currently defined Scan Area settings files.

STG_NUM_SAMPLE_PATTERNS returns the number of
currently defined Sample Patterns.

STG_PIX_PER_MM_X returns the frame width in
number of pixels per millimeter

STG_PIX_PER_MM_Y returns the frame height in
pixels per millimeter

STG_MM_PER_PIX_X returns the frame width in
number of millimeters per pixel

STG_MM_PER_PIX_Y returns the frame height in
number of millimeters per pixel

STG_XY_SPEED returns the speed of travel in the X
or Y direction

STG_Z_SPEED returns the speed of travel in the Z
direction

 STG_GETXY_FINE_COARSE

STG_GET_Z_FINE_COARSE

STG_GET_XY_DISPLAY_TOTAL

STG_GET_Z_DISPLAY_TOTAL

STG_GET_Z_FINE_MAX

 Arg Integer Reserved, set to 0

 Value Any Indicates the user’s variable where the
parameter value will be returned.

Example The following statement gets the number of fields currently
defined in the Scan Area:
Dim NumFields As Single
ret = IpStageGet (STG_NUM_FIELDS,0,NumFields)

Comments You cannot record this macro.

IpStageGetAbsPoint

Page 2-700

IpStageGetAbsPoint
Syntax IpStageGetAbsPoint (ListID, Index, IpfPointAry)

Description This function gets the absolute X, Y, and Z values of a specific point in an existing list.

Parameters ListID Integer Indicates the zero-based list ID.

 Index Integer Indicates the zero-based point index.

 IpfPointAry LPFLOAT An array of 3 floats to hold absolute x,y, and z
position information with respect to the defined
area of travel.

Return Value 0 if successful, a negative error code if failed.

IpStageGetAbsPointEx
Syntax IpStageGetAbsPointEx(ListID, Index, IpfPointAry, uiFlags)

Description This function gets the absolute X, Y, and Z values of a specific point in an existing list.

Parameters ListID Integer Indicates the zero-based list ID.

 Index Integer Indicates the zero-based point index.

 IpfPointAry LPFLOAT An array of 3 floats to hold absolute x,y, and z
position information with respect to the defined
area of travel.

 uiFlags Integer Flags are defined as follows:
STG_USE_ORIGINAL_XYZ 1
STG_USE_COARSE_XY 2
STG_USE_COARSE_Z 4
STG_USE_FINE_X 8
STG_USE_FINE_Y 16
STG_USE_FINE_Z 32
STG_USE_CONTINUOUS_FOCUS 64
STG_AFA_LIST_RESERVED_1 128
STG_AFA_LIST_RESERVED_2 256
STG_AFA_LIST_RESERVED_3 512
STG_AFA_LIST_RESERVED_4 1024
STG_AFA_LIST_RESERVED_5 2048
STG_AFA_LIST_RESERVED_6 4096
STG_AFA_LIST_RESERVED_7 8192
STG_AFA_LIST_RESERVED_8 16384
STG_AFA_LIST_RESERVED_9 32768

Return Value 0 if successful, a negative error code if failed.

IpStageGetAbsPosition
Syntax IpStageGetAbsPosition(IpPointAry)

Description This function gets the absolute positions of X, Y,and Z in Point (0), Point(1),and Point(2).

 IpStageGetAbsPosition

Page 2-701

Parameters IpfPointAry Single An array of 3 singles to hold absolute x,y, and z
position information with respect to the defined
area of travel.

Comments The absolute position is the current relative position returned by the normal get functions, plus the
distance from the origin of the area of travel to the origin of the scan area.

Example dim Point(3) as single

IpStageGetAbsPosition(Point)
Return Value 0 if successful, a negative error code if failed.

IpStageGetAbsPositionEx

Page 2-702

IpStageGetAbsPositionEx
Syntax IpStageGetAbsPositionEx (lpPointAry,uiFlags)

Description This function gets the absolute positions of X, Y,and Z in Point (0), Point(1),and Point(2).

Parameters IpfPointAry Single An array of 3 singles to hold absolute x,y, and z
position information with respect to the defined
area of travel.

 uiFlags Integer Flags are defined as follows:
STG_USE_ORIGINAL_XYZ 1
STG_USE_COARSE_XY 2
STG_USE_COARSE_Z 4
STG_USE_FINE_X 8
STG_USE_FINE_Y 16
STG_USE_FINE_Z 32
STG_USE_CONTINUOUS_FOCUS 64
STG_AFA_LIST_RESERVED_1 128
STG_AFA_LIST_RESERVED_2 256
STG_AFA_LIST_RESERVED_3 512
STG_AFA_LIST_RESERVED_4 1024
STG_AFA_LIST_RESERVED_5 2048
STG_AFA_LIST_RESERVED_6 4096
STG_AFA_LIST_RESERVED_7 8192
STG_AFA_LIST_RESERVED_8 16384
STG_AFA_LIST_RESERVED_9 32768

IpStageGetListLength
Syntax IpStageGetListLength (ListID)

Description This function gets the zero-based list length

Parameters ListID Integer Indicates the zero-based list ID.

Return Value The list length if successful, a negative error code if failed.

IpStageGetListLocked
Syntax IpStageGetListLocked (ListID)

Description This function indicates if the list is locked. If so, the list cannot be modified.

Parameters ListID Integer Indicates the zero-based list ID.

Return Value The list length if successful, a negative error code if failed.

IpStageGetListModified
Syntax IpStageGetListModified (ListID)

 IpStageGetListModified

Page 2-703

Description This function indicates if the list has been modified.

Parameters ListID Integer Indicates the zero-based list ID.

Return Value The list length if successful, a negative error code if failed.

IpStageGetListName

Page 2-704

IpStageGetListName
Syntax IpStageGetListName (ListID, szName)

Description This function gets the name of the zero-based list.

Parameters ListID Integer Indicates the zero-based list ID.

 szName LPSTR Indicates the name of the list.

Return Value The list length if successful, a negative error code if failed.

IpStageGetNumLists
Syntax IpStageGetNumLists ()

Description This function gets the zero-based number of lists

Return Value The number of lists if successful, -1 for none.

IpStageGoToListPos
Syntax IpStageGoToListPos (ListID, Index)

Description This function moves the stage to the absolute XYZ value of a specific point in an existing list.
Sets the origin of the scan area.

Parameters ListID Integer Indicates the zero-based list ID.

 Index Integer Indicates the zero-based point index.

Return Value 0 if successful, a negative error code if failed.

 IpStageModifyListPoint

Page 2-705

IpStageModifyListPoint
Syntax IpStageModifyListPoint (ListID, Index, Position, PointAry)

Description This function modifies the position of an existing point in an existing AFA point list.

Parameters ListID Integer Indicates the ID of the existing list where the
position of the point should be changed

 Index Integer Indicates the zero-based position of the
point in the list.

 Position Integer STG_AT_CUR_STG_POS = Use the current
stage position for the position of the point

STG_AT_GIVEN_POS = Use the values in
PointAry as the position of the point.

 PointAry Any Can be null if Position =
STG_AT_CUR_STG_POS

Must be an array of 3 single giving the X, Y, and Z
position of the point (as an absolute XYZ position
with respect to the defined area of travel) to add
for STG_AT_GIVEN_POS .

Return Value 0 if successful, a negative error code if failed.

IpStageModifyListPointEx
Syntax IpStageModifyListPointEx (ListID, Index, Where, PointAry)

Description This function modifies the position of an existing point in an existing AFA point list.

Parameters ListID Integer Indicates the ID of the existing list where the
position of the point should be changed

 Index Integer Indicates the zero-based position of the point in
the list.

 Where Integer STG_AT_CUR_STG_POS = Use the current
stage position for the position of the point

STG_AT_GIVEN_POS = Use the values in
PointAry as the position of the point.

 PointAry Any Can be null if Position =
STG_AT_CUR_STG_POS

Must be an array of 3 single giving the X, Y, and Z
position of the point (as an absolute XYZ position
with respect to the defined area of travel) to add
for STG_AT_GIVEN_POS .

IpStageModifyListPointEx

Page 2-706

 uiFlags Integer Flags are defined as follows:
STG_USE_ORIGINAL_XYZ 1
STG_USE_COARSE_XY 2
STG_USE_COARSE_Z 4
STG_USE_FINE_X 8
STG_USE_FINE_Y 16
STG_USE_FINE_Z 32
STG_USE_CONTINUOUS_FOCUS 64
STG_AFA_LIST_RESERVED_1 128
STG_AFA_LIST_RESERVED_2 256
STG_AFA_LIST_RESERVED_3 512
STG_AFA_LIST_RESERVED_4 1024
STG_AFA_LIST_RESERVED_5 2048
STG_AFA_LIST_RESERVED_6 4096
STG_AFA_LIST_RESERVED_7 8192
STG_AFA_LIST_RESERVED_8 16384
STG_AFA_LIST_RESERVED_9 32768

Return Value 0 if successful, a negative error code if failed.

 IpStagePlane

Page 2-707

IpStagePlane
Syntax IpStagePlane(PlaneNum)

Description This function moves the stage to the specific Z plane.

Parameters PlaneNum Integer Number of the plane to move to. Can also be
one of the following:

STG_BEGINNING
STG_END
STG_NEXT
STG_PREVIOUS

Example The following statement will move to the origin of the third plane in the current Z stack:
ret = IpStagePlane(2)

Comments Plane numbers start at 0 and go to n –1, where n is the number of planes defined. The IpStage Get
command STG_NUM_PLANES can be used to determine the number of planes in the current Z
stack.

DESCRIPTION Value
STG_BEGINNING This will move to the first plane in the

current stack.

STG_END This will move to the last plane in the
current stack.

STG_NEXT This will move to the next plane in the
current stack

STG_PREVIOUS This will move to the previous plane
in the current stack.

IpStageSampleGroupByName

Page 2-708

IpStageSampleGroupByName
Syntax IpStageGroupByName(GroupName)

Description This function loads a Group within a Sample Pattern.

Parameters GroupName String The name of a Group as it appears in the list
box on the Sample Pattern tab.

Example The following statement will load the group named “Group 1”.
ret = IpStageGroupByName(“Group 1”)

Comments This function does a string compare to match the name supplied with a name in the list.

IpStageSampleGroupByNum
Syntax IpStageGroupByNum(GroupNum)

Description This function loads a Group within a Sample Pattern.

Parameters GroupNum Integer The number of the position of a Group as it
appears in the list box on the Sample Pattern
tab.

Example The following statement will load the group that is second in the Group list.
ret = IpStageGroupByNum(1)

Comments Group numbers start at 0 (zero) and continue to n-1, where n is the number of groups defined. The
IpStageGet Command STG_NUM_GROUPS can be used to determine the number of groups
defined.

 IpStageSamplePatternByName

Page 2-709

IpStageSamplePatternByName
Syntax IpStageSamplePatternByName(PatternName)

Description This function loads a Sample Pattern.

Parameters PatternName String The name of a Sample Pattern as it appears in
the list box on the Sample Pattern tab.

Example The following statement will load the template for a 96-well plate.
ret = IpStageSamplePatternByName(“Costar96WellPlate”)

Comments When Stage-Pro is loaded it scans the ScpPtn directory and loads all Sample Pattern names
into the list box on the Sample Pattern tab. This function does a string compare to match the
name supplied with a name in the list, therefore there is no path associated with the string.

IpStageSamplePatternByNum
Syntax IpStageSamplePatternByNum(PatternNum)

Description This function loads a Sample Pattern.

Parameters PatternNum Integer The number of the position of a Sample Pattern
as it appears in the list box on the Sample
Pattern tab.

Example The following statement will load the template for the second pattern in the Sample Pattern list.
ret = IpStageSamplePatternByNum(1)

Comments Sample Pattern numbers start at 0 (zero) and continue to n-1, where n is the number of patterns
defined. The IpStageGet Command STG_NUM_PATTERNS can be used to determine the
number of patterns defined.

IpStageSetListName
Syntax IpStageSetListName (ListID, szName)

Description This function sets the name of the zero-based list.

Parameters ListID Integer Indicates the zero-based list ID.

 szName LPSTR Indicates the name of the list.

Return Value The list length if successful, a negative error code if failed.

IpStageSetListLocked

Page 2-710

IpStageSetListLocked
Syntax IpStageSetListLocked (ListID,bLocked)

Description This function indicates if the list is locked. If so, the list cannot be modified.

Parameters ListID Integer Indicates the zero-based list ID.

 bLocked Integer Turns the lock on or off.

Comments The get / set list locked functions will allow AFA to flag a set as being locked. If a list is locked
the Stage-Pro interface will not modify that list. The add point, delete point, sort list, and delete
list macros will fail (and return an error code) if called for a locked list.

Return Value The list length if successful, a negative error code if failed.

IpStageSetListModified
Syntax IpStageSetListModified (ListID, bModified)

Description This function indicates if the list has been modified.

Parameters ListID Integer Indicates the zero-based list ID.

 bModified Integer Turns the modification on or off.

Comments The get / set modified functions add a flag to the list structure that Stage-Pro will set if Stage-Pro
modifies the list. Stage-Pro will not specifically look for this flag, but will incorporate any
macro/AFA changes when the tab regains focus.

Return Value The list length if successful, a negative error code if failed.

IpStageScanPatternByName
Syntax IpStageScanPatternByName(ScanPatternName)

Description This function loads a Scan Area and Pattern.

Parameters ScanPatternName String The name of a Scan Area and Pattern as it
appears in the list box on the Scan Area tab.

Example The following statement will load the Scan Area and Pattern named “ScanArea1”.
ret = IpStageScanPatternByName(“ScanArea1”)

Comments This function does a string compare to match the name supplied with a name in the Scan Area
and Pattern list box on the Scan Area tab.

 IpStageScanPatternByNum

Page 2-711

IpStageScanPatternByNum
Syntax IpStageScanPatternByNum(ScanPatternNum)

Description This function loads a Scan Area and Pattern.

Parameters ScanPatternNum Integer The number of the position of a Scan Area and
Pattern as it appears in the list box on the Scan
Area tab.

Example The following statement will load the Scan Area and Pattern that is second in the Scan Area and

Pattern list of the Scan Area tab.
ret = IpStageScanPatternByNum(1)

Comments Scan Area numbers start at 0 (zero) and continue to n-1, where n is the number of Scan Areas
defined. The IpStageGet Command STG_NUM_SCAN_AREAS can be used to determine the
number of Scan Areas defined.

IpStageSetArea
Syntax IpStageSetArea(Method)

Description This function prompts the user to set the scan area visually. Depending on the second
parameter, you will be asked for the corners or the sides of the Scan Area.

Parameters Method Integer Indicates how to set the Scan Area:
 STG_CORNERS
 STG_SIDES

Example The following statement will set the upper left and lower right corners of the Scan Area:
ret = IpStageSetArea (STG_CORNERS)

Comments Set the Scan Area by the corners for areas defined as rectangles. Set the Scan Area by the sides
for round objects. This function has the same effect as using the Corners and Sides radio buttons,
and clicking the Set Area by Stage button.

IpStageShow

Page 2-712

IpStageShow
Syntax IpStageShow(bShow)

Description This function displays or hides the “Stage-Pro” user interface.

Parameters bShow Integer An integer value specifying whether the Stage-Pro
window is to be shown (STG_SHOW) or hidden
(STG_HIDE).

Use STG_SHOW_MID to show the minimal dialog

Example The following statement will open the Stage-Pro window.
ret = IpStageShow(STG_SHOW)

Comments It is not necessary to display the Stage-Pro dialog when executing any of the stage controller
functions from a macro. Its disposition, shown or hidden, is entirely up to you. You will want to
display the dialog if your program requires the user to make choices within it; however, if your
purpose is merely to move the stage in a predefined manner, there is no need to display the dialog.

 IpStageShowTab

Page 2-713

IpStageShowTab
Syntax IpStageShowTab(bShow,PageNum)

Description This function displays or hides a Stage-Pro page.

Parameters bShow Integer An integer value specifying whether the Stage-
Pro window is to be shown (STG_SHOW) or
hidden (STG_HIDE).

 PageNum Integer Determines which tab page of the Stage-Pro
page to show. Constants are defined for the
following:
STG_AREA
STG_PATTERN
STG_LENS
STG_STAGE
STG_ACQ
STG_CONFIG
STG_SAMPLE_PATTERN

Example The following statement will open the Stage-Pro dialog and display the Acquire tab page:
ret = IpStageShowTab(STG_SHOW,STG_ACQ)

Comments You cannot record this macro.

IpStageSettings

Page 2-714

IpStageSettings
Syntax IpStageSettings(FileSpec, Save)

Description This loads or saves a Stage-Pro settings file (*.stg).

Parameters FileSpec String The path and name of the Stage-Pro settings file.

 Save Integer Indicates whether to load (STG_LOAD) or save
(STG_LOAD) the settings.

Example The following statement will save the current stage settings:
ret = IpStageSettings(“c:\ipwin7\test.stg”, STG_SAVE)

Comments If template mode is off, the macro will use the file and database names passed in the string. If
template mode is on, the file name passed in the string is ignored, and a Windows file box is
displayed; the user is forced to enter the path and name.

IpStageSortList
Syntax IpStageSortList (ListID, iByMinDist)

Description This function sorts an existing AFA point list.

Parameters ListID Integer Indicates the ID of the existing list to be sorted.

 ByMinDist Integer 1 = Sort by minimum distance
0 = Sort by XY

Return Value The list length if successful, a negative error code if failed.

 IpStageStepXY

Page 2-715

IpStageStepXY
Syntax IpStageStepXY(Direction)

Description This function moves the stage by one logical step, relative to its current position.

Parameters Direction Integer An enumerated integer that specifies the direction in
which the stage is to move. Must be one of the
following:

STG_UP

STG_RIGHT

STG_DOWN

STG_LEFT

See definitions under Comments, below

Example The following example sets the X-axis logical step size to 0.7 millimeters, then moves the stage
right by this amount.
ret = IpStageControl(SETSTEPX, 0.7)
ret = IpStageStepXY(STG_RIGHT)

Comments Use IpStageControl SETSTEPX or SETSTEPY commands to set the logical step size.

The following table describes the values allowed in Direction.

Direction DESCRIPTION
STG_UP This value moves the stage one logical step to the north.

STG_RIGHT This value moves the stage one logical step to the east.

STG_DOW
N

This value moves the stage one logical step to the south.

STG_LEFT This value moves the stage one logical step to the west.

See Also IpStageControl, IpStageXY, IpStageStepZ, IpStageZ

IpStageStepZ
Syntax IpStageStepZ(Direction)

Description This function moves the focus by one logical step, relative to its current position.

IpStageStepZ

Page 2-716

Parameters Direction Integer An enumerated integer that specifies the direction in
which the stage is to move. Must be one of the
following:

STG_UP - Moves the stage one logical step closer to
the lens.

STG_DOWN - Moves the stage one logical step away
from the lens.

STG_AUTO - Positions the stage automatically using
the hardware’s auto-focus facility.

Example The following example sets the Z-axis step size to 20 microns (if the current unit is millimeters),
then moves the stage up by this amount.
ret = IpStageControl(SETSTEPZ, 0.02)
ret = IpStageStepZ(STG_UP)

Comments Use the IpStageControl SETSTEPZ command to set the logical step size.

Do not use the STG_AUTO option unless your motorized stage hardware is equipped with
automatic focus circuitry. Using it with a controller that does not have auto-focus can cause the
hardware to hang.

See Also IpStageControl, IpStageStepXY, IpStageXY, IpStageZ

 IpStageWell

Page 2-717

IpStageWell
Syntax IpStageWell(WellNum)

Description This function moves the stage to the specific well.

Parameters WellNum Integer Number of the well to move to. Can also be one
of the following:

STG_BEGINNING
STG_END
STG_NEXT
STG_PREVIOUS

Example The following statement will move to the origin of the third well in the currently selected group
of the current sample pattern.
IpStageWell(2)

Comments Well numbers start at 0 and go to n –1 (where n is the number of wells in the current group of the
current sample pattern). The IpStageGet command STG_NUM_WELLS can be used to
determine the number of wells in the currently selected group of the current sample pattern.

DESCRIPTION Value
STG_BEGINNING This will move to the first well in the

currently selected group of the current
sample pattern.

STG_END This will move to the last well in the
currently selected group of the current
sample pattern.

STG_NEXT This will move to the next well in the
currently selected group of the current
sample pattern.

STG_PREVIOUS This will move to the previous well in the
currently selected group of the current
sample pattern.

 Wells are numbered by rows. For example, on a 96-well plate, wells 0 through 11 correspond to
wells A,1 through A,12; wells 12 through 23 to well B,1 through B,12; etc.

IpStageXY

Page 2-718

IpStageXY
Syntax IpStageXY(xPosition, yPosition)

Description This functions moves the stage to an absolute position.

Parameters xPosition Single The position (in millimeters) on the X-axis to which
the stage is to be moved.

 yPosition Single The position (in millimeters) on the Y-axis to which
the stage is to be moved.

Example The following example moves the stage over a 4x3 well matrix. Each well is 2mm away from the
well to its right, and 1.5mm from the well under it. The upper-left well is under the camera when
the macro begins.
Dim XPos As Single, YPos As Single
Dim XIndex As Integer, YIndex As Integer
‘ Set the origin of the X- and Y-axis to the current position.
ret = IpStageControl(SETORIGIN, STG_CURRENT)
XPos = 0.0
YPos = 0.0
For YIndex = 1 to 3
For XIndex = 1 to 4
 ‘ Snap an image and process it
 ret = IpAcqSnap(ACQ_NEW)
 .
 .
 .
 ‘ Move the stage to the right
 XPos = XPos + 2.0
 ret = IpStageXY(XPos, YPos)
Next XIndex
XPos = 0.0
YPos = YPos + 1.5
Next YIndex
.
.
.

Comments Distance is measured from the X/Y origin. The origin of the X- and Y-axis can be set using
IpStageControl.

See Also IpStageControl, IpStageStepXY, IpStageZ

IpStageXYRead
Syntax IpStageXYRead(ipString, iNumChar, iTimeout)

Description This function allows your application to read a reply string from the stage controller.

Parameters ipString String The ASCII Z character string sent by the stage.

 iNumCharacters Integer The number of characters to attempt to read from
the stage controller.

 ITimeout Integer The maximum time in milliseconds to wait for the
string to be sent.

 IpStageXYRead

Page 2-719

Return Value The number of characters read if successful; 0 (zero) if no response; or negative if failed.

Comments This function is usually used after IpStageXYWrite to receive a reply from the stage when the
command is complete.

See Also IpStageXYWrite

IpStageXYWrite

Page 2-720

IpStageXYWrite
Syntax IpStageXYWrite(ipString, iTimeout)

Description This function allows your application to send commands to the stage controller.

Parameters ipString String The ASCIIZ character string sent to the stage.

 iTimeout Integer The maximum time in milliseconds to wait for the
string to be sent.

Return Value The number of characters written if successful; 0 if failed.

Comments Use IpStageXYRead to receive the results of the command. This macro command should be
followed by a pause or IpMacroStop to give the Write macro time to communicate with the
controller and for the controller to process the command.

Note: Success of this function does not assure that Stage-Pro can communicate with the stage
controller.

See Also IpStageXYRead

 IpStageZ

Page 2-721

IpStageZ
Syntax IpStageZ(zPosition)

Description This functions moves the stage vertically to an absolute position, thereby changing the focus.

Parameters zPosition Single The position (in millimeters) from the origin of the
vertical (Z) axis to which the stage is to be moved.

Example The following example moves the stage to a position 50 microns from the focus origin and away
from the lens (down).
ret = IpStageZ(-0.05)

Comments The origin of the Z-axis can be set using IpStageControl.

Be sure the Z Revolution option has been set correctly in the Stage-Pro page on your
workstation. This option establishes the distance per revolution of the focus knob for your
particular stage controller. It is used by Image-Pro Plus to translate the millimeter value in
zPosition into motor steps for the controller. If it has not been set for the workstation, Z
positioning will be inaccurate. See Setup in Section 2.

See Also IpStageControl, IpStageXY, IpStageStepZ

IpStageZRead

Page 2-722

IpStageZRead
Syntax IpStageZRead(ipString, iNumChar, iTimeout)

Description This function allows your application to receive a focus command.

Parameters ipString String The ASCIIZ character string sent by the focus
hardware.

 iNumCharacters Integer The number of characters to attempt to read from
the stage controller.

 iTimeout Integer The maximum time in milliseconds to wait for the
string to be sent.

Return Value The number of characters read if successful; 0 if failed.

See Also IpStageZWrite

 IpStageZWrite

Page 2-723

IpStageZWrite
Syntax IpStageZWrite(ipString, iTimeout)

Description This function allows your application to send a focus command to the stage.

Parameters ipString String The ASCIIZ character string sent to the focus
hardware.

 iTimeout Integer The maximum time in milliseconds to wait for the
string to be sent.

Return Value The number of characters written if successful; 0 if failed.

Comments Use IpStageZRead to receive the results of the command. This macro command should be
followed by a pause or IpMacroStop to give the Write macro time to communicate with the
controller and for the controller to process the command.

Note: Success of this function does not assure that Stage-Pro can communicate with the stage
controller.

See Also IpStageZRead

IpSurfAutoRefresh

Page 2-724

IpSurfAutoRefresh
Syntax IpSurfAutoRefresh(bAutoRefresh)

Description When AutoRefresh is on, changing the surface plot attributes using IpSurfSet will
refresh the plot.

Parameters bAutoRefresh Integer A value of 0 or 1 specifying whether the auto-
refresh function is on or off. Where:
0 - AutoRefresh off
1 - AutoRefresh on

Comments Leaving the AutoRefresh on and changing the attributes may slow down the process if there
are more than a few attributes. A better method is to turn AutoRefresh off, change the
attributes, and turn AutoRefresh back on.

See Also IpSurfOutput, IpSurfSet, IpSurfGet, IpSurfShow

 IpSurfGet

Page 2-725

IpSurfGet
Syntax IpSurfGet(Attr, Value)

Description Gets the various attributes of the surface plot diagram.

Parameters Attr Integer Attribute to be found. See table below:

 Value Long See table below:

ATTRIB ALLOWED VALUES
SP_VIEW_ELEVATION any integer 0-90
SP_VIEW_ROTATION any integer -180 - 180
SP_STYLE_TYPE SPS_WIREFRAME = wire frame

(0)
SPS_UNSHADED = unshaded (1)
SPS_SHADED = shaded (2)

SP_STYLE_WIREFRAME_SPAN any integer 0-100
SP_STYLE_DRAWEDGES

0 - edges off
1 - edges on

SP_STYLE_DRAWAXES

0 - axes off
1 - axes on

SP_STYLE_ZSCALE any integer 0 - 400
SP_LIGHT_ELEVATION any integer 0 - 90
SP_LIGHT_ROTATION any interger -180 to 180
SP_LIGHT_COLOR color reference
SP_AMBIENT_REFLECTANCE any integer 0 - 100
SP_DIFFUSE_REFLECTANCE

any integer 0 -100

SP_SPECULAR_REFLECTANCE any integer 0 -100
SP_GLOSS any integer 0 -100
SP_COLORIZED_FROM any integer 0 - 255
SP_COLORIZED_TO any integer 0 - 255
SP_COLORIZED_FROM_COLOR color reference
SP_COLORIZED_TO_COLOR

color reference

SP_SURFACE_COLOR_SPIN

any integer 0 - 5

SP_SURFACE_COLOR_SPREAD 0 - spread off
1 - spread on

Example ret = IpSurfGet(SP_VIEW_ELEVATION,45)

See Also IpSurfShow, IpSurfOutput, IpSurfAutoRefresh

IpSurfOutput

Page 2-726

IpSurfOutput
Syntax IpSurfOutput(Value)

Description This function sends the surface plot diagram to the specified location.

Parameters Value Integer Indicate where the output should be sent:
SPO_NEW = new image (1)
SPO_NEW_WITH_ISCALE = new image with intensity
scale (2)
SPO_PRINTER = printer (3)
SPO_CLIPBOARD - clipboard (4)

Example ret = IpSurfOutput(SPO_NEW)

See Also IpSurfShow, IpSurfSet, IpSurfGet, IpSurfAutoRefresh

IpSurfSet
Syntax IpSurfSet(Attr, Value)

Description Sets the various attributes of the surface plot diagram.

Parameters Attr Integer Attribute to be set. See table below:

 Value Long See table below:

ATTRIB ALLOWED VALUES
SP_DEFAULT any value, sets all attributes to

default values.
SP_VIEW_ELEVATION any integer 0-90
SP_VIEW_ROTATION any integer -180 - 180
SP_STYLE_TYPE SPS_WIREFRAME = wire frame

(0)
SPS_UNSHADED = unshaded (1)
SPS_SHADED = shaded (2)

SP_STYLE_WIREFRAME_SPAN any integer 0-100
SP_STYLE_DRAWEDGES

0 - edges off
1 - edges on

SP_STYLE_DRAWAXES

0 - axes off
1 - axes on

SP_STYLE_ZSCALE any integer 0 - 400
SP_STYLE_TEXTURED 0 = texture off

1 = texture on
SP_LIGHT-ELEVATION any integer 0 - 90
SP_LIGHT_ROTATION any interger -180 to 180
SP_LIGHT_COLOR color reference
SP_AMBIENT_REFLECTANCE any integer 0 - 100
SP_DIFFUSE_REFLECTANCE

any integer 0 -100

SP_SPECULAR_REFLECTANCE any integer 0 -100
SP_GLOSS any integer 0 -100
SP_COLORIZED_FROM any integer 0 - 255
SP_COLORIZED_TO any integer 0 - 255
SP_COLORIZED_FROM_COLOR color reference
SP_COLORIZED_TO_COLOR

color reference

 IpSurfShow

Page 2-727

ATTRIB ALLOWED VALUES
SP_TEXTURE_ID Document ID of textured image
SP_SHADOW_DEPTH Shadow depth, any integer 0-

255
SP_SURFACE_COLOR_SPIN

any integer 0 - 5

SP_SURFACE_COLOR_SPREAD 0 - spread off
1 - spread on

Example ret = IpSurfSet(SP_VIEW_ELEVATION,45)

See Also IpSurfShow, IpSurfOutput, IpSurfAutoRefresh

IpSurfShow
Syntax IpSurfShow (bShow)

Description This function displays or hides the surface plot tool.

Parameters bShow Integer A value of 0 or 1 specifying whether the surface
plot tool is to be displayed or suppressed.
Where:
0 - hides the dialog
1 - shows the dialog

Example ret = IpSurfShow(1)

See Also IpSurfOutput, IpSurfSet, IpSurfGet, IpSurfAutoRefresh

IpTagAddClass
Syntax IpTagAddClass(Name)

Description This function can be used to add a Manual Tag class.

Parameters Name String Name of the class to add.

IpTagAttr

Page 2-728

IpTagAttr
Syntax IpTagAttr (bAttr, Value)

Description This function turns the Manual Tagging options on or off.

Parameters bAttr Integer Identifies the measurement option.
See definitions under comments,
below

 Value Integer Specifies how the option for Attrbute
should be set. See definitions under
comments, below

Comments Command Value Description

 TAG_VIEW_COUNTS
TAG_VIEW_POINTS
TAG_VIEW_CLASSSTATS

1 or 0 1 = turn option on
0 = no effect

 TAG_VIEW_AREA
TAG_VIEW_MARKER
TAG_VIEW_LABEL
TAG_MEAS_XPOS
TAG_MEAS_YPS
TAG_MEAS_INTENSITY
TAG_MEAS_CLASS
TAG_MEAS_RED
TAG_MEAS_GREEN
TAG_MEAS_BLUE
TAG_MEAS_AREA

1 or 0 1 = turn option on
0 = turn option off

 TAG_MEAS_RADIUS integre 1-15 Set area radius to value. Valid values
are integers 1-15

Example Sub mtagAttrXpos()
ret = IpTagAttr(TAG_MEAS_XPOS, 0)
ret = IpTagAttr(TAG_MEAS_XPOS, 1)
ret = IpTagAttr(TAG_MEAS_YPOS, 0)
End Sub

 IpTagDelete

Page 2-729

Example,
con’t.

Sub mtagAttrRadius()
ret = IpTagAttr(TAG_MEAS_AREA, 1)
ret = IpTagAttr(TAG_MEAS_AREA, 0)
ret = IpTagAttr(TAG_MEAS_AREA, 1)
ret = IpTagAttr(TAG_MEAS_RADIUS, 7)
ret = IpTagAttr(TAG_MEAS_RADIUS, 8)
End Sub
Sub mtagAttrView()
ret = IpTagAttr(TAG_VIEW_LABEL, 0)
ret = IpTagAttr(TAG_VIEW_AREA, 1)
ret = IpTagAttr(TAG_VIEW_MARKER, 0)
ret = IpTagAttr(TAG_VIEW_MARKER, 1)
End Sub
Sub mtagAttrShow()
ret = IpTagAttr(TAG_VIEW_MARKER, 1)
End Sub
Sub mtagAttrHide()
ret = IpTagAttr(TAG_VIEW_MARKER, 0)
End Sub
Sub mtagViewCounts()
ret = IpTagAttr(TAG_VIEW_COUNTS, 1)
End Sub
Sub mtagViewPoints()
ret = IpTagAttr(TAG_VIEW_POINTS, 1)
End Sub
Sub mtagViewStats()
ret = IpTagAttr(TAG_VIEW_CLASSSTATS, 1)
End Sub

IpTagDelete
Syntax IpTagDelete(Index)

Description This function deletes the marker number index, or all markers if index = -1.

Parameters Index Integer Index of the tag to be deleted.

Example Sub mtagDelete()
ret = IpTagDelete(9)
ret = IpTagDelete(5)
End Sub

Sub mtagDeleteAll()
ret = IpTagDelete(-1)
End Sub

IpTagDeleteClass

Page 2-730

IpTagDeleteClass
Syntax IpTagDeleteClass(ClassId)

Description This function can be used to delete one or all of the Manual Tag classes.

Parameters ClassID Integer Index of the class to be deleted (from 0 to the number
of classes -1) or -1 to delete all classes.

Comments When all classes are deleted (either using a ClassID of -1 or when the last class is deleted), the
color and symbol status is reset so that the first class added thereafter gets the first color and
class symbol. Various parts of the Manual Tag dialogs must disable when there are no classes
defined

IpTagGet
Syntax IpTagGet(Cmd, wParam, lpParam)

Description This function gets the specified markers.

Parameters Cmd Integer see comments below

 wParam Integer see comments below

 lpParam Any The address (name) of the variable that will receive the
requested data. Be sure this variable is of the type
required by Cmd. See Cmd description under
Comments, below.

Comments Cmd wParam lpParam

 GETNUMPTS class index pointer to a single-point variable or
array

 -1 returns total number of markers for a
single single-point varaiable

 other returns total number of markers in
class wParam and their percentage of
the total number for an array of single-
point values.
Note: lpParam must point to an array
of 2 real numbers.

 GETNUMCLASS not used Pointer to a single-point variable,
which receives the number of classes

 GETPOINTS point index
starting from 0

pointer to a single-point array,
return x ,y, class, intensity, red, green,
blue values in lpParam (0) through
lpParam (6)
Note: lpParam must point to an array
of 7 real numbers.

 IpTagLoadEnv

Page 2-731

 GETSTATS not used

pointer to a single-point array
lpParam[0] = min
lpParam [1] = max
lpParam[2] = average number of
 markers
lpParam[3] = standard deviation
lpParam[4] = total number of markers
Note: lpParam must point to an array
of 5 real numbers.

Example Dim SingleNumTags As Single
Dim SingleClassTags(2) As Single
‘get total number tags
ret = IpTagGet(GETNUMPTS,–1, SingleNumTags)
‘now get class 0 tags
ret = IpTagGet(GETNUMPTS,0, SingleClassTags(0))
‘SingleClassTags (0) is the number

Return Value IPCERR_NOTFOUND: information not available.
IPCERR_INVARG: invalid argument
IPCERR_NONE: no error

IpTagLoadEnv
Syntax IpTagLoadEnv(PointsFile)

Description This function loads environment setting information from the points file.

Parameters PointsFile String Name of the file where the environment setting
information is stored.

Example Sub mtagLoadEnv()
ret = IpTagLoadEnv("C:\IPWSRC\TEST.TAG")
End Sub

IpTagLoadPoints
Syntax IpTagLoadPoints(PointsFile)

Description This function loads marker information from the points file and displays the markers.

Parameters PointsFile String Name of the file where the point information is stored.

Example Sub mtagLoadPoints()
ret = IpTagLoadPoints("C:\IPWSRC\JUNK.TAG")
End Sub

See Also IpTagSavePoints

IpTagPt

Page 2-732

IpTagPt
Syntax IpTagPt(XPos, YPos, PointClass)

Description This function attaches marker information to the image. Identical to the “Tag Points”
command in the Manual Point Count dialog.

Parameters XPos Integer Location of the point on the (virtual) x-axis of the
image.

 YPos Integer Location of the point on the (virtual) y-axis of the
image.

 PointClass Integer Indicates the class of the point to be marked.

See Also IpTagLoadPoints

IpTagSaveData
Syntax IpTagSaveData(DataFile,SaveMode)

Description Save measurement results(x,y, intensity ,RGB values,statistics, etc.) into the data file.

Parameters DataFile String When saving data to a file, indicates the path and
name of the file.

 SaveMode Integer Must be one of the following:
S_HEADER = save with header
S_X_AXIS = save with the left column
S_CLIPBOARD = copy table to clipboard
S_DDE = send table contents to external program via
DDE (Excel is the default)
S_APPEND = append to the existing file
S_PRINT_TABLE = send data to printer

Comments SaveMode values can be "Or'd" together (see example below)

Example IpTagSaveData ("C:\IPWIN\data.cnt", S_APPEND+S_HEADER+S_X_AXIS)
Sub mtagSaveData()
ret = IpTagSaveData("C:\IPWSRC\TEST.CNT",
S_APPEND+S_HEADER+S_X_AXIS)
End Sub
Sub mtagClipbrd()
ret = IpTagSaveData("", S_CLIPBOARD+S_HEADER+S_X_AXIS)
End Sub

 IpTagSaveEnv

Page 2-733

IpTagSaveEnv
Syntax IpTagSaveEnvs(Filename)

Description This function saves the current environment setting (i.e. class information) into the named file.

Parameters Filename String Name of the file where the environment information is
stored.

Example Sub mtagSaveEnv()
ret = IpTagSaveEnv("C:\IPWSRC\JUNK.TAG")
End Sub

Comments IpTagLoadEnv

IpTagSavePoints
Syntax IpTagSavePoints(PointsFile)

Description Save marker information in a file.

Parameters PointsFile String Name of the file to store marker information.

Example Sub mtagSavePoints()
ret = IpTagSavePoints("C:\IPWSRC\JUNK.TAG")
End Sub

See Also IpTagLoadPoints

IpTagShow
Syntax IpTagShow(bShow)

Description Opens or closes the Manual Tagging window.

Parameters bShow Integer If bShow =1, opens the window

If bShow = 0, closes the window

Example Sub mtagShow()
ret = IpTagShow(1)
End Sub

Sub mtagHide()
ret = IpTagShow(0)
End Sub

IpTagUpdate

Page 2-734

IpTagUpdate
Syntax IpTagUpdate()

Description This function updates the manual tagging window display.

Example Sub mtagUpdate()
ret = IpTagUpdate()
End Sub

IpTemplateMode
Syntax IpTemplateMode(OnOff)

Description This function turns template mode on or off. When template mode is on, the user may pass
parameter values to the macro via a standard Image-Pro dialog box. If parameter values are
included in the Auto-Pro function statement, they will be used as default values to the dialog
box, which the user may accept or change. Macro execution will not proceed until the user has
completed and closed the dialog box, or clicked “Continue” in the template-mode message box.
When template mode is off, Auto-Pro functions are performed using the parameter data
supplied in the macro.

Parameters OnOff Integer An integer value of 0 or 1 specifying whether
subsequent Auto-Pro functions are to be performed in
template mode. Where:

0 - Disables template mode.
1 - Enables template mode.

Example ret = IpTemplateMode(1)
ret = IpWsLoad("C:\IPWIN\IMAGES\IMAGE1.TIF", "TIF")
ret = IpTemplateMode(0)
ret = IpWsScale(200, 300, 1)
ret = IpHstEqualize(EQ_BESTFIT)
ret = IpFltSharpen(3, 3, 2)

In this example, template mode is first enabled to allow the user to select the file upon which
the rest of the macro will operate. Once the user selects an image, template mode is turned off
to allow the remainder of the macro to run automatically.

See Also IpMacroStop

 IpTextBurn

Page 2-735

IpTextBurn
Syntax IpTextBurn(Text, Pos)

Description Burns the text into the image using the selected font name, size, text attributes, and currently
selected foreground and background colors.

Parameters Text String Contains the text to burn into the image.

 Pos POINTAPI Coordinate of the top left corner of the string in image
coordinate.

Example Example:
Sub Annotate()
ret = IpTextFont("Wide Latin", 30)
ret = IpTextSetAttr(TXT_BOLD, 1)
ret = IpTextSetAttr(TXT_UNDERLINE, 1)
ret = IpTextSetAttr(TXT_ITALIC, 0)
ret = IpTextSetAttr(TXT_STRIKEOUT, 0)
ret = IpTextSetAttr(TXT_ENCLOSED, 0)
ret = IpTextSetAttr(TXT_DROPSHADOW, 0)
ret = IpTextSetAttr(TXT_SPACING, 0)
Pts(0).x = 51
Pts(0).y = 41
ret = IpTextBurn("Test Image", Pts)
End Sub

Comments This function is no longer supported in Image-Pro Plus. It has been retained for compatibility
with previous versions. New macros should use the IpAn Auto-Pro functions.

See Also IpTextFont, IpTextSetAttr, IpTextShow

IpTextFont
Syntax IpTextFont (FontName,FontSize)

Description Sets the font name and size for the text.

Parameters FontName String Name of the font (i.e.Times New Roman)

 FontSize Integer Point size of the font (i.e.12 points)

Example ret = IpTextFont("Wide Latin", 30)

Comments This function is no longer supported in Image-Pro Plus. It has been retained for compatibility
with previous versions. New macros should use the IpAn Auto-Pro functions.

See Also IpTextBurn, IpTextSetAttr, IpTextShow

IpTextGetAttr

Page 2-736

IpTextGetAttr
Syntax IpTextGetAttr(AttrType, AttrValue)

Description This function retrieves text attribute values.

Parameters AttrType Integer Attribute type is one of the following:
TXT_BOLD Bold=1, normal=0
TXT_UNDERLINE Underline=1, normal=0
The following are no longer supported:
TXT_STRIKEOUT
TXT_DROPSHADOW
TXT_ENCLOSED
TXT_SPACING

 AttrValue Integer Value for AttrType.

Example ret = IpTextGetAttr(TXT_SPACING, 1)

Comments This function is no longer supported in Image-Pro Plus. It has been retained for compatibility
with previous versions. New macros should use the IpAn Auto-Pro functions.

See Also IpTextFont, IpTextBurn, IpTextShow

 IpTextSetAttr
Syntax IpTextSetAttr(AttrType, AttrValue)

Description This function selects text attribute value.

Parameters AttrType Integer Attribute type is one of the following:
TXT_BOLD Bold=1, normal=0
TXT_UNDERLINE Underline=1, normal=0
TXT_ITALIC Italic=1, normal=0

The following are no longer supported:
TXT_STRIKEOUT
TXT_DROPSHADOW
TXT_ENCLOSED
TXT_SPACING

 AttrValue Integer Value for AttrType.

Example ret = IpTextSetAttr(TXT_BOLD, 1)

Comments This function is no longer supported in Image-Pro Plus. It has been retained for compatibility
with previous versions. New macros should use the IpAn Auto-Pro functions.

See Also IpTextFont, IpTextBurn, IpTextShow

 IpTextShow

Page 2-737

IpTextShow
Syntax IpTextShow (bShow)

Description This function is used to open or close the text window. Equivalent to selecting the Show Text
command to open the window, and double-clicking its control box to close it.

Parameters bShow Integer 0 = Closes the text window
1 = Opens the text window

Example ret = IpTextShow(1)

Comments This function is no longer supported in Image-Pro Plus. It has been retained for compatibility
with previous versions. New macros should use the IpAn Auto-Pro functions.

See Also IpTextFont, IpTextBurn, IpTextSetAttr

IpTileAdd
Syntax IpTileAdd (docId)

Description This function adds a new image or workspace to list of images to Tile

Parameters docID Short ID of the workspace to add to the document list

Return Value 0 if successful, -1 if failed, IPCERR_INVARG if document is not present.

IpTileApply
Syntax IpTileApply()

Description This function applies the Tiling, using the currently specified options, and the values either
calculated or supplied by macro calls to IpTileSetEx().

Return Value 0 if successful, -1 if failed, IPCERR_EMPTY if there are no images specified.

IpTileCalculate
Syntax IpTileCalculate()

Description This function calculates the Tiling using the currently specified options.

Return Value 0 if successful, -1 if failed, IPCERR_EMPTY if there are no images specified.

IpTileGet

Page 2-738

IpTileGet
Syntax IpTileGet(sAttribute, sParam, lpData)

Description This function gets data about the images to be tiled.

Parameters sAttribute Short Attribute to get, see list and comments below

 sParam Short Number of items for the list to get, see list and
comments below

 lpData LPVOID Pointer to appropriate data array or value, see list
and comments below

Integer Argument Description

TILE_METHOD Get the method for Tiling calculations. Should be
either of the following:

ALGN_FFT Use FFT full correlation
AGLN_FFTPHASE Use FT Phase correlation
TILE_ANGLE_NUM Get the number of angles – must be a power of two
TILE_SCALE_NUM Get the number of scales – must be a power of two
TILE_OPTIONS Get Options: scale, rotate, or translate
TILE_CAL_ORDER Gets the order of the images as per calibrated

positions
TILE_REF_FRAME Gets the reference frame in the list
TILE_ALG_OPTION Gets the algorithm specific option
TILE_GETNUMFRAMES Gets the number of frames in the list
TILE_GETFRAMELIST Gets the list of frames
TILE_TRIMBORDERS Trim image borders down to fully-overlapping farmes
GETNUMDOC Gets the number of images in the list
GETDOCLST Get the list of doc IDs, maximum = sParam
TILE_UPDATEUI Determine if the user interface has been updated.
TILE_INTERATE Interate, setting the results to be the next input.

 IpTileGet

Page 2-739

Single Point Argument Description
TILE_X_PERIMAGE X pixel shift per image (stacks)
TILE_Y_PERIMAGE Y pixel shift per image (stacks)
TILE_X_CAL_ANGLE Calibrated X angle shift (stacks)
TILE_Y_CAL_ANGLE Calibrated Y angle shift (stacks)
Note that these are valid only after IpTileCalculate is called or these values are set by a macro
call. The second parameter is the index (see TILE_GETNUMFRAMES)

Get only, for each frame, expressing how it is manipulated compared to the previous frame

Argument Description
TILE_OFFSET_COUNT Number of matching offsets (short)
TILE_ANGLE_COUNT Number of matching angles (short)
TILE_SCALE_COUNT Number of matching scales (short)

Second parameter is the index (see TILE_GETNUMFRAMES)

Argument Description
TILE_ANGLE_VAL List of single matching angles
TILE_SCALE_VAL List of single matching scales
ALFN_OFFSET_RANK List of single relative match values
TILE_ANGLE_RANK List of single relative match values
TILE_SCALE_RANK List of single relative match values

List of the best Tiling values. Second parameter is the index of the frames, 0 to n-2.
DOCSEL_ALL gets/sets the entire list of TILE_GETNUMFRAMES values

Argument Description
TILE_BEST_OFFSET Listof TILE_GETNUMFRAMES POINT API offsets
TILE_BEST_ANGLE List of TILE_GETNUMFRAMES single matching

angles
TILE_BEST_SCALE List of TILE_GETNUMFRAMES single matching

scales

TILE_METHOD arguments. Additional methods can be added here, with
TILE_ALG_OPTION arguments for algorithm specific settings.

Argument Description
TILE_FFT FFT correlation
TILE_USER User-specified offsets
TILE_ALWAYSRECALC Always recalculate. Use with IpTileSetInt.

IpTileOpen

Page 2-740

TILE_ALG_OPTION calls for TILE_FFT, specific to that algorithm

Argument Description
TILE_FFTFULL Set to full FFT correlation
TILE_FFTPHASE Set to FFT phase correlation

TILE_ALG_OPTION calls for TILE_USER, specific to that algorithm

Argument Description
TILE_USER_X X shift per plane (single)
TILE_USER_Y Y shift per plane (single)
TILE_USER_XANGLE X shift angle (single, degrees)
TILE_USER_YANGLE Y shift angle (single, degrees)
TILE_USER_XDIST X shift angle (single, degrees)
TILE_USER_YDIST Y shift angle (single, degrees)
TILE_USER_ZDIST Z shift angle (single, degrees)

IpTileOpen
Syntax IpTileOpen(FileName)

Description This function loads the current offset values.

Parameters FileName LSPTR Load offset values. Fails if the number of offsets
does not match the current number of selected
frames/images, or if the tile layouts are different.

Return Value 0 if successful, -1 if failed, IPCERR_EMPTY if there are no values to load.

IpTileRemove
Syntax IpTileRemove(docID)

Description This function removes the specified workspace/image/frame from the Tiling list.

Parameters docID Short ID of the workspace to remove from the document
list. DOCSEL_ALL to clear the list.

Return Value 0 if successful, -1 if failed,

IpTileSave
Syntax IpTileSave(FileName)

Description This function saves the current offset values.

Parameters FileName LSPTR Saves offset values. Fails if the number of offsets
does not match the current number of selected
frames/images, or if the tile layouts are different.

Return Value 0 if successful, -1 if failed, IPCERR_EMPTY if there are no values to save.

 IpTileSetEx

Page 2-741

IpTileSetEx
Syntax IpTileSetEx (sAttribute, sParam, lpData)

Description This function sets the tiling attributes

Parameters sAttribute Short Attribute to set, see list and comments in IpTileGet

 sParam Short Number of items for the list to set, see list and
comments in IpTileGet

 lpData LPVOID Pointer to appropriate data array or value, see list
and comments in IpTileGet

Return Value 0 if successful, IPCERR_INVCOMMAND if failed, number of values for list function.

See Also IpTileSetInt, IpTileSetSingle

IpTileSetInt
Syntax IpTileSetInt (sAttribute, sParam, sData)

Description This function sets the tiling attributes

Parameters sAttribute Short Attribute to set, see list and comments in IpTileGet.

 sParam Short Number of items for the list to set, see list and
comments in IpTileGet

 sData Short Pointer to appropriate data array or value, see list
and comments in IpTileGet

Return Value 0 if successful, IPCERR_INVCOMMAND if failed, number of values for list function.

IpTileSetSingle
Syntax IpTileSetSingle (sAttribute, sParam, fData)

Description This function sets thte tiling attributes

Parameters sAttribute Short Attribute to set, see list and comments in IpTileGet

 sParam Short Number of items for the list to set, see list and
comments in IpTileGet

 fData Single Pointer to appropriate data array or value, see list
and comments in IpTileGet

Return Value 0 if successful, IPCERR_INVCOMMAND if failed, number of values for list function.

IpTileShow

Page 2-742

IpTileShow
Syntax IpTileShow(nDialog, bShow)

Description This function shows or hides the Tiling dialog.

Parameters nDialog Short Use one of the following to indicate which dialog to
hide or show:
TILE_IMAGETAB
TILE_OPTIONTAB
TILE_PREVIEW
TILE_ADJUST

 bShow Bool A value of 0 or 1, indicates whether to show or hide
the selected Tile dialog
0 = hide the dialog
1 = show the dialog

Return Value 0 if successful, IPCERR_INVCOMMAND if the dialog cannot be shown

IpToolbarGetStr
Syntax IpToolbarGetStr (Attribute, Value)

Description Gets the current value of a toolbar attribute.

Parameters Attribute Integer IPTB_TOOLBAR = current toolbar

 Value String For IpToolbarGetStr commands, Value should be a
fixed-length string to receive the current workflow
toolbar file.

Return Value Value of the selected attribute if successful

IpToolbarSelect
Syntax IpToolbarSelect (Toolbar)

Description Selects the specified toolbar as the current toolbar.

Parameters Toolbar String Indicate the name of the toolbar and the path.

Comments: If the workflow toolbar is currently displayed, it will be updated to the selected toolbar. This
function does not display the workflow toolbarif it is not already visible.

 IpToolbarShow

Page 2-743

IpToolbarShow
Syntax IpToolbarShow(Show)

Description This function shows or hides the current workflow toolbar.

Parameters Show Integer 0 = hide the toolbar
anything non-zero = show the dialog

The workflow toolbar must be defined by
IpToolbarSelect, or by previous use in Image-
Pro.

Return Value Will return IPCERR_NODOC if a workflow toolbar has not been defined.

IpTraceAttr
Syntax IpTraceAttr (sAttr, lValue)

Description This function sets the trace tool attributes and settings.

Parameters sAttr Integer Selects the attribute or setting. See list below.

 lValue Long Value of the attribute or setting. See list below.

ATTRIB ALLOWED VALUES DESCRIPTION
TR_ERASER 5 - 100 Eraser size in pixels
TR_MODE 0 = none

1 = drawing
2 = erasing

Drawing mode

TR_PEN 5 - 30 Pen size in pixels
TR_SHOW 0 = hide

1 = show
Shows or hides trace tool

See Also IpTraceShow, IpTraceDo

 IpTraceDo
Syntax IpTraceDo (sCmd)

Description This function builds or deletes the trace.

Parameters sCmd Integer Indicates the action to be performed. Must be one of the
following:
TR_AUTO = Perform auto-trace
TR_IMAGE = Create trace image
TR_DELETE = Delete trace

See Also IpTraceAttr, IpTraceShow

IpTraceShow

Page 2-744

IpTraceShow
Syntax IpTraceShow (bShow)

Description This function is used to show or hide the trace objects tool.

Parameters bShow Integer 1 = show trace objects tool.
0 = hide trace objects tool.

Example ret = IpTraceShow(1)

See Also IpTraceAttr, IpTraceDo

IpTrackBar
Syntax IpTrackBar(Cmd, tValue, sCaption)

Description This function manages the progress bar at the bottom of the Image-Pro window. The progress
bar can be used to illustrate the degree of completion of a user-defined process. It also allows
the user to abort your process with the <Esc> key. There is no Image-Pro command equivalent
to this function; it is one that must be manually written with the macro editor.

Parameters Cmd Integer A command ID, which is used to open, update and
close the progress bar. Must be one of the following:

TBOPEN
TBUPDATE
TBCLOSE

See definitions under Comments, below

 tValue Integer An integer specifying data with which Cmd will operate.
See definitions under Comments, below, for the values
required by each command

 sCaption String A string that will be used as the caption for the
progress bar. This parameter is used when Cmd is set
to TBOPEN. It is ignored, otherwise (when this is the
case, just set sCaption to an empty string — i.e., "").

Example The following example uses the progress bar to show the progress of a pixel inversion operation.

Dim BarTitle as String
Dim yLine As Integer, xPix As Integer
Dim iInfo as IPDOCINFO

ret = IpDocGet(GETDOCINFO,DOCSEL_ACTIVE,iInfo)

Redim ImBuf(1 To iInfo.Width,1 To iInfo.Height) As Integer
ret = IpDocGetArea(DOCSEL_ACTIVE,iInfo.Extent,ImBuf(1,1),0)

BarTitle = "Inverting Image"

ret = IpTrackBar(TBOPEN,iInfo.Height,BarTitle)

For yLine = 1 To iInfo.Height
For xPix = 1 To iInfo.Width - 1
 ImBuf(xPix,yLine) = 255 - ImBuf(xPix,yLine)
Next xPix
If IpTrackBar(TBUPDATE, yLine - 1, "") <> 0 Then
 GoTo userabort
End If

 IpTrackFile

Page 2-745

Next yLine

ret = IpDocPutArea(DOCSEL_ACTIVE,iInfo.Extent,ImBuf(1,1),0)

ret = IpAppUpdateDoc(DOCSEL_ACTIVE)

userabort:

ret = IpTrackBar(TBCLOSE,0,"")

Comments Cmd options are as follows:

Cmd VALUE DESCRIPTION tValue VALUE

TBOPEN Opens the progress bar indicator
with the specified caption, and sets
the range of possible update values

The range of possible update values.

TBUPDATE Updates the length of the progress
bar based upon the value specified
in tValue, relative to the range that
was specified in TBOPEN.

A value between 0 and (range - 1) that
represents the degree of completion at
that point.

TBCLOSE Closes (removes) the progress bar. Not used by TBCLOSE. Must be 0.

IpTrackFile
Syntax IpTrackFile(szFileName, bSave)

Description This function loads or saves a tracking file.

Parameters szFileName String Indicates the name of the file to load or save.

 bSave Short Indicates whether to save or load the tracking file.
Should be either:
0 = load the track settings from a file and append them
to the existing list
1 = save the current track settings to a file

Return Value 0 if successful, a negative error code if failed.

Example ret = IpTrackFile(“AllTracks.trc, 0”)

IpTrackMeas

Page 2-746

IpTrackMeas
Syntax IpTrackMeas(sCommand, 1Opt1, lParam)

Description This function gets and sets various parameters of the track measurements.

Parameters sCommand Short See comments and list below.

 lOpt1 Long See comments and list below.

 lParam Any See comments and list below.

Comments This macro takes the following commands:

Command 1Opt lParam Description

TM_NUM_
TRACKS_GET

Not used. Pointer to a double
that will receive the
value

Gets the number of manual tracks

TM_NUM_POINTS_
GET

Index of the
track
zero-based.

Pointer to a double
that will receive the
value.

Gets the number of points in the
track.

TM_POINTS_GET Index of the
track
zero-based

Pointer to an array of
doubles, large enough
to receive all
coordinates. The size
of the array must be
not less than
2*NumPoints, where
NumPoints is the
number of points in
the element (see
TM_NUM_POINTS_
GET) . The points are
in image coordinates.

Gets the coordinates of the points
in the track.

TM_NUM_MEAS_G
ET

Not used. Pointer to a double
that will receive the
value.

Gets the number of selected
measurements.

TM_NUM_SEL_
MEAS_GET

Not used. Pointer to a double
that will receive the
value.

Gets the number of selected
measurements

 IpTrackMeas

Page 2-747

Command 1Opt lParam Description

TM_MEAS_LIST_
GET

Not used. Pointer to an array of
doubles, large enough
to receive the values.
The size of the array
must be not less than
2*NumMeas, where
NumMeas is the
number of active
measurements (see
TM_NUM_MEAS_GE
T) . The list is
retrieved by pairs,
where the first
element is the
measurement ID and
the second element is
the statistical field. If
the measurement has
statistical field Values,
the second element
will receive 1-based
index of measurement
multiplied by
TR_VALUE.

Gets the list of active manual
measurements

 OutArr[0] –
measurement ID of
measurement 1
OutArr[1] – statistical
field of measurement
1
OutArr[3] –
measurement ID of
measurement 2
OutArr[4] – statistical
field of measurement
2

IpTrackMeas

Page 2-748

Command 1Opt lParam Description

TM_MEAS_GET Index of the active
measurement from
0 to NumMeas - 1

Pointer to an array of
doubles, large enough
to receive all values.
The size of the array
must be not less than
NumObj, where
NumObj is the
number of objects in
the manual
measurements list
(see
TM_NUM_TRACKS_
GET)

Gets the measurement values
of the manual track

TM_STATS_GET Index of the active
measurement from
0 to NumMeas - 1

pointer to an array of
double[10] that will
receive the
information. The
structure of the array
is the following:
Stats[0] – mean value
(TRSTMean)
Stats[1] – standard
deviation (TRSTStDev)
Stats[2] – min value
(TRSTMin)
Stats[3] – max value
(TRSTMax)
Stats[4] – range
(TRSTRange)
Stats[5] – sum

Gets the measurement statistics

 (TRSTSum)
Stats[6] – index of
minimum
(TRSTIndMin)
Stats[7] – index of
maximum
(TRSTIndMax)
Stats[8] – total number
of objects (TRSTNObj)
Stats[9] – number of
shown objects
(TRSTNShown)
Coimments: statistical
parameters are
calculated only from
visible tracks, hidden
tracks are ignored.

 IpTrackMeas

Page 2-749

Command 1Opt lParam Description

TM_ADD_TRACK Number of points in
the track.

Pointer to an array of
POINTAPI that
contains points in
image coordinates

Adds a new track.
In the template mode, you will
be prompted to add a track
manually.

TM_INIT_AUTO_
TRACK

Not used, should
be 0

Not used, should be
IpNull

Initiates auto-tracking using the
current count/size settings to
identify tracking objects. In the
template mode, you will be
asked to set the count/size
parameters and then comfirm
the correctness of the outlines

TM_ADD_AUTO_
TRACK

Number of points in
the track (should be
1)

Pointer to an array of
POINTAPI that
contains the starting
points of the track in
image coordinates

Adds a new track automatically.
In the template mode, you will
be prompted to add the first
point manually

TM_ADD_AUTO_AL
L_TRACKS

Not used, should
be 0

Not used, should be
IpNull

Finds all tracks on the acive
image automatically. In the
template mode, you will be
asked to set the count/size
parameters and then comfirm
the correctness of the outlines

TM_SEL_GET Index of the track
(zero-based)

Pointer to a double
that will receive the
value

Gets the selection status of the
track.

TM_SEL_SET Index of the track
(zero-based)
Use TM_ALL to
select or deselect
all tracks

Double value:
0 = Deselect
1 = Select

Sets the selection status of the
track.

TM_SHOW_GET Index of the track
(zero-based)

Pointer to a double
that will receive the
value

Gets the visibility status of the
track

TM_SHOW_SET Index of the track
(zero-based)

Double value:
0 = Hide
1 = Show

Sets the visibility status of the
track.

TM_COLOR_GET Index of the track
(zero-based)

Pointer to a double
that will receive the
value

Gets the color of the track.

IpTrackMeasGetStr

Page 2-750

Return Value 0 if successful, a negative error code if failed.

** Id of new track if successful, a negative error code if failed.

Example Sub SetTrackParameters()
ret = IpTrackShow(TRACK_TABLE,TRACK_SHOW)
‘add new track
ret = IpListPts(Pts(0),"84 154 164 192 255 233 402 286 512 299
519 258 459 217 349 191")
ret = IpTrackMeas(TM_ADD_TRACK ,8,Pts(0))
‘change name
ret = IpTrackMeasSetStr(M_NAME_SET,1,"Base Track")
‘set yellow color
ret = IpTrackMeasSet(TM_COLOR_SET,0,65535)
End Sub

IpTrackMeasGetStr
Syntax IpTrackMeaseGetStr(sCommand, 1Opt1, dParam)

Description This function gets various string parameters for the tracking measurments.

Parameters sCommand Short See comments and list below.

 lOpt1 Long See comments and list below.

 dParam Double See comments and list below.

Comments This macro takes the commands described below:

Command Opt 1 dParam Description

TM_TRACK_PREF_
GET

Not used, should
be 0

String that will
receive the tracking
prefix.

Gets the tracking preferences

TM_NAME_GET Index of the trrack,
0-based

String that will
receive the name of
the track.

Gets the name of the track.

Return Value 0 if successful, a negative error code if failed.

See Also IpTrackMeasSetStr, IpTrMeas

IpTrackMeasSet
Syntax IpTrackMeaseSet(sCommand, lOpt, dParam)

Description This function sets various tracking parameters. This function is a version of
IpTrackMeas.

Parameters sCommand Short See comments and list below.

 lOpt Long See comments and list below.

 dParam Double See comments and list below.

 IpTrackMeasSet

Page 2-751

Comments This macro takes the following commands:

Command IOpt dParam Description

TM_UPDATE Not used, should
be 0

Not used, should be
0

Updates the tracking data tables.
Applies new settings, should be
called after changing any
tracking options from a macro.

TM_TRACK_
COLOR

Not used, should
be 0

Color in hexadecimal
format as &Hrrggbb,
where rr, gg,bb are
Red, Green and
Blue components of
color.

Sets the default line color for
tracking.

TM_TEXT_COLOR Not used, should
be 0

Color in hexadecimal
format as &Hrrggbb,
where rr, gg,bb are
Red, Green and
Blue components of
color

Sets label color for tracking

TM_COLORING Not used, should
be 0

0 = fixed color
1 = random color

Sets the tracking color type

TM_EL_SIZE Not used, should
be 0

Value = 0, 1, or 2 Tracking arrow size

TM_FONT_SIZE Not used, should
be 0

Value Sets font size for tracking labels.

TM_LABEL_TYPE Not used, should
be 0

one of the following:
trLabelsShowName,
trLabelsShowMeasu
rement
trLabelsShowNone

Sets label type of measurements
(name,first measurement, none)

TM_SWAP_RC Not used, should
be 0

0 = off
1 = on

Swaps rows/columns of data
table for exporting to Excel

TM_RESET_MEAS Not used, should
be 0

Not used, should be
0

Resets the list of selected
measurements

IpTrackMeasSet

Page 2-752

Command Opt 1 dParam Description

TM_ADD_MEAS Should be one of
the following:
TRM_DIST
TRM_X_COORD
TRM_Y_COORD
TRM_OR_DIST
TRM_ANGLE
TRM_SPEED
TRM_ACCELERAT
ION
TRM_ACC_DIST

Statistical parameter
of the tracking
measurement:
TRSTMean – mean
TRSTStDev – standard
deviation
TRSTMin – minimum
TRSTMax – maximum
TRSTRange – range
TRSTSum – sum
TRSTIndMin – index of
minimum
TRSTIndMax – index of
maximum
TRSTNObj – number of
elements
TR_VALUE – values

Adds a measurement to the list of
selected measurements

TM_ADD_INT_TRA
CK

Not used, should
be 0

Not used, should be
0

Adds an intensity track

TM_ADD_CORREL_
TRACK

Not used, should
be 0

Not used, should be
0

Adds a correlation track based on
the current AOI

TM_SHOW_STATS Not used, should
be 0

0 = Hide statistics
1 = Show statistics

Shows or hides the statistics
pane of the Tracking data table

TM_SHOW_ALL Not used, should
be 0

Not used, should be
0

Shows all objects

TM_SHOW_SELEC
TED

Not used, should
be 0

0 = Hide objects
1 = Show objects

Shows or hides the selected
objects

Command Opt 1 dParam Description

TM_DELETE_ALL Not used, should
be 0

Not used, should be
0

Deletes all objects

TM_DELETE_SELE
CTED

Not used, should
be 0

0 = Hide objects
1 = Show objects

Deletes the selected objects

TM_COLOR_SET Index of the track,
0-based

Double value, color
in bbggrr format

Sets the tracking color

TM_NUM_DEC Not used, should
be 0

Value Sets the number of digits after
the decimal point in the data table

TM_TRACK_
SMOOTHING

Not used, should
be 0

Smoothing value Sets the smoothing of track
coordinates using a running
average filter

TM_TIME_UNITS Not used, should
be 0

Should be one of the
following:
trtuSecond
trtuMinute
trtuHour

Sets the time units for time-
related measurements

Command Opt 1 dParam Description

TM_MIN_TRACK_
LENGTH

Not used, should
be 0

Value in pixels Minimum total track length in
pixels

 IpTrackMeasSet

Page 2-753

TM_SEARCH_RADI
US

Not used, should
be 0

Value in pixels Sets the search radius (velocity
limit) for automatic tracking

TM_ACCEL_LIMIT Not used, should
be 0

Value in pixels Sets the acceleration limit for
automatic tracking

TM_AUTO_ACCEL_
LIMIT

Not used, should
be 0

Value
0 = Off
1 = On

Sets auto to acceleration limit for
automatic tracking

TM_PARTIAL_TRAC
KS

Not used, should
be 0

Value
0 = Off
1 = On

Sets support for partial tracks

TM_MIN_TRACK_L
EN

Not used, should
be 0

Value Sets the minimum track length

TM_TRACK_SHOW
_
OUTLINES

Not used, should
be 0

Value
0 = Off
1 = On

Shows or hides the object
outlines with semi-automatic
tracking

TM_TRACK_SHOW
_
COMPLETE_TRACK

Not used, should
be 0

Value
0 = show partial
track
1 = show complete
track

Sets the View/Output option to
display partial or complete tracks

TM_TRACK_HEAD_
LENGTH

Not used, should
be 0

Head length Sets the head length for the
partial tracks

TM_TRACK_TAIL_
LENGTH

Not used, should
be 0

Tail length Sets the tail length for the partial
tracks

TM_TRACK_ONE_O
BJ

Not used, should
be 0

Value
0 = Off
1 = On

Sets the track one object option

TM_TRACK_COHE
R_FLTR

Not used, should
be 0

Value
0 = Off
1 = On

Sets the coherence filtering
option

TM_TRACK_ANGLE
_DEV

Not used, should
be 0

Value Sets the angle range(in degrees)
for coherence filtering

IpTrackMeasSet

Page 2-754

Command Opt 1 dParam Description

TM_TRACK_COHE
R_FLT_SIZE

Not used, should
be 0

Value Sets the coherence filter in terms
of percent of image size

TM_SPLIT_TRACK Not used, should
be 0

Not used, should be
0

Splits the selected track

TM_TRACK_PREDI
CTION

Not used, should
be 0

Value Sets the tracking prediction depth

TM_TRACK_CORR_
REF_
PREV

Not used, should
be 0

Value
0 = First frame
1 = Previous frame

Sets the reference frame option
for correlation tracking

TM_TRACK_CORR_
SCALE

Not used, should
be 0

Value
0 = Off
1 = On

Sets the scaling option for
correlation tracking

TM_TRACK_CORR_
ROT

Not used, should
be 0

Value
0 = Off
1 = On

Sets the rotation option for
correlation tracking

TM_TRACK_CORR_
PHASE

Not used, should
be 0

Value
0 = Full correlation
1 = Phase
correlation

Sets the phase option for
correlation tracking

TM_TRACK_CORR_
THRES

Not used, should
be 0

Value of correlation
threshold

Sets correlation threshold

TM_TRACK_DATA_I
NDEX

Not used, should
be 0

Value
0 = Frame index
1 = Relative time
2 = Absolute time

Sets the type of measurement
index for the data table

TM_TRACK_USE_C
USTOM_INTERVAL

Not used, should
be 0

Value
0 = Off
1 = On

Sets the custom frame interval

TM_TRACK_CUSTO
M _INTERVAL

Not used, should
be 0

Value, in seconds Sets the custom frame interval in
seconds

TM_MERGE_SELE
CTED

Not used, should
be 0

Not used, should be
0

Merges selected tracks

TM_SPLIT_
SELECTED

Not used, should
be 0

Not used, should be
0

Splits selected tracks

TM_AUTO_SPLIT Not used, should
be 0

Value
0 = Off
1 = On

Sets the auto-split option

TM_WATERSHED_
SPLIT

Not used, should
be 0

Value
0 = Off
1 = On

Sets the watershed split option

Command Opt 1 dParam Description

TM_SHARED_OBJE
CTS

Not used, should
be 0

Value
0 = Off
1 = On

Allows objects to be shared
between tracks.

 IpTrackMeasSet

Page 2-755

TM_MOTION_TYPE Not used, should
be 0

Value
0 = Chaotic
1 = Directional
2 = Straight

Sets the predominant motion type
for the objects

TM_GRAPH _MEAS Type of new
measurement,
must be one of the
following:

Statistical parameter
of the tracking
measurement:

Sets measurements for tracking
graph

 TRM_DIST
TRM_X_COORD
TRM_Y_COORD
TRM_OR_DIST
TRM_ANGLE

TRSTMean - mean
TRSTStDev - standard deviation
TRSTMin - minimum
TRSTMax - maximum
TRSTRange - range
TRSTSum - sum
TRSTIndMin – index of minimum
TRSTIndMax – index of maximum
TRSTNObj – number of elements
TR_VALUE - values

TM_GRAPH-
RANGE_AUTO

Not used, should
be 0

Value Sets auto-range for the tracking graph

TM_GRAPH_RANG
E_
MIN

Not used, should
be 0

Double value, color
in bbggrr format

Sets the minium range for the tracking graph

TM_GRAPH_RANG
E_
MAX

Not used, should
be 0

Value Sets the maxiium range for the tracking graph

TM_GRAPH_X_LAB
ELS

Not used, should
be 0

Should be one of the
following:
trxlFrameNumber
trxlRelTime
trxlAbsTime

Sets X label type for graph

Return Value 0 if successful, a negative error code if failed.

IpTrackMeasSet

Page 2-756

Example Sub SetTrackingOptions()
‘set color
ret = IpTrackMeasSet(TM_TRACK_COLOR,0,65535)
ret = IpTrackMeasSet(TM_TEXT_COLOR,0,16777215)
‘arrow size
ret = IpTrackMeasSet(TM_EL_SIZE,0,2)
‘labels
ret = IpTrackMeasSet(TM_FONT_SIZE,0,20)
ret = IpTrackMeasSet(TM_LABEL_TYPE,0,trLabelsShowMeasurement)
ret = IpTrackMeasSet(TM_COLORING,0,0)
ret = IpTrackMeasSetStr(TM_TRACK_PREF_SET,0,"Obj")
‘define measurements list
ret = IpTrackMeasSet(TM_RESET_MEAS,0,0)
ret = IpTrackMeasSet(TM_ADD_MEAS,TRM_DIST,TRSTSum)
ret = IpTrackMeasSet(TM_ADD_MEAS,TRM_DIST,TR_VALUE)
ret = IpTrackMeasSet(TM_ADD_MEAS,TRM_X_COORD,TR_VALUE)
ret = IpTrackMeasSet(TM_ADD_MEAS,TRM_Y_COORD,TR_VALUE)
ret = IpTrackMeasSet(M_UPDATE,0,0)
End Sub

‘set tracking graph parameters
Sub SetGraphOptions()
ret = IpTrackShow(TRACK_GRAPH,TRACK_SHOW)
ret = IpTrackMeasSet(TM_GRAPH_MEAS,TRM_DIST,TR_VALUE)
ret = IpTrackMeasSet(TM_GRAPH_RANGE_AUTO,0,0)
ret = IpTrackMeasSet(TM_GRAPH_RANGE_MIN,0,0.000000)
ret = IpTrackMeasSet(TM_GRAPH_RANGE_MAX,0,200.000000)
End Sub

See Also IpTrackMeasSetStr, IpTrackMeasGetStr, IpTrMeas

 IpTrackMeasSetStr

Page 2-757

IpTrackMeasSetStr
Syntax IpTrackMeaseSetStr(sCommand, 1Opt1, dParam)

Description This function gets various string parameters for the tracking measurments.

Parameters sCommand Short See comments and list below.

 lOpt1 Long See comments and list below.

 dParam Double See comments and list below.

Comments This macro takes the commands described below:

Command Opt 1 dParam Description

TM_TRACK_PREF_
SET

Not used, should
be 0

String with tracking
prefix.

Sets tracking prefix

TM_NAME_SET Index of the trrack,
0-based

String with new
name.

Sets the name of the track.

Return Value 0 if successful, a negative error code if failed.

See Also IpTrackMeasSetStr, IpTrMeas

IpTrackMove
Syntax IpTrackMove(sDialog,xPos, yPos)

Description This function moves the tracking windows.

Parameters Dialog Short A constant, indicating what to move. Should be one of
the following:
TRACK_TABLE = Tracking data table
TRACK_GRAPH = Tracking graph

 xPos Short Indicates the X window position

 yPos Short Indicates the Y window position

Return Value 0 if successful, a negative error code if failed.

Example ret = IpTrackMOVE (TRACK_TABLE,632,18)

IpTrackOptionsFile

Page 2-758

IpTrackOptionsFile
Syntax IpTrackOptionsFile (szFilename, bSave)

Description This function loads or saves a set of tracking options.

Parameters szFilename LPSTR A string specifying the name of the file from which the
calibration values will be read or written.

 bSave Short Indicates whether to save or load a file. Must be one of
the following:
0 = load file
1 = save file

Return Value 0 if successful, a negative error code if failed.

Example ret = IpTrackOptionsFile(“def.tro”,0)

See Also IpTrackFile

IpTrackSaveData
Syntax IpTrackSaveData(sSrcFlags, sDstFlags, szDest)

Description This functionsave the data from tracking data windows.

Parameters sSrcFlags Integer Combination of data source flags and data type flags
that specify the source and type of data to be saved.
See comments and list below.

 sDestFlags Integer Combination of data destination flags and (optional)
file option flags that specify the destination and
format for the saved data. See comments and list
below.

 szDest LPSTR Indicates the destination file name. Used with
TRDF_FILE only.

 The data source, type, destination, and file option flags are described here:

 Flag Type Name Description

 Data source flags TR_MM_DATA Save tracking measurements data
table contents to selected
destination (default if source is not
supplied).

 TR_MM_STATS Save tracking measurements
statistics contents to selected
destination

 TR_MM_ACTIVE Save tracking measurements data
and statistics if it is shown to
selected destination

 TR_GRAPH Save the tracking graph data to
selected destination.

 Flag Type Name Description

 Data type flags TRDF_TABLE Save the information as a text
table

 IpTrackSize

Page 2-759

 TRDF_GRAPH Save the information as a graph

 Data destination

flags
TRDF_FILE

Copy data to tab-delimited file
(default if destination is not
supplied). Not valid with
TRTF_GRAPH.

 TRDF_CLIPBOA
RD

Copy data to clipboard. Valid only
for TR_GRAPH with
TRTF_GRAPH.

 TRDF_DDE Send contents to Excel via COM.
Not valid with TRTF_GRAPH

 File option flags TRDF_CSV The default format of the data file is a
tab-delimited table of values, with one
line per row. TRDF_CSV can be used
to specify that the data file should be
written as a comma-delimited file
(usually compatible with import into
spreadsheets and databases). Cannot
be combined with TRDF_HTML

 TRDF_HTML Can be used to specify that the data
file should be written as a HTML file
containing an HTML TABLE. Cannot
be combined with TRDF_CSV

Return Value 0 if successful, a negative error code if failed.

Example save tracking measurements data table
ret = IpTrackSaveData(TR_MM_ACTIVE, TRDF_FILE, "C:\t1.htm")

IpTrackSize
Syntax IpTrackSize(sDialog,xSize, ySize)

Description This function resizes the tracking toolbar and dialogs.

Parameters sDialog Integer A constant, indicating what to resize. Should be one of
the following:
TRACK_TABLE = Tracking data table
TRACK_GRAPH = Tracking graph

 xSize Integer Sets the dialog width.

 ySize Integer Sets the dialog height.

Return Value 0 if successful, a negative error code if failed, IPCEER_INVARG if out of range or negative.

Example ret = IpTrackMOVE (TRACK_GRAPH,451,541)

IpTrackShow
Syntax IpTrackShow(sDialog, sShow)

IpTrim

Page 2-760

Description This function shows or hides the tracking windows.

Parameters sDialog Integer A constant, indicating what to show or hide. Should be
one of the following:
TRACK_TABLE = Tracking data table
TRACK_GRAPH = Tracking graph

 sShow Integer A constant, indicating if the window should hidden or
shown. Should be one of the following:
TRACK_HIDE = Hides the window or dialog
TRACK_SHOW = Shows the window or dialog

Return Value 0 if successful, a negative error code if failed.

Example ret = IpTrackShow(TRACK_TABLE, TRACK_SHOW)
ret = IpTrackShow(TRACK_GRAPH, TRACK_SHOW)

IpTrim
Syntax IpTrim (inString)

Description This function returns the portion of a fixed-length string that has been filled by an Auto-Pro
fuction.

Parameters inString String A fixed-length string. See comments.

Return Value A string trimmed to the content returned by the Auto-Pro function.

Example Many Auto-Pro functions return strings to the caller. These Auto-Pro functions take a fixed
length string, dimensioned like the following example:
Dim aString as String*255

Comments The Auto-Pro function will fill the fixed length string with the requested text, but the text will in
almost all cases not entirely fill the provided string (255 characters in this example), and IPBasic
is not aware of the text length actually used.

 IpWsChangeDescription

Page 2-761

IpWsChangeDescription
Syntax IpWsChangeDescription(DescriptionType, Description)

Description This function sets or changes the descriptive information associated with the active image. Equivalent to
setting the Title, Artist, Date and Comments fields with the Info command.

Parameters DescriptionType Integer An enumerated integer specifying the descriptive field to
which the string in the Description parameter is to be applied.
Must be one of the following:

 INF_TITLE
 INF_ARTIST
 INF_DATE
 INF_DESCRIPTION
 INF_NAME
 INF_RANGE

These options correspond to the “Information” dialog box's
“Title”, “Artist”, “Date”, “Comments”, “Name”, and “Display
Range” fields, respectively.

 Description String The string that is to be written to the field specified in
DescriptionType.

Example Sub IpWsChangeDescription_example()

Dim description As String
description = "This demonstrates how text is placed in the" + Chr$(13) + Chr$(10)
description = description + "description field. As you can see, there is" +
Chr$(13) + Chr$(10)
description = description + "a particular technique for inserting multi-line" +
Chr$(13) + Chr$(10)
description = description + "entries..."
ret = IpWsChangeDescription(INF_TITLE, "My Image")
ret = IpWsChangeDescription(INF_ARTIST, "Experienced Image-Pro User")
ret = IpWsChangeDescription(INF_DESCRIPTION, description)
description = “This line sets the display range for a single point image:
Ret=IpWsChangeDescription(INF_RANGE,“1.04, 256.5”)
description = “The following line determines and sets the display range
automatically
Ret=IpWsChangeDescription(INF_RANGE,“auto”)

End Sub

Comments INF_RANGE applies only to single point images. The description for this value may be “auto” or you may give
a starting and ending value for the range, such as (1, 257).

See Also IpWsChangeInfo

IpWsChangeInfo

Page 2-762

IpWsChangeInfo
Syntax IpWsChangeInfo(InfoType, Info)

Description This function assigns a logical DPI value to the active image. Equivalent to setting the
Dots/Inch X and Dots/Inch Y fields with the Info command.

Parameters InfoType Integer An enumerated integer selecting the DPI field that is to
be set. Must be one of the following:
 INF_DPIX
 INF_DPIY
These options correspond to the Dots/Inch X and
Dots/Inch Y fields, respectively.

 Info Integer An integer specifying the DPI value that is to be set.

Example ret = IpWsChangeInfo(INF_DPIX, 300)

This statement will set the Dots/Inch X field to 300.

See Also IpWsChangeDescription

 IpWsConvertFile

Page 2-763

IpWsConvertFile
Syntax

IpWsConvertFile(DstFile, DstFormat, SrcFile, SrcFormat, Compr, imClass, HalfType, HalfOpt, Dpi)

Description This function converts the specified file to a new format. Equivalent to the Batch
Conversion command.

Parameters DstFile String A string specifying the name of the file to which the
converted image data will be written.

 DstFormat String A string specifying the format in which the converted
data will be written. See IpWsSaveAs for valid file
format strings.

 SrcFile String A string specifying the name of the file that is to be
converted.

 SrcFormat String A string specifying the format of the source file. See
IpWsSaveAs for valid file format strings.

 Compr Integer An enumerated integer specifying the compression
method that is to be applied to the converted image.
Must be one of the following:

IFFCOMP_NONE
IFFCOMP_DEFAULT
IFFCOMP_RLE
IFFCOMP_JPEG
IFFCOMP_LZW
IFFCOMP_LZWHPRED

See definitions under Comments, below.
Take care to specify a compression method that is
valid for the specified FileFormat. To determine
which methods are valid, select file format and class
in the“Batch File Conversion dialog box, and
review the options presented in the Compression
list box.

 imClass Integer An enumerated integer specifying the class to which
the image is to be converted. Must be one of the
following:

IFFCL_GRAY
IFFCL_PALETTE
IFFCL_RGB

Take care to specify a class that is valid for the
specified FileFormat. To determine which classes
are valid, select the file format in the Batch File

 Conversion dialog box, and review the options
presented in the Image Class list box.

IpWsConvertImage

Page 2-764

 HalfType Integer Obsolete, set to zero

 HalfOpt Integer Obsolete, set to zero

 Dpi Integer An integer specifying the resolution at which the
image is to be halftoned.
This parameter is ignored if the imClass parameter
is other than IFFCL_BILEVEL, or when HalftoneType
is set to 6. When this is the case, just set Dpi to 0.

Example ret =
IpWsConvertFile("abc.bmp","BMP","abc.tif","TIF",IFFCOMP_RLE,IFFCL_GRAY,
0,0,0)

This statement will convert file ABC.TIF to a Gray Scale, BMP format, using RLE
compression. The values in the last three parameters (i.e., 0,0,0) are ignored
because the image is not being converted to IFFCL_BILEVEL.

Comments Compr values are as follows:

VALUE DESCRIPTION
IFFCOMP_NONE Applies no compression.
IFFCOMP_DEFAULT Applies default compression for the selected

format.
IFFCOMP_RLE Applies Run Length Encoding.
IFFCOMP_JPEG Applies JPEG compression
IFFCOMP_LZW Applies Lempel-Zif & Welch encoding.
IFFCOMP_LZWHPRED Applies Lempel-Zif & Welch encoding with

horizontal differencing.

IpWsConvertImage
Syntax IpWsConvertImage (Type, Conversion, InStart, InEnd, OutStart, OutEnd)

Description This function converts the image to a type. Equivalent to selecting the Convert To command.

Parameters Type Integer Determines the image type to convert to. Valid
values are:

IMC_GRAY = 1
IMC_PALETTE = 2
IMC_RGB = 3
IMC_GRAY12 = 4
IMC_SINGLE = 5
IMC_GRAY16 = 6
IMC_RGB36 = 8
IMC_RGB48 = 9

 Conversion Integer Indicates the conversion style. See list of valid
entries below:

Value DESCRIPTION

CONV_SCALE 0: Multiplicative scaling

 IpWsConvertImage

Page 2-765

CONV_SHIFT 1: Bit Shift - this and CONV_SCALE are identical for demotion.

CONV_DIRECT 2: Direct value copy

CONV_USER 3: Use the ranges InStart, InEnd, OutStart, and OutEnd to scale the input type
to the output type. In an 8 to 12 bit conversion, for example, InStart = 0 and
InEnd = 128, OutStart = 0 and OutEnd = 4095 will effectively map values of
128 or above in the input to 4095 in the output. This is only valid for
grayscale promotions and RGB promotions: it will return an
IPCERR_INVARG for other image types, including attempting to promote
from a grayscale to an RGB or vice versa. Ignored for demotion.

CONV_MCOLOR 4: Convert to IMC_PALETTE using the Mcolor algorithm.

CONV_MEDIAN 5: Convert to IMC_PALETTE using the Median algorithm, with InStart and
InEnd providing the StartIndex and NumColors values.

CONV_PSEUDOCOLOR 6: Convert to a IMC_PALETTE image using the pseudocolor mapping (if it

exists). This functionality could be accessed using
IpWsConvertToPaletteMedian (-1, -1) in IPP 3.0.1.

 InStart Long Starting range for Conv_User scaling. InStart and
InEnd are reused as StartIndex and NumColors for
CONV_MEDIAN.

 InEnd Long Ending range for Conv_User scaling. InStart and
InEnd are reused as StartIndex and NumColors for
CONV_MEDIAN.

 OutStart Long Starting range for Conv_User scaling.

 OutEnd Long Ending range for Conv_User scaling.

Example Sub IpWsConvertImage_example()

' load image and convert it to 16-bit grayscale

ret = IpWsLoad("C:\IPWIN\Images\Colordot.tif","tif")
ret = IpWsConvertImage(IMC_GRAY16, CONV_SCALE , 0, 0, 0, 0)

End Sub

Return Value Doc Id of the new image if successful, IPCERR_INVARG if the arguements are incorrect.

Comments InStart, InEnd, OutStart, OutEnd: Starting and ending ranges for CONV_USER scaling: these
represent the beginning and end values for a linear scaling of the input to output images upon
promotion.

IpWsConvertToBilevel

Page 2-766

IpWsConvertToBilevel
Syntax IpWsConvertToBilevel(HalftoneType, Screen, OutputDpi)

Description This function converts the image to a 1-BPP, Black and White image, using your choice of
halftoning methods. Equivalent to selecting Bilevel with the Convert To command.

Parameters HalftoneType Integer An integer from 0 - 6 specifying the halftoning method
to be used. Where:

0 - Angle Dot Screen
1 - Flat Dot Screen
2 - Angle Line Screen
3 - Horz Line Screen
4 - Vert Line Screen
5 - Error Diffusion
6 - Threshold

 Screen Integer An integer from 0 to 3 specifying the screen resolution
or halftone option to be used. Where:
For HalftoneType values of 0 - 4:
 0 - Largest LPI value
 1 - Second-largest LPI value
 2 - Second-smallest LPI value
 3 - Smallest LPI value
For HalftoneType values of 5:
 0 - 4 Weights
 1 - 12 Weights
 2 - Fuzzy
 3 - Random
This parameter is ignored when HalftoneType is 6.
When this is the case, just set Screen to 0.

 OutputDpi Integer An integer specifying the resolution at which the image
is to be halftoned.
This parameter is ignored if the imClass parameter is
other than IFFCL_BILEVEL, or when HalftoneType is set
to 6. When this is the case, just set OutputDpi to 0.

Return Value As bilevel images are not supported in IPP 4.0 OR HIGHER, this function now returns
IPCERR_FUNC .

Example ret = IpWsConvertToBilevel(0, 0, 100)

This statement will convert the image to Bilevel, using Angle Dot Screen halftoning with the
largest screen, and 100 DPI output.

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

 IpWsConvertToSingle

Page 2-767

IpWsConvertToSingle
Syntax IpWsConvertToSingle()

Description This function converts the image to a single-point Gray Scale image, with values ranging from
0.0 to 255.0. Equivalent to selecting Single Point with the Convert To command.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0.

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

IpWsConvertToGray
Syntax IpWsConvertToGray()

Description This function converts the image to an 8-BPP Gray Scale image. Equivalent to selecting Gray
Scale with the Convert To command.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0.

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

See Also IpWsGray12To8

IpWsConvertToGray12
Syntax IpWsConvertToGray12()

Description This function converts the image to a 12-BPP Gray Scale image. Equivalent to selecting Gray
Scale 12 with the Convert To command.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0.

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

IpWsConvertToGray16
Syntax IpWsConvertToGray16()

Description This function converts the image to a 16-BPP Gray Scale image. Equivalent to selecting Gray
Scale 16 with the Convert To command.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0.

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

IpWsConvertToGrayEx

Page 2-768

IpWsConvertToGrayEx
Syntax IpWsConvertToGrayEx(start16, end16 ,start8, end8)

Description This function converts the image to a 8-BPP Gray Scale image. Equivalent to selecting Gray
Scale with the Convert To command.

Parameters Start16 Integer An integer between 0 and 65535 (inclusive) that
identifies the beginning of the range of 16-bit values to
be converted.

 End16 Integer An integer between 0 and 65535 (inclusive) that
identifies the end of the range of 16-bit values to be
converted.

 Start8 Integer An integer between 0 and 255 (inclusive) that identifies
the beginning of the 8-bit range to which the 16-bit
values will be converted.

 End8 Integer An integer between 0 and 255 (inclusive) that identifies
the end of the 8-bit range to which the 16-bit values will
be converted.

Example The following statement converts the entire 16-bit range to 8 bits.
ret = IpWsConvertToGrayEx(0, 65535, 0, 255)

The following statement converts bits 2 - in the 16-bit image (i.e., values 0 to 1020) to bits 0 -7
(i.e., 0 to 255) in an 8-bit image.
ret = IpWsConvertToGrayEx(0, 1020, 0, 255)

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0, -1 if failed.

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

See Also IpWsConvertToGray

IpWsConvertToPaletteMColor
Syntax IpWsConvertToPaletteMColor()

Description This function converts the image to an 8-BPP Palette-class image, using Media Cybernetic's
proprietary M/Color method. Equivalent to selecting Palette with the Convert To command,
then choosing MColor.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0.

See Also IpWsConvertToPaletteMedian

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

 IpWsConvertToPaletteMedian

Page 2-769

IpWsConvertToPaletteMedian
Syntax IpWsConvertToPaletteMedian(StartIndex, NumColors)

Description This function converts a pseudo-colored, gray-scale image to a Palette-class image, using the
pseudo-color palette definition method. Equivalent to selecting Palette with the Convert To
command, then choosing Median.

Parameters StartIndex Integer An integer from 0 to 13 (inclusive), representing the
palette position into which the first color will be placed.

 NumColors Integer An integer from 4 to 256 (inclusive), representing the
number of colors in the resulting palette.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0.

Example ret = IpWsConvertToPaletteMedian(0, 256)

This statement will convert the image to an 8-BPP Palette-class image, using the Median
method, with 256 colors in the palette, starting at index 0.

ret = IpWsConvertToPaletteMedian(6, 55)

This statement will convert the image to a 8-BPP Palette-class image, using the Median
method, with 55 colors in the palette, starting at index 6.

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

See Also IpWsConvertToPaletteMColor

IpWsConvertToRGB
Syntax IpWsConvertToRGB()

Description This function converts the image to a 24-BPP (chunky) True Color image. Equivalent to
selecting RGB with the Convert To command.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0.

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

IpWsCopy

Page 2-770

IpWsCopy
Syntax IpWsCopy()

Description This function copies the contents of the selected AOI or image to the Clipboard. Equivalent to
using the Copy command (or the CTRL+INS key combination) to copy image data to the
Clipboard.

Example ipRect.left = 41
ipRect.top = 71
ipRect.right = 106
ipRect.bottom = 110
ret = IpAoiCreateBox(ipRect)
ret = IpWsCopy()

This group of statements will copy the AOI that has just been defined, and place it on the
Clipboard.

See Also IpWsPaste

IpWsCopyFrames
Syntax IpWsCopyFrames(lStart, lNumber)

Description This function copies the contents of the selected frame or frames to the Clipboard. Equivalent
to using the Copy Frame command from Sequence Editing menu to copy frames to the
Clipboard.

Parameters lStart Long Indicates the first frame to copy.

 lNumber Long Indicates the number of frames to copy.

Example ret = IpWsCopyFrames(1,3)

This statement will copy 3 frames to the Clipboard, starting with frame 1.

Comments Copied frames may be used with IpWsPasteFrames.
Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpWsPasteFrames, IpWsCutFrames

 IpWsCreate

Page 2-771

IpWsCreate
Syntax IpWsCreate(Width, Height, Dpi, Class)

Description This function creates an empty image window of the specified dimensions and class.
Equivalent to clicking the New button in the New command's Create New Image dialog box.

Parameters Width Integer An integer representing the number of pixels the new
image will contain in the horizontal direction.

 Height Integer An integer representing the number of pixels the new
image will contain in the vertical direction.

 Dpi Integer An integer representing the logical resolution,
expressed in dots per inch.

 Class Integer An enumerated integer specifying the class of the
image to be created. Must be one of the following:

IMC_GRAY
IMC_PALETTE
IMC_RGB
IMC_RGB36
IMC_RGB48
IMC_GRAY12
IMC_GRAY16
IMC_SINGLE

See definitions under Comments, below.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

Example ret = IpWsCreate(270, 250, 90, IMC_PALETTE)

This statement will create an empty Palette-class image, 270 pixels wide by 250 pixels high,
logically having 90 dots per inch.

Comments Class values are as follows:

VALUE DESCRIPTION
IMC_GRAY The new image is of Gray Scale class.

IMC_PALETTE The new image is of Palette class.

IMC_RGB The new image is of True Color class.

IMC_RGB36 The new image is of RGB 32 class.

IMC_RGB48 The new image is of RGB 48 class.

IMC_GRAY12 The new image is of Gray Scale 12 class.

IMC_GRAY16 The new image is of Gray Scale 16 class.

IMC_SINGLE The new image is of Single Point class.

IpWsCreateEx
Syntax IpWsCreateEx(Width, Height, Dpi, Class, lNumFrames)

Description This function creates a new sequence of the specified dimensions and class.

IpWsCreateFromClipboard

Page 2-772

Parameters Width Integer An integer representing the number of pixels the
new image will contain in the horizontal
direction.

 Height Integer An integer representing the number of pixels the
new image will contain in the vertical direction.

 Dpi Integer An integer representing the logical resolution,
expressed in dots per inch.

 Class Integer An enumerated integer specifying the class of
the image to be created. Must be one of the
following:

IMC_GRAY
IMC_PALETTE
IMC_RGB
IMC_RGB36
IMC_RGB48
IMC_GRAY12
IMC_GRAY16
IMC_SINGLE

See definitions under Comments, below.

 lNumFrames Long Indicates the number of frames to create.

Return Value This function returns the Document ID of the new sequence, which will be an integer greater
than 0. A negative return value indicates an error.

Example ret = IpWsCreateEx(270, 250, 90, IMC_GRAY12, 3)

This statement will create an empty grayscale 12 sequence,270 pixels wide by 250 pixels
high, logically having 90 dots per inch and 3 frames.

Comments Class values are as follows:

VALUE DESCRIPTION
IMC_GRAY The new image is of Gray Scale class.

IMC_PALETTE The new image is of Palette class.

IMC_RGB The new image is of True Color class.

IMC_RGB36 The new image is of RGB 32 class.

IMC_RGB48 The new image is of RGB 48 class.

IMC_GRAY12 The new image is of Gray Scale 12 class.

IMC_GRAY16 The new image is of Gray Scale 16 class.

IMC_SINGLE The new image is of Single Point class.

IpWsCreateFromClipboard
Syntax IpWsCreateFromClipboard()

Description This function creates an image window from the contents of the Clipboard. Equivalent to
clicking Clipboard in the New command's Create New Image dialog box.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0.

 IpWsCreateFromVri

Page 2-773

Comments If there is nothing on the Clipboard, nothing will occur.

IpWsCreateFromVri
Syntax IpWsCreateFromVri(Vri, Name, Mode)

Description This function creates a new image workspace (document) from a VRI handle. There is no
Image-Pro command equivalent to this function; it is one that must be manually written with
the macro editor.
Note - if you are programming with Image-Pro's Software Development Kit (SDK), the VRI
handle is the Virtual Image handle defined by your Halo Imaging Library (HIL).

Parameters Vri Integer The handle (type short in C) to the image bit map. This
handle can be obtained with IpDocGet.

 Name String A string specifying the name to appear in the title bar of
the new workspace.

 Mode Integer An enumerated integer specifying the way in which the
new workspace is to be opened. Must be one of the
following:

 0
VRI_NODELETE
VRI_COPY

See definitions under Comments, below.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A -1 is returned when an error occurs.

Example The following example duplicates the active document without using the IpWsDuplicate
function.
Dim Vri as integer
ret = IpDocGet(GETDOCVRI, DOCSEL_ACTIVE, Vri)
If Vri >= 0 Then
 ret = IpWsCreateFromVri(Vri, "", VRI_COPY)
End If

Comments The Vri options are described in the table below.

IpWsCutFrames

Page 2-774

VALUE DESCRIPTION
0 This option assigns the source VRI to the new workspace. If the new

workspace is subsequently closed by Image-Pro, the VRI will be
destroyed. Note that this method may cause problems if the VRI is closed
while it is being shared by several applications.

VRI_NODELETE This option assigns the source VRI to the new workspace. If the
workspace is subsequently closed by Image-Pro, the VRI will not be
destroyed.

VRI_COPY This option copies the source VRI to the new workspace. The original VRI
can be destroyed by its owner without causing a problem in Image-Pro,
and the workspace can be closed by Image-Pro without affecting owners of
the source VRI.

See Also IpDocGet

IpWsCutFrames
Syntax IpWsCutFrames(lStart, lNumber)

Description This function removes the selected frame or frames from the sequence to the Clipboard.
Equivalent to using the Cut Frame command from
Sequence Editing menu to place frames on the Clipboard.

Parameters lStart Long Indicates the first frame to cut.

 lNumber Long Indicates the number of frames to cut.

Example ret = IpWsCutFrames(1,3)

This statement will cut 3 frames from the active sequence, starting with frame 1, and place
them on the Clipboard.

Comments Cut frames may be used with IpWsPasteFrames.
If the IpWsCutFrames command results in all of the frames being cut from a sequence, the
sequence workspace will be closed automatically.
Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpWsPasteFrames,IpWsCopyFrames

 IpWsDeleteFrames

Page 2-775

IpWsDeleteFrames
Syntax IpWsDeleteFrames(lStart, lNumber)

Description This function removes the selected frame or frames from the sequece. Equivalent to using the
Delete Frame command from the Sequence Editing menu.

Parameters lStart Long Indicates the first frame to delete.

 lNumber Long Indicates the number of frames to delete.

Example ret = IpWsDeleteFrames(1,3)

This statement will remove 3 frames, starting with frame 1, from the sequence.

Comments Deleted frames are permanently removed.
If the IpWsDeleteFrames command results in all of the frames being cut from a sequence,
the sequence workspace will be closed automatically.
Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpWsPasteFrames, IpWsCopyFrames, IpWsCutFrames

IpWsDuplicate
Syntax IpWsDuplicate()

Description This function makes an exact copy of the AOI, if there is one, or the active image otherwise.
Equivalent to the Duplicate command on the Image menu.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

IpWsFill
Syntax IpWsFill(FillType, ColorType, Transparency)

Description This function fills the active image or AOI with the specified color or pattern. Equivalent to
executing the Fill command.

Parameters FillType Integer An integer from 0 to 4 specifying the fill type. Where:
 0 - Selects Color.
 1 - Selects Hue.
 2 - Selects Tint.
 3 - Selects Pattern.
 4 - Selects Texture

 When values 3 or 4 are used, the fill operation will be
performed using the currently selected pattern file (see
IpWsFillPattern).

IpWsFillPattern

Page 2-776

Parameters ColorType Integer An integer from 0 to 4 specifying the color. Where:
 0 - Selects Foreground Color.
 1 - Selects Background Color.
 2 - Selects White.
 3 - Selects Black.
This parameter is ignored if the FillType parameter is
set to 3 or 4. When this is the case, set ColorType to
0.

 Transparency Integer An integer from 0 to 100 (inclusive), selecting the
degree to which the active image will “show through”
the applied pattern or color. The higher the value, the
more the active image will “show through”.

Example ret = IpWsFill(0, 1, 0)

The statement above will fill the active image or AOI with the current Background color (as set
in the palette window) and apply it with a transparency value of 0.
ret = IpWsFillPattern("C:\IPWIN\IMAGES\GRID.TIF")
ret = IpWsFill(3, 0, 80)
The set of statements above will select GRID.TIF as the pattern file, then fill the active image
or AOI with it using a transparency value of 80. The ColorType parameter is ignored, as the
image is being filled with a pattern file, not with color.

See Also IpWsFillPattern, IpPalShow

IpWsFillPattern
Syntax IpWsFillPattern(PatternFile)

Description This function selects the file to be used as the pattern or texture for a fill operation. Equivalent
to the Select button in the Fill command's Pattern/Texture group box.

Parameters PatternFile String A string specifying the name of the file from which the
pattern/texture will be read.

Example ret = IpWsFillPattern("C:\IPWIN\GRID.TIF")

This statement will select the GRID.TIF file as the pattern/texture file.

Comments This function merely selects the pattern file. It must be followed by the IpWsFill command for
the fill to take place.

See Also IpWsFill

 IpWsGray12To8

Page 2-777

IpWsGray12To8
Syntax IpWsGray12To8(FromStart, FromEnd, ToStart, ToEnd)

Description This function converts a Gray Scale 12 image into an 8-bit Gray Scale image with the option
of converting a specific intensity range. Equivalent to setting the range in the Select Range
dialog box when converting a 12-bit image with the Convert To command.

Parameters FromStart Integer An integer between 0 and 4095 (inclusive) that
identifies the beginning of the range of 12-bit values to
be converted.

 FromEnd Integer An integer between 0 and 4095 (inclusive) that
identifies the end of the range of 12-bit values to be
converted.

 ToStart Integer An integer between 0 and 255 (inclusive) that identifies
the beginning of the 8-bit range to which the 12-bit
values will be converted.

 ToEnd Integer An integer between 0 and 255 (inclusive) that identifies
the end of the 8-bit range to which the 12-bit values will
be converted.

Example The following statement converts the entire 12-bit range to 8 bits. This would produce the same
result as calling IpWsConvertToGray.
ret = IpWsGray12To8(0, 4095, 0, 255)

The following statement converts bits 2 - 9 in the 12-bit image (i.e., values 0 to 1020) to bits 0 -7
(i.e., 0 to 255) in an 8-bit image. In binary notation this is the same as mapping (000000000000,
001111111100) into (00000000, 11111111).
ret = IpWsGray12To8(0, 1020, 0, 255)

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

See Also IpWsConvertToGray

IpWsGray16To8
Syntax IpWsGray16To8(start16, end16 ,start8, end8)

Description This function converts a Gray Scale 16 image into an 8-bit Gray Scale image with the option
of converting a specific intensity range. Equivalent to setting the range in the Select Range
dialog box when converting a 16-bit image with the Convert To command.

Parameters Start16 Integer An integer between 0 and 65535 (inclusive) that
identifies the beginning of the range of 16-bit values to
be converted.

 End16 Integer An integer between 0 and 65535 (inclusive) that
identifies the end of the range of 16-bit values to be
converted.

 Start8 Integer An integer between 0 and 255 (inclusive) that identifies
the beginning of the 8-bit range to which the 16-bit
values will be converted.

 End8 Integer An integer between 0 and 255 (inclusive) that identifies
the end of the 8-bit range to which the 16-bit values will
be converted.

IpWsLoad

Page 2-778

Example The following statement converts the entire 16-bit range to 8 bits. This would produce the same
result as calling IpWsConvertToGray.
ret = IpWsGray16To8(0, 65535, 0, 255)

The following statement converts bits 2 - in the 16-bit image (i.e., values 0 to 1020) to bits 0 -7
(i.e., 0 to 255) in an 8-bit image. In binary notation this is the same as mapping
(0000000000000000, 0000001111111100) into (00000000, 11111111).
ret = IpWsGray16To8(0, 1020, 0, 255)

Comments This function is not supported in Image-Pro Plus. It is included for compatiblity with previous
versions. New macros should use IpWsConvertImage.

See Also IpWsConvertToGray

IpWsLoad
Syntax IpWsLoad(FileName, FileFormat)

Description This function opens an image file. Equivalent to the Open command.

Parameters FileName String A string specifying the name of the file from which the
image will be read.

 FileFormat String A string specifying the format in which the image file
has been written. See Comments, below, for a list of
valid file format strings.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
or equal to 0. A negative return value indicates an error.

Example ret = IpWsLoad("c:\ipwin\images\count.tif","TIF")

This statement will open the TIF file called COUNT.TIF, which is located in the
\IPWIN7\IMAGES directory on the C: drive.

This function loads the entire image file, whether it is a single-frame image, or a sequence.

Comments FileFormat strings are as follows:

 FileFormat DESCRIPTION

 AVI AVI File Format

 BMP Windows™ Bitmap File Format
 CUT HALO® Device Independent Image File Format
 EPS Encapsulated Postscript® File Format
 GIF CompuServe Graphics Interface Format

 HDF Park Scientific File Format

 HFF HALO File Format

 IPW Image-Pro Workspace File Format

 JPG JPEG File Interchange Format

 FileFormat DESCRIPTION

 PCD Kodak Photo CD File Format

 IpWsLoadNumber

Page 2-779

 PCT Apple® Macintosh® PICT File Format
 PCX ZSoft™ Image File Format
 SEQ Sequence Format

 TIF Tagged Image File Format
 TGA Truevision® Targa® File Format
 FLF Flat File Format (user defined)

See Also IpWsSave, IpWsSaveAs, IpWsSaveAsEx

IpWsLoadNumber
Syntax IpWsLoadNumber(Number)

Description This function opens a recently closed image file that is listed with an identifying number at the
bottom of the File menu.

Parameters Number Integer An integer from 1 to 4 (inclusive) specifying the name
of the file to be opened, or -1 to invoke the Open File
dialog box so that the user may select the file.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

Example ret = IpWsLoadNumber(2)

This statement will return the second file listed at the bottom of the File menu.

ret = IpWsLoadNumber(-1)

This statement will display the Open File dialog box, allowing the user to select a file. The
macro will continue when the user closes the dialog box.

Comments The number of files listed at the bottom of the File menu may be less than four, and the order in
which they are listed changes as you open and close files. In a macro, use this function with care.

See Also IpWsLoad

IpWsLoadPreview

Page 2-780

IpWsLoadPreview
Syntax IpWsLoadPreview(FileName, FileFormat, Left, Top, Right, Bottom)

Description This function opens the specified portion of an image. Equivalent to clicking the Preview
button in the Open File dialog box, and using the mouse to define a frame around the portion
that is to be opened.

Parameters FileName String A string specifying the name of the file from which the
image is to be read.

 FileFormat String A string specifying the format in which the image file
has been written. See IpWsLoad for a list of valid file
format strings.

 Left Integer An integer specifying the horizontal position, in pixels,
of the left edge of the frame.

 Top Integer An integer specifying the vertical position, in pixels, of
the top edge of the frame.

 Right Integer An integer specifying the horizontal position, in pixels,
of the right edge of the frame.

 Bottom Integer An integer specifying the vertical position, in pixels, of
the bottom edge of the frame.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0.

Example ret = IpWsLoadPreview("C:\IMAGES\SLIDE1.BMP","BMP",0,0,50,100)

This statement will load the rectangular portion of the SLIDFE1.BMP (a BMP file), where 0,0
defines the x,y coordinates for the upper-left corner of the rectangle, and 50,100 defines the
coordinates of the bottom-right corner.

 IpWsLoadSetRes

Page 2-781

IpWsLoadSetRes
Syntax IpWsLoadSetRes(Num)

Description This function selects the resolution of the sub-image to be loaded when a multiple-resolution
image file is opened (e.g., a Photo-CD image file). Equivalent to selecting a resolution when a
multiple-resolution file is opened using the Open command.

Parameters Num Integer An integer specifying the image to be loaded (where 0
represents the first image in the file), or one of the
following values:
 LOAD_PROMPT
 LOAD_SMALLEST
Where LOAD_PROMPT will prompt the user for the
resolution, and LOAD_SMALLEST will automatically
load the image with the smallest spatial resolution.

Example ret = IpWsLoadSetRes(LOAD_SMALLEST)
ret = IpWsLoad("D:\image1.pcd", "PCD")

This set of statements above directs Image-Pro to open the smallest resolution image contained
in the IMAGE1.PCD file.

ret = IpWsLoadSetRes(2)
ret = IpWsLoad("D:\image1.pcd", "PCD")

This set of statements above directs Image-Pro to open the third image contained in the
IMAGE1.PCD file.

Comments Note that the IpWsLoadSetRes function does not actually open the image, it merely identifies
the sub-image that is to be opened when a multiple-image file is encountered by IpWsLoad.

See Also IpWsLoad

IpWsMove
Syntax IpWsMove(X, Y)

Description This function positions the image within the current image window. Equivalent to positioning
the image with the Panning Hand tool.

Parameters X Integer An integer specifying the x-coordinate of the image
pixel that is to be moved to the upper-left corner (i.e.,
window position 0, 0) in the image window.

 Y Integer An integer specifying the y-coordinate of the image
pixel that is to be moved to the upper-left corner (i.e.,
window position 0, 0) in the image window.

Example ret = IpWsMove(9,9)

This statement will position the image such that pixel 9, 9 is located in the upper-left corner of
the image window. Pixels above and to the left of pixel 9,9 will not be visible.

See Also IpWsPan

IpWsOrient

Page 2-782

IpWsOrient
Syntax IpWsOrient(OrientType)

Description This function reorients or rotates the image in the specified increment. Equivalent to the
“quick-step” rotation options available with the Rotate command.

Parameters OrientType Integer An enumerated integer specifying the type of rotation to
be performed. Must be one of the following:

OR_LEFTRIGHT
OR_UPDOWN
OR_TRANSPOSE
OR_ROTATE90
OR_ROTATE270
OR_ROTATE180

See definitions under Comments, below.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

Example ret = IpWsOrient(OR_UPDOWN)

This statement will flip the image from top to bottom.

Comments OrientType options are as follows:

VALUE DESCRIPTION
OR_LEFTRIGHT Reorients the image from left to right. Equivalent to the Rotate

command's “Flip Left/Right” option.

OR_UPDOWN Reorients the image from top to bottom. Equivalent to the
Rotate command's “Flip Up/Down” option.

OR_TRANSPOSE Reorients the image from top-right to bottom-left. Equivalent
to the Rotate command's “Transpose” option.

OR_ROTATE90 Rotates the image 90° counterclockwise. Equivalent to the
Rotate command's “Left 90” option.

OR_ROTATE270 Rotates the image 90° clockwise. Equivalent to the Rotate
command's “Right 90” option.

OR_ROTATE180 Rotates the image 180°. Equivalent to the Rotate command's
“Rotate 180” option.

See Also IpWsRotate

 IpWsOverlay

Page 2-783

IpWsOverlay
Syntax IpWsOverlay (sourceName, Transparency, TransparentMode)

Description This function creates the transparent overlay in the workspace. Equivalent to selecting the
Image Overlay option from the Process menu.

Parameters sourceName String Name of source image to be overlayed.

 Transparency Integer Percentage of source image to be blended with
destination image.
100 = copy image overlay into destination
99-1 = blend overlay with destination

 Transparent
Mode

Integer Enter single overlay mode, or burn overlay directly into
image
0 - immediately paste the overlay image into the
destination image.
1 - enter single overlay mode. Overlay can be moved by
mouse.

Example This example will immediately overlay the current image with the image named spots.tif in the
upper lefthand corner
 ret = IpWsOverlay("spots.tif", 100, 0)

This example will overlay the current image with the image named spots.tif, move the overlay
to the coordinates 57, 68 in the destination image, then blend the overlay into the current image
with source=60%, destination=40%.
ret = IpWsOverlay("spots.tif, 60, 1)
ret = IpWsPaste(57, 68)

Comments Destination image is always the currently active image. If writing a macro by hand, and you
use TransparentMode = 1, then it must be followed by a IpWsPaste command or the overlay
will not be copied into the current image.

See Also IpWsPaste

IpWsOverlayEx

Page 2-784

IpWsOverlayEx
Syntax IpWsOverlayEx (sourceImage,X,Y,Transparency, ApplyType)

Description This function creates the transparent overlay in the workspace. Equivalent to selecting the
Image Overlay option from the Process menu.

Parameters sourceImage Integer The document ID of the source image to be overlaid on
the active image.

 X Integer The X position of the overlay on the active image.

 Y Integer The Y position of the overlay on the active image

 Transparency Integer Percentage of source image to be blended with
destination image.
100 = copy image overlay into destination
99-1 = blend overlay with destination

 ApplyType Integer The ApplyType parameter modifies the overlay so that an
pixel-by-pixel intensity comparison is to decide whether to
apply the overlay. ApplyType must be one of the following
values:
PST_APPLY_ALL = All overlaid data will be applied
according to the current blending.
PST_APPLY_LIGHTER = Only pixels in the pasted data
that are lighter than the destination image will be applied.
PST_APPLY_DARKER = Only darker pixels will be
applied.

Comments This function respects Template mode. In Normal mode, the overlay is placed at the specified
position and the macro continues. In Template mode, the overlay is previewed on the image and
the user can reposition it. When finished, the user can click the right mouse button or press Enter.

See Also IpWsOverlay, IpWsPaste, IpTemplateMode

IpWsPan
Syntax IpWsPan(X, Y)

Description This function moves the image relative to its current position in the image window. Equivalent
to using the scroll bars to move the image up/down and left/right in the window.

Parameters X Integer An integer specifying the number of pixels the image is
to be shifted in the horizontal direction. A positive
value moves the image to the left. A negative value
moves it right.

 Y Integer An integer specifying the number of pixels the image is
to be shifted in the vertical direction. A positive value
moves the image up. A negative value moves it down.

Example ret = IpWsPan(-100, 150)

This statement will move the image 100 pixels to the right and 150 up.

See Also IpWsMove

 IpWsPaste

Page 2-785

IpWsPaste
Syntax IpWsPaste(X, Y)

Description This function copies the contents of the Clipboard to the specified position in the active image.
Equivalent to using the Paste command or the SHIFT+INS key combination.

Parameters X Integer An integer specifying the x-coordinate of the upper-left
corner of the area to which the Clipboard data is to be
copied.

 Y Integer An integer specifying the y-coordinate of the upper-left
corner of the area to which the Clipboard data is to be
copied.

Example ret = IpWsPaste(65, 100)

This statement will copy the current Clipboard data into the area that originates at pixel
position 65, 100 in the active image.

See Also IpWsCopy

IpWsPasteEx
Syntax IpWsPasteEx(Prompt, UndoText)

Description This function allows you to paste the contents of the Windows Clipboard interactively on the
active image.

Parameters Prompt String See comments.

 Undo Text String See comments

Comments The Prompt parameter specifies a string that is presented to the user while the pasted contents
are singleed on the image for positioning. The prompt will typically ask the user to position the
contents and right-click or press Enter to paste, and then click Continue when done. The
function will not return until Continue is pressed in the prompt dialog.
The UndoText parameter specifies how the operation will appear in the Undo menu after the
contents are applied to the image. This allows the default test ("Paste") to be replaced with
Undo text that is more descriptive of the contents that were applied to the image.

Example ret = IpWsPasteEx("The watermark has been placed on the image.
Position it where you want it, right-click to burn it in, and
click Continue when done.", "Watermark")

See Also IpWsPaste

IpWsPasteFrames

Page 2-786

IpWsPasteFrames
Syntax IpWsPasteFrames(lPosition)

Description This function places the frames from the clipboard in the sequence.

Parameters lPosition Long Indicates where to put the first pasted frame.
0 = beginning of sequence
1 = end of sequence
any other value must be within the number of frames in
the sequence.

Example ret = IpWsPasteFrames(1)

This statement will place the frames in the sequence after frame #1.

Comments Only valid if frames have been previously cut or copied to the clipboard.
Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

See Also IpWsCutFrames, IpWsCopyFrames

IpWsRedo
Syntax IpWsRedo(Number)

Description This function reverses an Undo operation. Equivalent to selecting a (Redo of) operation from
the Undo pop-out menu.

Parameters Number Integer An integer from 0 to 2 specifying the operation to be
reversed, as identified by its position on the “Undo”
pop-out menu. Where:

0 - Redoes the most recent action (i.e., the first
operation listed in the “Undo” pop-out menu).

1 - Redoes the second, most-recent action (i.e., the
second operation listed in the “Undo” pop-out
menu).

2 - Redoes the third, most-recent action (i.e., the
third operation listed in the “Undo” pop-out menu).

Example ret = IpWsRedo(0)

This statement will redo the first operation on the “Undo” pop-out menu.

IpWsReload
Syntax IpWsReload()

Description This function reloads the active image from its disk file. Equivalent to the Reload command.

IpWsRotate
Syntax IpWsRotate(Angle, bSize)

Description This function rotates the active image or AOI by the specified amount. Equivalent to the
Rotate command's Any Angle option.

 IpWsSave

Page 2-787

Parameters Angle Single A single point value specifying the number of degrees,
in the counterclockwise direction, by which the image
is to be rotated.

 bSize Integer Equivalant to checking the box “Maintain image size”
1 = maintain image size
0 = adjust image size

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

Example Sub IpWsRotate_example()

' rotate active image 20 degrees and allow new image to grow
' to enclose the entire rotated source image

ret = IpWsRotate(20.0, 0)

End Sub

IpWsSave
Syntax IpWsSave()

Description This function stores the active image to its disk file. Equivalent to the Save command.

Comments If the current image is untitled, you will be prompted to supply a file name via the Save File As
dialog box during playback. Macro execution will continue when OK is clicked.

IpWsSaveAs
Syntax IpWsSaveAs(FileName, FileFormat)

Description This function stores the active image to the specified file in the specified file format using the
default compression and BPP values. Equivalent to using the Save As command without
setting compression and/or BPP options.

Parameters FileName String A string specifying the name of the file to which the
active image will be written.

 FileFormat String A string specifying the format in which the image file
will be written. See Comments for valid file format
strings.

Example ret = IpWsSaveAs("C:\IPWIN\IMAGES\APTEST.BMP", "BMP")

This statement will save the active image to the APTEST.BMP file in the \IPWIN\IMAGES
directory on the C: drive. The file will be written in BMP format.

Comments If the file specified in FileName exists, it will automatically be overwritten.
Allowable FileFormat strings are as follows:

FileFormat String DESCRIPTION

AVI AVI File Format

BMP Windows Bitmap Format

CUT HALO CUT File Format

IpWsSaveEx

Page 2-788

EPS Encapsulated Postscript Format

GIF CompuServe Graphic Interface Format

HFF HALO File Format

IPW Image-Pro Workspace File Format

JPG Joint Photographic Experts Group (JPEG) Format

PCD Kodak Photo CD File Format

PCT Macintosh PICT Format

PCX ZSoft PCX Format

SEQ Sequence format

TGA Truevision Targa Format

TIF Tagged Image File Format

FLF User-defined Flat File Format

See Also IpWsSaveEx, IpWsSave

IpWsSaveEx
Syntax IpWsSaveEx(FileName, FileFormat, Compression, BitsPerPlane)

Description This function stores the active image to the specified file in the specified file format, with the
specified compression and conversion options. Equivalent to saving an image with the Save
As command using selected compression and BPP options.

Parameters FileName String A string specifying the name of the file to which the
active image will be written.

 FileFormat String A string specifying the format in which the image file
will be written. See IpWsSaveAs for a list of valid file
format strings.

 Compression Integer An integer from 0 to 7 specifying the compression
method that is to be applied when storing the image.
Where:

0 - No Compression
1 - Default Compression
2 - Run Length Encoding (RLE)
6 - LZW Encoding
7 - LZW and Differencing Encoding

Take care to specify a value that is valid for the
specified FileFormat. To determine which methods
are valid, select the file format in the “Save File As”
dialog box, and review the options listed in the
“Compression” list box.

 IpWsScale

Page 2-789

 BitsPerPlane Integer An integer specifying the number of bits-per-pixel in a
monochrome or palette-class image, or the number of
bits-per-sample in an RGB image.
Take care to specify a compression method that is
valid for the specified FileFormat. To determine
which values are allowed, select the file format in the
“Save File As” dialog box, and review the options
listed in the “Output BPP” list box.

Example ret = IpWsSaveEx(C:\IPWIN\IMAGES\GRAY.TIF, "TIF",6,8)

This statement will save the GRAY.TIF file in 8-BPP TIF format using LZW compression.

Comments If the file specified in FileName exists, it will automatically be overwritten.

See Also IpWsSave, IpWsSaveAs

IpWsScale
Syntax IpWsScale(Width, Height, bSmooth)

Description This function resizes the active image to the specified dimensions. Equivalent to the Resize
command.

Parameters Width Integer An integer specifying the width, in pixels, to which the
horizontal dimension is to be scaled.

 Height Integer An integer specifying the height, in pixels, to which the
vertical dimension is to be scaled.

 bSmooth Integer An integer value of 0 or 1 specifying whether the image
is to be smoothed when it is scaled. Where:
 0 - Suppresses smoothing.
 1 - Applies smoothing.

Return Value This function returns the Document ID of the new image, which will be an integer greater than
0. A negative return value indicates an error.

Example ret = IpWsScale(200, 300, 1)

This statement will resize the image to dimensions of 200 pixels wide by 300 pixels tall.
Smoothing will be applied during the scaling process.

Comments This function actually changes the spatial resolution of the active image. If you want to magnify
or reduce the size of the image for display purposes, use the IpWsZoom function.

See Also IpWsZoom

IpWsSelectFrames
Syntax IpWsSelectFrames(lStart, lNumber)

Description This function selects a frame or frames in the sequece.

Parameters lStart Long Indicates the first frame to select, -1 to select the active
frame

 lNumber Long Indicates the number of frames to selecte, -1 to select
all.

IpWsStretchLut

Page 2-790

Example ret = IpWsSelectFrames(0, -1)

This statement selects all the frames in the sequence.
Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

Comments Selected frames become the active portion of a sequence.

See Also IpWsPasteFrames, IpWsCopyFrames, IpWsCutFrames

IpWsStretchLut
Syntax IpWsStretchLut(Mode)

Description This function sets or unsets the Best Fit display option in the File/Open dialog box.

Parameters Mode Integer 1 = set Stretch option
0 = unset Stretch option

Comments The Best Fit option in the File/Open dialog box allows the user to attach a "best fit" LUT to the
image when opening it. For example, if a user has 12-bit image data written into a 16-bit TIFF
file, selecting the Best Fit option will display the image with a LUT modified to fit the actual
dynamic range of the image.

 IpWsSubSampleFrames

Page 2-791

IpWsSubSampleFrames
Syntax IpWsSubSampleFrames(lStartNumber, lSampleInterval)

Description This function creates a new sub-sampled sequence from the original sequence.

Parameters lStartNumer Long Indicates the first frame in the active sequence to
select, from 0 to the number of the last frame in the
sequence.

 lSample Inteval Long Specifies the sample interval , i.e. every X number of
frames, from 2 to the number of frames in the
sequence.

Example ret = IpWsSubSampleFrames(0, 4)

This statement selects every 4th frame in the sequence, starting with the first frame.

Comments If apply to sequence is selected, only the active portion of the sequence will be sampled.
Otherwise the entire sequence will be sampled.
Note that IpSeq and IpWs Auto-Pro functions number frames in a sequence starting with 0
(zero), but the workspace title bar and the sequencer tool bar start frame numbers with frame 1.

IpWsTestStrips
 Syntax
 IpWsTestStrips(HorzPage, VertPage, Type, MinValue, MaxValue, Reduction, bRed, bGreen, bBlue)

Description This function generates a test strip for a single intensity characteristic. Equivalent to the
Gamma, Brightness and Contrast options on the Test Strips pop-out menu.

Parameters HorzPage Integer An integer specifying the number of test images to be
generated in the horizontal direction.

 VertPage Integer An integer specifying the number of test images to be
generated in the vertical direction.

 Type Integer An enumerated integer specifying the type of test strip
that is to be generated. Must be one of the following:

LUT_BRIGHTNESS
LUT_CONTRAST
LUT_GAMMA

 These options correspond to the Brightness, Contrast
and Gamma test strip options, respectively.

 MinValue Integer An integer specifying the first value in the range of
Type, for which a set of test images are to be
generated.
When Type is set to LUT_BRIGHTNESS or
LUT_CONTRAST, this parameter can contain an
integer from 0 to 100 (inclusive), where 50 represents
no change to the selected characteristic, values > 50
increase it and values < 50 reduce it.
When Type is set to LUT_GAMMA, this parameter can
contain an integer from 10 to 970 (inclusive), where
100 represents no change to Gamma, values > 100
increase Gamma and values < 100 reduce Gamma.

IpWsTestStrips

Page 2-792

 MaxValue Integer An integer specifying the last value in the range of
Type, for which a set of test images are to be
generated.
When Type is set to LUT_BRIGHTNESS or
LUT_CONTRAST, this parameter can contain an
integer from 0 to 100 (inclusive), where 50 represents
no change to the selected characteristic, values > 50
increase it and values < 50 reduce it.
When Type is set to LUT_GAMMA, this parameter can
contain an integer from 10 to 970 (inclusive), where
100 represents no change to Gamma, values > 100
increase Gamma and values < 100 reduce Gamma.

 Reduction Integer An integer from 5 to 100 (inclusive) specifying the size,
expressed as a percentage of the original image, at
which each test image is to be rendered.

 bRed Integer An integer value of 0 or 1 specifying whether Type is to
be adjusted in the Red channel of a True Color test
strip. Where:
 0 - Ignores the Red channel.
 1 - Adjusts the Red channel.
If the active image is not True Color, this parameter is
ignored. When this is the case, just set bRed to 0.

 bGreen Integer An integer value of 0 or 1 specifying whether Type is to
be adjusted in the Green channel of a True Color test
strip. Where:
 0 - Ignores the Green channel.
 1 - Adjusts the Green channel.

 If the active image is not True Color, this parameter is
ignored. When this is the case, just set bGreen to 0.

 bBlue Integer An integer value of 0 or 1 specifying whether Type is to
be adjusted in the Blue channel of a True Color test
strip. Where:
 0 - Ignores the Blue channel.
 1 - Adjusts the Blue channel.
If the active image is not True Color, this parameter is
ignored. When this is the case, just set bBlue to 0.

Example ret = IpWsTestStrips(2, 3, LUT_GAMMA, 100, 970, 25, 1, 1, 1)

This statement will generate a 6-image, Gamma test strip, arranged in three rows of 2 images,
with Gamma values ranging from 1 to 9.7. The test images will be 25% of the original size,
and the Gamma adjustment will be applied to all 3 color channels.

Comments To create a test strip showing the results of two intensity enhancements combined, use the
IpWsTestStrips2 function.

See Also IpWsTestStrips2

 IpWsTestStrips2

Page 2-793

IpWsTestStrips2
 Syntax

IpWsTestStrips2(HorzPage, VertPage, Type1, MinValue1, MaxValue1, Type2, MinValue2, MaxValue2,
Reduction, bRed, bGreen, bBlue)

Description This function generates a test strip of two intensity enhancements, combined. Equivalent to the
Gamma*Brightness, Gamma*Contrast and Brightness*Contrast options on the Test
Strips pop-out menu.

Parameters HorzPage Integer An integer specifying the number of test images to be
generated in the horizontal direction.

 VertPage Integer An integer specifying the number of test images to be
generated in the vertical direction.

 Type1 Integer An enumerated integer specifying the first of two
intensity characteristics that are to be adjusted. Must
be one of the following:

LUT_BRIGHTNESS
LUT_CONTRAST
LUT_GAMMA

See IpWsTestStrips for definitions.

 To produce a meaningful result, this parameter should
contain a value different than that in Type2.

 MinValue1 Integer An integer specifying the first value in the range of
Type1, for which a set of test images are to be
generated. See Comments, below, for valid ranges.

 MaxValue1 Integer An integer specifying the last value in the range of
Type1, for which a set of test images are to be
generated. See Comments, below, for valid ranges.

 Type2 Integer An enumerated integer specifying the second of two
intensity characteristics that are to be adjusted. Must
be one of the following:

LUT_BRIGHTNESS
LUT_CONTRAST
LUT_GAMMA

See IpWsTestStrips for definitions.
To produce a meaningful result, this parameter should
contain a value different than that in Type1.

 MinValue2 Integer An integer specifying the first value in the range of
Type2, for which a set of test images are to be
generated. See Comments, below, for valid ranges.

 MaxValue2 Integer An integer specifying the last value in the range of
Type2, for which a set of test images are to be
generated. See Comments, below, for valid ranges.

 Reduction Integer An integer from 5 to 100 (inclusive) specifying the size,
expressed as a percentage of the original image, at
which each test image is to be rendered.

IpWsTestStrips2

Page 2-794

 bRed Integer An integer value of 0 or 1 specifying whether the
intensity characteristics specified in Type1 and Type2,
are to be applied to the Red channel of a True Color
test strip. Where:
 0 - Ignores the Red channel.
 1 - Adjusts the Red channel.
If the active image is not True Color, this parameter is
ignored. When this is the case, just set bRed to 0.

 bGreen Integer An integer value of 0 or 1 specifying whether the
intensity characteristics specified in Type1 and Type2
are to be applied to the Green channel of a True Color
test strip. Where:
 0 - Ignores the Green channel.
 1 - Adjusts the Green channel.
If the active image is not True Color, this parameter is
ignored. When this is the case, just set bGreen to 0.

 bBlue Integer An integer value of 0 or 1 specifying whether the
intensity characteristics specified in Type1 and Type2
are to be applied to the Blue channel of a True Color
test strip. Where:
 0 - Ignores the Blue channel.
 1 - Adjusts the Blue channel.
If the active image is not True Color, this parameter is
ignored. When this is the case, just set bBlue to 0.

 IpWsTestStripsHalftone

Page 2-795

Example

ret = IpWsTestStrips2(2,3,LUT_GAMMA,100,970,LUT_CONTRAST,30,70, 25,1, 1, 1)
 This statement will generate a 6-image, Gamma*Contrast test strip, arranged in three rows of 2

images, with Gamma values ranging from 1 to 9.7 and Contrast values from 30 to 70. The test
images will be 25% of the original size, and the Gamma/Contrast adjustments will be applied to
all 3 color channels.

Comments If you want to create a test strip for a single intensity characteristic, use the
IpWsTestStrips function.
If a type parameter is set to LUT_BRIGHTNESS or LUT_CONTRAST, its associated
min and max parameters can contain integers from 0 to 100 (inclusive), where 50
represents no change to the selected characteristic, values > 50 increase it and values <
50 reduce it.
If a type parameter is set to LUT_GAMMA, its associated min and max parameters can contain
integers from 10 to 970 (inclusive), where 100 represents no change to Gamma, values > 100
increase Gamma and values < 100 reduce Gamma.

See Also IpWsTestStrips

IpWsTestStripsHalftone
 Syntax

IpWsTestStripsHalftone(AllTypes, Color, ipHalfTypes, ipHalfScreens, OutputDpi, Reduction)

Description This function creates a test strip of the selected halftone options. Equivalent to the Halftone
option on the Test Strips pop-out menu.

Parameters AllTypes Integer An integer value of 0 or 1 specifying whether the test
strip is to be of a single halftone type, or of all halftone
types. Where:
 0 - Specifies single halftone type.
 1 - Specifies all halftone types.

 Color Integer An integer value of 0 or 1 specifying whether a Black &
White or Color test strip is to be created. Where:
 0 - Creates Black & White strip.
 1 - Creates Color strip.

 ipHalfTypes Integer
(Basic)

LPSHORT
(C)

The name and first element of an array of integers
representing the halftone types for which a strip is to be
generated. By default this array is defined as
ipHalfTypes(0).
When AllTypes is set to 0, the ipHalfTypes array
must contain a single integer, which specifies the one
halftone type for which a strip is to be generated.
Integers 0 to 5 represent the following types:
 0 - Angle Dot Screen
 1 - Flat Dot Screen
 2 - Angle Line Screen
 3 - Horz Line Screen
 4 - Vert Line Screen
 5 - Error Diffusion

IpWsTestStripsHalftone

Page 2-796

 When the macro is executed, Image-Pro will create a
test image of this type, for each resolution specified in
the ipHalfScreens array (see ipHalfScreens below).
When AllTypes is set to 1, the ipHalfTypes array
must contain 6 elements, each element specifying the
halftone type for which a test image is to be generated.
By default, the array is filled with values from 0 to 5,
representing the 6 halftone types as described above.
When the macro is executed, Image-Pro will create a
test image for each type specified in array
ipHalfTypes, using the screen specified by the
corresponding element in the array, ipHalfScreens
(see ipHalfScreens below).

 ipHalfScreens Integer
(Basic)

LPSHORT
(C)

The name and first element of an array of integers
representing the halftone screens to be used when
creating the test strip. By default this array is defined
as ipHalfScreens(0).
When AllTypes is set to 0, the ipHalfScreens array
must contain 4 elements, each element specifying the
screen to be used with the type defined in the single-
element ipHalfTypes array. Where:

For ipHalftoneTypes values of 0 - 4:
 0 - Largest LPI value
 1 - Second-largest LPI value
 2 - Second-smallest LPI value
 3 - Smallest LPI value
For ipHalftoneTypes value of 5:
 0 - 4 Weights
 1 - 12 Weights
 2 - Fuzzy
 3 - Random

 When AllTypes is set to 1, the ipHalfScreens array
must contain 6 elements, each element containing an
integer specifying the screen to be used with the
corresponding halftone type specified in the
ipHalfTypes array (see ipHalfTypes above).

 OutputDpi Integer An integer specifying the dots-per-inch value at which
the image is to be halftoned.

 Reduction Integer An integer from 5 to 100 (inclusive) specifying the size,
expressed as a percentage of the original image, at
which each test image is to be rendered.

 IpWsUndo

Page 2-797

Example ipHalfScreens(0) = 0
ipHalfScreens(1) = 1
ipHalfScreens(2) = 2
ipHalfScreens(3) = 3
ipHalfTypes(0) = 2
ret = IpWsTestStripsHalftone(0, 0, ipHalfTypes(0), ipHalfScreens(0), 150, 10)

The set of statements above will create a test strip of all screen resolutions for the Angle Line
halftone type.

ipHalfScreens(0) = 0
ipHalfScreens(1) = 1
ipHalfScreens(2) = 1
ipHalfScreens(3) = 0
ipHalfScreens(4) = 1
ipHalfScreens(5) = 2
ipHalfTypes(0) = 0
ipHalfTypes(1) = 1
ipHalfTypes(2) = 2
ipHalfTypes(3) = 3
ipHalfTypes(4) = 4
ipHalfTypes(5) = 5
ret = IpWsTestStripsHalftone(1, 0, ipHalfTypes(0), ipHalfScreens(0), 150, 10

The set of statements above will create a test strip of all halftone types using the screen specified
in the corresponding element of array ipHalfScreens — e.g., the smallest resolution (0) for
the Angle Dot type, the smallest resolution (0) for the Horz Line type, and Fuzzy screen (2) for
the Error Diffusion type.

IpWsUndo
Syntax IpWsUndo(Number)

Description This function reverses the specified operation. Equivalent to the Undo command.

Parameters Number Integer An integer from 0 to 2 specifying the operation to be
reversed, as identified by its position on the “Undo”
pop-out menu. Where:
0 - Reverses the most recent action (i.e., the
first operation listed in the pop-out menu).

 1 - Reverses the second-most-recent action (i.e.,
the second operation listed in the pop-out menu).

2 - Reverses the third-most-recent action (i.e., the
third operation listed in the pop-out menu).

Remember that not all Image-Pro operations are
reversible.

Example ret = IpWsUndo(2)

This statement will reverse the oldest action in the “Undo” list.

See Also IpWsRedo

IpWsZoom
Syntax IpWsZoom(PercentZoom)

Description This function magnifies/reduces the active image by the specified amount. Equivalent to using
the Magnifying Glass tool or the Zoom command on the image window's Control menu.

IpWsZoom

Page 2-798

Parameters PercentZoom Integer An integer specifying the amount by which the image
dimensions are to be increased or reduced. Must be
one of the following:
 10 - Displays image at 10% of image size
 25 - Displays image at 25% of image size
 50 - Displays image at 50% of image size
 100 - Displays image at actual size
 200 - Displays image at twice its actual size
 400 - Displays image at 4 times its actual size
 800 - Displays image at 8 times its actual size
 1600 - Displays image at 16 times its actual size
 -1 - Displays image at the next smaller zoom

factor (equivalent to clicking right mouse
button when the “Magnifying Glass” tool is
selected).

 +1 - Displays image at the next larger zoom
factor (equivalent to clicking left mouse
button when the “Magnifying Glass” tool is
selected).

Example IpWsZoom(100)
IpDocMaximize()
This set of statements will return the image to its actual size and maximize the image window
to ensure that the image is fully visible within the window.

 IPBasic

Page 3-1

Section 3 - IPBasic Commands

The IPBasic Language provides the core language definition. It is Visual Basic for
Applications™ compatible.

Language reference by group:

• Declaration, Data Type, Assignment
• Flow Control, Error Handling
• Conversion, Variable Info
• Constant
• Math, String, Object, Time/Date
• File
• User Input, User Dialog, Dialog Function
• DDE
• Settings
• Miscellaneous
• Operator .

For complete definitions for the IPBasic commands, please refer to the online help.

IPBasic

Page 3-2

Appendix A - Function & Command Summary

Page 4-1

Appendix A - Function & Command Summary

Auto-Pro Functions
3D Filters Command
IpFlt3DApplytoBuffer
IpFlt3DApplytoFrames
IpFlt3DBranchEnd
IpFlt3DConv
IpFlt3DData
IpFlt3DDistance
IpFlt3DGet
IpFlt3DKernel
IpFlt3DMorph
IpFlt3DMorphKernel
IpFlt3DPrune
IpFlt3DRank
IpFlt3DReduce
IpFlt3DSet
IpFlt3DShow
IpFlt3DThin
IpFlt3dVectGet
IpFlt3dVectGetData
IpFlt3DVectorize
IpFlt3DWatershed

3D Viewer Command
IpView3DCopy
IpView3DCreate
IpView3DCreateAnimation
IpView3DLoad
IpView3DMove
IpView3DReload
IpView3DSet
IpView3DSetCamera
IpView3DSize
IpView3DShow

Acquire Command
IpAcqAverage
IpAcqControl
IpAcqDynIntSnap
IpAcqMultiSnap
IpAcqSelectDriver
IpAcqSettings
IpAcqShow
IpAcqSnap
IpAcqTimed
IpAcqTimedEx

IpAcqSeqIntSnap

AFA Commands
IpAFAAddChan
IpAFADelChan
IpAFADelChanStr
IpAFAGet
IpAFAGetStr
IpAFALoad
IpAFAMacroGet
IpAFAMacroSet
IpAFANew
IpAFASave
IpAFASaveAs
IpAFASetInt
IpAFASetStr
IpAFASetEx
IpAFASetSingle
IpAFAShow
IpAFASnap

Alignment Command
IpAlignAdd
IpAlignApply
IpAlignCalculate
IpAlignFindPattern
IpAlignGet
IpAlignOpen
IpAlignRemove
IpAlignSave
IpAlignSetEx
IpAlignSetInt
IpAlignSetSearchPattern
IpAlignSetSingle
IpAlignShow
IpAffine

AOI Operations
IpAoiChangeName
IpAoiCreateBox
IpAoiCreateDonut
IpAoiCreateEllipse
IpAoiCreateIrregular
IpAoiGet
IpAoiGetStr
IpAoiManager

IpAoiMove
IpAoiMultAppend
IpAoiMultShow
IpAoiShow
IpAoiValidate
IpLstPts
IpMorePts

Application Window
IpAppArrange
IpAppCloseAll
IpAppCtl
IpAppCtlText
IpAppExit
IpAppGet
IpAppGetStr
IpAppHide
IpAppMaximize
IpAppMenuSelect
IpAppMinimize
IpAppMove
IpAppRestore
IpAppRun
IpAppSelectDoc
IpAppSet
IpAppSize
IpSnap
IpTrim
IpAppUpdateDoc
IpAppWindow
IpAppWndPos
IpAppWndState
IpTrackBar

Background
Correction Command
IpOpBkgndCorrect
IpOpBkgndSubtract

Batch Conversion
Command
IpWsConvertFile

Appendix A - Function & Command Summary

Page 4-2

Bayer Interpolation
Command
IpBayerInterpolate
IpBayerGetInt
IpBayerSetInt
IpBayerShow

BCG and Color Map
IpLutApply
IpLutBinarize
IpLutData
IpLutLoad
IpLutReset
IpLutSave
IpLutSetAttr
IpLutSetControl
IpLutShow
IpWsStretchLut

Bitmap Analysis
IpBitAttr
IpBitSaveData
IpBitShow

Calibration Command
IpCalGet
IpCalLoad
IpCalSave
IpCalSaveAll
IpCalSaveEx
IpICalCalibValues
IpICalCreate
IpICalDestroy
IpICalDestroyEx
IpICalGetLong
IpICalGetSng
IpICalGetStr
IpICalGetSystem
IpICalLinearize
IpICalLoad
IpICalMove
IpICalReset
IpICalSave
IpICalSelect
IpICalSetLong
IpICalSetSng
IpICalSetStr
IpICalSetSystem
IpICalSetSystemByName
IpICalSetName
IpICalSetOptDens

IpICalSetPoints
IpICalSetSamples
IpICalSetUnitName
IpICalShow
IpICalShowFormat
IpSCalCalibValues
IpSCalCreate
IpSCalDestroy
IpSCalDestroyEx
IpSCalGetLong
IpSCalGetSng
IpSCalGetStr
IpSCalLoad
IpSCalMove
IpSCalReset
IpSCalSave
IpSCalSelect
IpSCalSetAngle
IpSCalSetAspect
IpSCalSetLong
IpSCalSetName
IpSCalSetOrigin
IpSCalSetSng
IpSCalSetStr
IpSCalSetUnit
IpSCalSetUnitName
IpSCalShow

Caliper Command
IpClprClipboard
IpClprCreateDerivativeEdge
IpClprCreateMeas
IpClprCreatePatternMatchEdge
IpClprCreateSampler
IpClprDeleteEdge
IpClprDeleteMeas
IpClprDeleteSampler
IpClprDetGetInt
IpClprDetGetSng
IpClprEditSampler
IpClprGet
IpClprGetData
IpClprGetDataEx
IpClprGetIntEx
IpClprGetStr
IpClprGetSngEx
IpClprSave
IpClprSelectEdge
IpClprSelectSampler
IpClprSet
IpClprSetStr

IpClprSettings
IpClprShow
IpClprToggleMarker
IpClprTool

Chart Controls
IpChrt2DCreate
IpChrt2DGet
IpChrt2DGraphtoClipboard
IpChrt2DMove
IpChrt2DSetArr
IpChrt2DSet
IpChrt2DSetStr
IpChrt2DShow
IpChrt2DSize

Clipboard Operations
IpWsCopy
IpWsCopyFrames
IpWsCutFrames
IpWsDeleteFrames
IpWsPaste
IpWsPasteEx
IpWsPasteFrames

Color Composite
Command
IpCmpAdd
IpCmpAddEx
IpCmpAddTint
IpCmpAddTintPos
IpCmpDel
IpCmpGet
IpCmpNew
IpCmpNewTint
IpCmpSet
IpCmpShow

Color Correction
Command
IpColCalAdd
IpColCalConvert
IpColCalCorrect
IpColCalCreate
IpColCalGet
IpColCalGetRGB
IpColCalLoad
IpColCalNew
IpColCalSave
IpColCalSet
IpColCalShow
IpColExtract

Appendix A - Function & Command Summary

Page 4-3

IpColShow
IpGetConvertColor

Color Segmentation
Command
IpSegCreateMask
IpSegLoad
IpSegDelete
IpSegGetRange
IpSegMerge
IpSegNew
IpSegPreview
IpSegRename
IpSegReset
IpSegSave
IpSegSelect
IpSegSelectArea
IpSetSetAttr
IpSegSetRange
IpSegShow

Color Management
Command
IpCmmCorrectColors
IpCmmGet
IpCmmSelectCamera
Profile
IpCmmSetInt
IpCmmSetStr
IpCmmShow

Color Transform
Command
IpCmChannelExtract
IpCmChannelMerge
IpCmChannelMerge3
IpCmTransform

Co-Localization
Command
IpCoLocForward
IpCoLocGetDocument
IpCoLocGetForward
IpCoLocGetInverse
IpCoLocInverse
IpCoLocShow

Convert To
Command
IpWsConvertImage
IpWsConvertToBilevel
IpWsConvertToFloat

IpWsConvertToGray
IpWsConvertToGray12
IpWsConvertToGray16
IpWsConvertToGrayEx
IpWsConvertToPaletteMColor
IpWsConvertToPaletteMedian
IpWsConvertToRGB
IpWsGray12To8
IpWsGray16To8

Count/Size Command
IpBlbCount
IpBlbCreateMask
IpBlbData
IpBlbDelete
IpBlbEnableMeas
IpBlbFilter
IpBlbFromAOI
IpBlbGet
IpBlbGetStr
IpBlbHideObject
IpBlbHitTest
IpBlbLoadOutline
IpBlbLoadSetting
IpBlbMeasure
IpBlbMultiRanges
IpBlbRange
IpBlbRemoveHoles
IpBlbSaveClasses
IpBlbSaveData
IpBlbSaveOutline
IpBlbSavePopDensities
IpBlbSaveSetting
IpBlbSetAttr
IpBlbSetFilterRange
IpBlbSetRange
IpBlbSetRangeEx
IpBlbShow
IpBlbShowAutoClass
IpBlbShowCluster
IpBlbShowData
IpBlbShowHistogram
IpBlbShowObjectWindow
IpBlbShowPopDens
IpBlbShowScattergram
IpBlbShowSingleClass
IpBlbShowStatistics
IpBlbSmoothObjects
IpBlbSplitObjects
IpBlbUpdate

Data Collector
Command
IpDcAddCol
IpDcAddSng
IpDcAddStr
IpDcCreateChart
IpDcDeleteCol
IpDcGet
IpDcGetStr
IpDcMeasList
IpDcSaveData
IpDcSelect
IpDcSet
IpDcSetStr
IpDcSetVarName
IpDcShow
IpDcUnSelect
IpDcUpdate

Deconvolution
(SharpStack)
Commands
IpDCnvCalculateSA
IpDCnvDeconvolve
IpDCnvGet
IpDCnvGetStr
IpDCnvResultsShow
IpDCnvSet
IpCDnvSettings
IpDCnvSetStr
IpDCnvSetSng
IpDCnvShow

Demo Macro
Command
IpDemoGetStr
IpDemoSetStr
IpDemoShow

Display Range
Command
IpDrGet
IpDrSet
IpDrShow

Duplicate Command
IpWsDuplicate

Dye Information
Command
IpDyeAdd
IpDyeDelete

Appendix A - Function & Command Summary

Page 4-4

IpDyeEdit
IpDyeGet
IpDyeGetStr
IpDyeSelect
IpDyeSetStr

Dynamic Data
Exchange Command
IpDde

Extended Depth of
Field Command
IpEDFAdd
IpEDFCreate
IpEDFGet
IpEDFGetConf
IpEDFNew
IpEDFRemove
IpEDFSet
IpEDFShow
IpEDFTopoMap

FFT Command
IpFftForward
IpFftHiPass
IpFftInverse
IpFftLoad
IpFftLoPass
IpFftSave
IpFftShow
IpFftSpikeBoost
IpFftSpikeCut
IpFftTag

File Name Operations
IpStAutoName
IpStGetName
IpStSearchDir
IpStSortedList

File Signature
Command
IpFsGet
IpFsGetStr

Fill Command
IpWsFill
IpWsFillPattern

Filtering Command
IpFltBranchEnd
IpFltClose
IpFltConvolveKernel

IpFltDespeckle
IpFltDilate
IpFltDistance
IpFltErode
IpFltExtractBkgnd
IpFltFlatten
IpFltGauss
IpFltHiPass
IpFltLaplacian
IpFltLocHistEq
IpFltLoPass
IpFltMedian
IpFltOpen
IpFltPhase
IpFltPrune
IpFltRank
IpFltReduce
IpFltRoberts
IpFltRstrDilate
IpFltRstrDilateShow
IpFltSharpen
IpFltShow
IpFltSobel
IpFltThin
IpFltThinEx
IpFltUserDilate
IpFltUserErode
IpFltVariance
IpFltWatershed
IpFltWatershedEx

Grid Mask Command
IpGridApply
IpGridCreateMask
IpGridSelect
IpGridShow

Histogram Command
IpHstCreate
IpHstDestroy
IpHstEqualize
IpHstGet
IpHstMaximize
IpHstMinimize
IpHstMove
IpHstRestore
IpHstSave
IpHstScale
IpHstSelect
IpHstSetAttr
IpHstSize

IpHstUpdate

Image Database
Commands
IpDbAddField
IpDbFind
IpDbGoTo
IpDbLoadView
IpDbOpenFolder
IpDbPrint
IpDbReadStr
IpDbSearch
IpDbSetAttr
IpDbViewAll
IpDbViewFolder
IpDbWrite
IpGalAdd
IpGalChangeDescription
IpGalClose
IpGalDelete
IpGalImageOpen
IpGalOpen
IpGalRemove
IpGalSetActive
IpGalShow
IpGalSort
IpGalTag
IpGalUpdate

Image Overlay
Command
IpWsOverlay
IpWsOverlayEx
IpIOvrApply
IpIOvrGet
IpIOvrSet
IpIOvrSetStr
IpIOvrShow

Image Window
IpAnActivateAll
IpAnActivateDefaultObj
IpAnActivateObjId
IpAnActivateObjXY
IpAnAddText
IpAnBurn
IpAnCreateObj
IpAnDeleteAll
IpAnDeleteObj
IpAnGet
IpAnGetFontName

Appendix A - Function & Command Summary

Page 4-5

IpAnMove
IpAnPolyAddPtArray
IpAnPolyAddPtString
IpAnSet
IpAnSetFontName
IpAnShowAnnot
IpAnText
IpAnotAttr
IpAnotBox
IpAnotEllipse
IpAnotLine
IpDraw
IpDrawClear
IpDrawClearDoc
IpDrawGet
IpDrawSet
IpDrawText
IpDocClick
IpDocClose
IpDocCloseEx
IpDocCloseVri
IpDocFind
IpDocGet
IpDocGetArea
IpDocGetAreaSize
IpDocGetLine
IpDocGetPropDate
IpDocGetPropDbl
IpDocGetPropStr
IpDocGetPosition
IpDocGetStr
IpDocMaximize
IpDocMinimize
IpDocMove
IpDocOpenAoi
IpDocOpenVri
IpDocPutArea
IpDocPutLine
IpDocRestore
IpDocGetPropDate
IpDocSetPropDbl
IpDocSetPropStr
IpDocSetPosition
IpDocSize
IpGetLine
IpPlotCreate
IpPlotData
IpPlotDestroy
IpPlotRange
IpPlotSet

IpPlotShow
IpPlotUpdate
IpTextBurn
IpTextFont
IpTextGetAttr
IpTextSetAttr
IpTextShow
IpTrim
IpWsCreateFromVri

Image Signature
Command
IpIsGet
IpIsGetStr
IpIsShow

Info Command
IpWsChangeDescription
IpWsChangeInfo

Internet Access
Commands
IpFTPOpen
IpFTPSave
IpMail

Large Spectral Filters
Command
IpLFltShow
IpLFltApply

Lens Information
Command
IpLensAdd
IpLensDelete
IpLensEdit
IpLensGetLong
IpLensGetSng
IpLensGetStr
IpLensSelect
IpLensSetStr

Live EDF and Tiling
Commands
IpLiveEDFSetInt
IpLiveEDFGet
IpLiveTilingSetInt

Line Profile
Command
IpProfCreate
IpProfDestroy
IpProfGet

IpProfLineMove
IpProfMaximize

IpProfMinimize
IpProfMove
IpProfRestore
IpProfSave
IpProfSelect
IpProfSetAttr
IpProfSetFreeForm
IpProfSize
IpProfUpdate

Local Zoom
Command
IpLocZoomMove
IpLocZoomSet
IpLocZoomSetPos
IpLocZoomShow
IpLocZoomSize

Macro Operations
IpDemoShow
IpIniFile
IpIniFileStr
IpMacroLoad
IpMacroPause
IpMacroRun
IpMacroStop
IpMacroWait
IpMacroProgSet
IpMacroProgGetStr
IpMacroProgSetInt
IpMacroProgSetStr
IpMacroProgShow

Manual Tagging
Commands
IpTagAddClass
IpTagAttr
IpTagDelete
IpTagDeleteClass
IpTagGet
IpTagLoadEnv
IpTagLoadPoints
IpTagPt
IpTagSaveData
IpTagSaveEnv
IpTagSavePoints
IpTagShow
IpTagUpdate

Appendix A - Function & Command Summary

Page 4-6

Measurements
Command
IpMeasAdd
IpMeasAddMeasure
IpMeasAttr
IpMeasAttrStr
IpMeasDelete
IpMeasDelMeasure
IpMeasGet
IpMeasGetHit
IpMeasGetStr
IpMeasLoad
IpMeasLoadOutline
IpMeasMove
IpMeasRestore
IpMeasSave
IpMeasSaveData
IpMeasSaveOutline
IpMeasShow
IpMeasSize
IpMeasTag
IpMeasTool
IpMeasUpdate

Measure Distances
Command
IpDistDelete
IpDistGetLong
IpDistGetStr
IpDistGetSng
IpDistSetLong
IpDistSetStr
IpDistShow
IpDistTag
IpDistTool

Memory Monitor
Command
IpMmonGet
IpMmonSet
IpMmonShow

Mosaic Command
IpMosaicCreate
IpMosaicGet
IpMosaicSet
IpMosaicShow

New Command
IpWsCreate
IpWsCreateEx
IpWsCreateFromClipboard

IpWsCreateFromVri

Open Command
IpWsLoad
IpWsLoadNumber
IpWsLoadPreview
IpWsLoadSetRes

Operations
Command
IpOpImageArithmetics
IpOpImageLogic
IpOpNumberArithmetics
IpOpNumberLogic
IpOpNumberRGB
IpOpShow

Output Window
Command
IpOutput
IpOutputClear
IpOutputSave
IpOutputShow
IpOutputSet

Palette Window
IpPalSetGrayBrush
IpPalSetPaletteBrush
IpPalSetPaletteColor
IpPalSetRGBBrush
IpPalShow

Port Configuration
Command
IpPortIOGetInt
IpPortIOOpenConfig
IpPortIORead
IpPortIOSaveConfig
IpPortIOSetInt
IpPortIOShow
IpPortIOWrite

Print Command
IpPrtHalftone
IpPrtPage
IpPrtSize
IpPrtScreen

Pseudo-Color
Command
IpPcDefineColorSpread
IpPcDyeTint
IpPcLoad

IpPcSave
IpPcSaveData
IpPcSetColor
IpPcSetColorSpread
IpPcSetDivisions
IpPcSetRange
IpPcShow
IpPcTint

Registration
Command
IpRegister
IpRegShow

Reload Command
IpWsReload

Rendering
Commands
IpRendAnimation
IpRendAnimationFile
IpRendConvertCoord
IpRendConvertRotation
IpRendElem
IpRendElemGet
IpRendElemSet
IpRendElemSetStr
IpRendLoad
IpRendManualMeasurem
entsFile
IpRendMeasGraphSet
IpRendMMeas
IpRendMMeasGetStr
IpRendMMeasSet
IpRendMMeasSetStr
IpRendMove
IpRendReload
IpRendSaveData
IpRendPaletteFile
IpRendSet
IpRendSettingsFile
IpRendSize
IpRendShow
IpRendVMeas
IpRendVMeasGetStr
IpRendVMeasHist
IpRendVMeasHistSet
IpRendVMeasSet
IpRendVMeasSetStr

Appendix A - Function & Command Summary

Page 4-7

Report Generator
Command
IpRptClose
IpRptNew
IpRptOpen
IpRptPrint
IpRptSave
IpRptShow

Resize Command
IpWsScale

Rotate Command
IpWsOrient
IpWsRotate

Save/Save As
Command
IpWsSave
IpWsSaveAs
IpWsSaveEx

Scanning Command
IpScanSelect
IpScanShow

Screen Capture
Command
IpCapArea
IpCapFile
IpCapHotKey
IpCapWindow

Scope-Pro
Commands
IpScopeAcquire
IpScopeComponent
Present
IpScopeControl
IpScopeDocGet
IpScopeEnumSettings
IpScopeGetCount
IpScopeGetPosition
IpScopeRead
IpScopeSettings
IpScopeSetPosition
IpScopeShow
IpScopeWrite

Scrolling/Panning
Operations
IpWsMove

IpWsPan

Sequencer Command
IpSeqAverage
IpSeqDifference
IpSeqDifferenceEx
IpSeqExtractFrames
IpSeqGet
IpSeqMerge
IpSeqMergeDoc
IpSeqOpen
IpSeqPlay
IpSeqReslice
IpSeqRunningAvg
IpSeqSave
IpSeqSet
IpSeqShow
IpWsCopyFrames
IpWsCutFrames
IpWsDeleteFrames
IpWsPasteFrames
IpWsSelectFrames
IpWsSubSampleFrames

Sequence Gallery
Command
IpSeqGGet
IpSeqGCreate
IpSeqGSet
IpSeqGShow
IpSeqGUpdate

Set Manager
Command
IpDocGetPropDate
IpDocGetPropDbl
IpDocGetPropLong
IpDocGetPropStr
IpDocSetPropDate
IpDocSetPropDbl
IpDocSetPropLong
IpDocSetPropStr
IpSmAdd
IpSmAddFrame
IpSmBackgroundCorr
IpSmBackgroundCorrShow

IpSmDelete
IpSmDespeckle
IpSmDespeckleShow
IpSmExtract
IpSmGet

IpSmGetStr
IpSmInfo
IpSmNew
IpSmNormalize
IpSmNormalizeShow
IpSmOpen
IpSmPlay
IpSmRemoveFrame
IpSmRemove Image
IpSmSave
IpSmSet
IpSmSetStr
IpSmShow
IpSmShowNav
IpSmSetEx

Sort Objects
Command
IpSortAttr
IpSortObjects
IpSortShow

Stage-Pro
Commands
IpStageAbsZ
IpStageAbsZEx
IpStageAcq
IpStageAcqFrame
IpStageAddListPoint
IpStageAddListPointEx
IpStageControl
IpStageCreateList
IpStageDeleteList
IpStageDeletePoint
IpStageDocGet
IpStageDocGetStr
IpStageField
IpStageFocusLimits
IpStageGet
IpStageGetAbsPoint
IpStageGetAbsPointEx
IpStageGetAbsPosition
IpStageGetAbsPositionEx
IpStageGetListLength
IpStageGetListLocked
IpStageGetListModified
IpStageGetListName
IpStageGetNumLists
IpStageGoToListPos
IpStageModifyListPoint
IpStageModifyListPointEx

Appendix A - Function & Command Summary

Page 4-8

IpStagePlane
IpStageSampleGroupbyName
IpStageSampleGroupbyNum
IpStageSamplePattern
byName
IpStageSamplePatternByNu
m
IpStageSetListLocked
IpStageSetListModified
IpStageSetListName
IpStageScanPatternByName
IpStageScanPatternbyNum
IpStageSetArea
IpStageShow
IpStageShowTab
IpStageSettings
IpStageSortList
IpStageStepXY
IpStageStepZ
IpStageWell
IpStageXY
IpStageXYRead
IpStageXYWrite
IpStageZ
IpStageZRead
IpStageZWrite

Surface Plot
Command
IpSurfAutoRefresh
IpSurfGet
IpSurfOutput
IpSurfSet
IpSurfShow

Template Mode
IpTemplateMode

Test Strips Command
IpWsTestStrips
IpWsTestStrips2
IpWsTestStripsHalftone

Third-Party Plug-in
Command
IpPlFilter
IpPlImport
IpPlShow

Tiling Command
IpTileAdd
IpTileApply

IpTileCalculate
IpTileGet
IpTileOpen
IpTileRemove
IpTileSave
IpTileSetEx
IpTileSetInt
IpTileSetSingle
IpTileShow

Trace Objects
Command
IpTraceAttr
IpTraceDo
IpTraceShow

Tracking Command
IpTrackFile
IpTrackMeas
IpTrackMeasGetStr
IpTrackMeasSet
IpTrackMeasSetStr
IpTrackMove
IpTrackOptionsFile
IpTrackSaveData
IpTrackShow
IpTrackSize

Undo Command
IpWsRedo
IpWsUndo

User Input
IpStGetFloat
IpStGetInt
IpStGetString
IpStGetName
IpStSearchDir

Workflow Toolbar
Commands
IpToolbarGetStr
IpToolbarSelect
IpToolbarShow

Zoom Operations
IpWsZoom

Appendix B - Auto-Pro Keywords

Page 5-1

Appendix B - Auto-Pro Keywords
This appendix contains a list of the reserved words for Auto-Pro. This list includes function
names, IPBasic commands, operators, predefined variables and other key words that belong to
Auto-Pro.

A
Abs
ACCUMULATE
ACQ_AVG
ACQ_CURRENT
ACQ_FILE
ACQ_GETCURRENT
ACQ_ISLIVE
ACQ_ISSHOWN
ACQ_LIVE
ACQ_LOAD
ACQ_MULTI
ACQ_NEW
ACQ_SAVE
ACQ_SEQUENCE
ACQ_SETTINGS
ACQ_SETUP
ACQ_SHOWLAST
ACQ_SNAP
ACQ_TIMED
ADVANCED
AFF_AOI
AFF_CLIP
AFF_FLOAT
AFF_NOBILINEAR
AFF_NOSCALE
AFF_NOTILT
ALL_B_T
ALL_B_W
ALL_C_B
ALL_C_T
ALL_C_W
ALL_T_B
ALL_T_W
ALL_W_B
And
AOI_AOI
AOI_BOX
AOI_CIRCLE
AOI_ELLIPSE
AOI_MULTIPLE
AOI_POLYGON
AOI_POWER2
AOI_SCANLIST
AOI_SQUARE
AOIADD
AOICMD_GETAREA
AOICMD_GETBOUNDS
AOICMD_GETELLIPSE
AOICMD_GETNUMPOINTS
AOICMD_GETPOINTS
AOICMD_GETTYPE

AOICMD_SETBOUNDS
AOICMD_SETELLIPSE
AOICMD_SETPOINTS
AOIDELETE
AOIHIDEDLG
AOILOAD
AOISAVE
AOISET
AOISHOWDLG
APC_CLICK
APC_GETCHECK
APC_GETCURSEL
APC_GETFOCUSID
APC_GETHWND
APC_GETSCROLL
APC_SETCHECK
APC_SETCURSEL
APC_SETFOCUSID
APC_SETPOSX
APC_SETPOSY
APC_SETSCROLL
APW_ACTIVATEHWND
APW_ACTIVATEID
APW_ACTIVATENAME
APW_GETHWND
APW_GETID
APW_GETNAME
ARG_IN
ARG_INSTR
ARG_IO
ARG_IOSTR
ARG_OUT
ARG_OUTSTR
ARG_STR
ARG_VAL
As
Asc
Atn
ATT_CALIPER
ATT_CONTROLS
ATT_FIXED
ATT_FIXEDX
ATT_FIXEDY
ATT_NOCOPY
ATTRIBUTE_1
AUTOUPDATE

B
Base
BCLASS_CLUSTER
BCLASS_NONE
BCLASS_SINGLE
BIN

BIT_CALIB
BIT_SAMPLE
BIT_SAVEALL
BLBCMD_CONNECT
BLBCMD_DISABLEMEAS
BLBCMD_ENABLEMEAS
BLBCMD_GETBOUNDSLIST
BLBCMD_GETHETRANGE
BLBCMD_GETNUMANGLES
BLBCMD_GETNUMCLASSE
S
BLBCMD_GETNUMOBJECT
S
BLBCMD_GETOBJECTBOUN
DS
BLBCMD_GETOBJECTLIST
BLBCMD_GETOBJECTPOS
BLBCMD_GETOBJECTSTAT
US
BLBCMD_GETOUTLINE
BLBCMD_GETRANGE
BLBCMD_GETSTATISTICS
BLBCMD_GETVERSION
BLBCMD_INQENABLED
BLBCMD_SETBORDERFLAG
BLBCMD_SETEXCLUSIVER
ANGE
BLBCMD_SETFRACTDIM
BLBCMD_SETHETRANGE
BLBCMD_SETINTENSCAL
BLBCMD_SETINTENSITYRA
NGE
BLBCMD_SETMINAREA
BLBCMD_SETMINMAXDENS
BLBCMD_SETNUMANGLES
BLBCMD_SETOBJECTSTAT
US
BLBCMD_SETRANGE
BLBCMD_SETRGBRANGE
BLBCMD_SETSPATIALCAL
BLBFCP_BOTTOM
BLBFCP_LEFT
BLBFCP_NONE
BLBFCP_RIGHT
BLBFCP_TOP
BLBM_ALL
BLBM_AREA
BLBM_AREAPOLY
BLBM_ASPECT
BLBM_BLUE
BLBM_BOX_AREA
BLBM_BOX_XY
BLBM_BOXX

Appendix B - Auto-Pro Keywords

Page 5-2

BLBM_BOXY
BLBM_BRANCHLEN
BLBM_CENTRX
BLBM_CENTRY
BLBM_CLASS
BLBM_CLUMPINESS
BLBM_CLUSTER
BLBM_CMASSX
BLBM_CMASSY
BLBM_DENDRITES
BLBM_DENSDEV
BLBM_DENSITY
BLBM_DENSMAX
BLBM_DENSMIN
BLBM_DIRECTION
BLBM_ENDPOINTS
BLBM_FRACTDIM
BLBM_GREEN
BLBM_HETEROGENEITY
BLBM_HOLEAREA
BLBM_HOLEAREARATIO
BLBM_IOD
BLBM_LENGTH
BLBM_MAJORAX
BLBM_MARGINATION
BLBM_MAX_MEAS
BLBM_MAXCALIP
BLBM_MAXFERRET
BLBM_MAXRADIUS
BLBM_MEANCALIP
BLBM_MEANFERRET
BLBM_MINCALIP
BLBM_MINFERRET
BLBM_MINORAX
BLBM_MINRADIUS
BLBM_NUMHOLES
BLBM_PCONVEX
BLBM_PELLIPSE
BLBM_PERAREA
BLBM_PERIMETER
BLBM_PERIMETER2
BLBM_PRATIO
BLBM_RADIUSRATIO
BLBM_RED
BLBM_ROUNDNESS
BLBM_SIZECOUNT
BLBM_WIDTH
BLBMAXFERETS
BLBORDER_ALL
BLBORDER_EW
BLBORDER_NE
BLBORDER_NONE
BLBORDER_NS
BLBORDER_NW
BLBORDER_SE
BLBORDER_SW
BLBSEL_ACTIVE
BLBSEL_ALL
BLBSEL_CANCELLED
BLBSEL_CLASS
BLBSEL_INRANGE
BLBSEL_TAG
BLBSEL_USER
BLBTH_GRADIENT

BLBTH_HISTOGRAM
BLEX_BRANCHLEN
BLEX_CALIPER
BLEX_DIAMETER
BLEX_RADIUS
BLOB_8CONNECT
BLOB_ADDCOUNT
BLOB_AUTORANGE
BLOB_BRIGHTOBJ
BLOB_CLEANBORDER
BLOB_CONVEX
BLOB_FILLHOLES
BLOB_FILTEROBJECTS
BLOB_LABELCOLOR
BLOB_LABELMODE
BLOB_MEASUREOBJECTS
BLOB_MINAREA
BLOB_OUTLINECOLOR
BLOB_OUTLINEMODE
BLOB_SMOOTHING
BR_BRANCH3
BR_BRANCHN
BR_END
BR_SKEL
BRIGHTNESS

C
CALIB_UNIT
Call
CHANNEL
CHANNEL1
CHANNEL2
CHANNEL3
CL_AOICHANGED
CL_APP_CLOSING
CL_APP_SHUTDOWN
CL_CALIBCHANGED
CL_CLIENTCLOSE
CL_CLIENTUNDO
CL_CSEGCHANGED
CL_FLOATMODAL
CL_FRAMECHANGED
CL_IMAGECHANGED
CL_INIT
CL_INVALIDATE
CL_LUTCHANGED
CL_MODAL
CL_MODELESS
CL_MODELESSINIT
CL_NEWCLIENT
CL_PLUGINMESSAGE
CL_PRINTOVERLAY
CL_SEQUENCECHANGED
CL_SERVERCLOSE
CL_SERVERCLOSING
CL_SWITCHVRI
CL_USER_CLASS
CL_WSDOCFILEIO
CL_WSUNDO
CLIENT_FIRST
CLIENT_LAST
CLOC_FSD3D
CLOC_FWDCOLOR
CLOC_FWDMASK

CLOC_FWDPARAMS
CLOC_INVMASK
CLOC_INVPARAMS
CLPD_GETCELL
CLPD_GETCOLCOUNT
CLPD_GETROWCOUNT
CLPD_STAT
CLPR_AUTOREFRESH
CLPR_CCWCIRCLE
CLPR_CIRCLE_ORIGIN
CLPR_COPY
CLPR_CUT
CLPR_CWCIRCLE
CLPR_DERIVATIVE
CLPR_FALLING
CLPR_LINE
CLPR_MAX_PATTERN_SIZE
CLPR_MEAS_DIST
CLPR_MEAS_DIST1
CLPR_MEAS_DIST2
CLPR_MEAS_POS
CLPR_MEAS_POSX
CLPR_MEAS_POSY
CLPR_MOVE
CLPR_MOVE_BR_HANDLE
CLPR_MOVE_TL_HANDLE
CLPR_PASTE
CLPR_PATTERN_MATCH
CLPR_PEAK
CLPR_POLYLINE
CLPR_RISING
CLPR_SIZE
CLPR_VALLEY
CLPRE_COLOR
CLPRE_LABEL
CLPRE_NAME
CLPRE_OFFSET
CLPRE_SAMEINTENSITY
CLPRE_SAMESIZE
CLPRE_STYLE
CLPRE_THRESHOLD
CLPRE_WEIGHT
CLPRO_APPLY_ICAL
CLPRO_APPLY_SCAL
CLPRO_AUTO_SCALE
CLPRO_PRECISION
CLPRO_SHOW_LABEL
CLPRO_SHOW_NUMBER
CLPRO_SMOOTHING
CLPRO_THICKNESS
CLRBACK
CLRBLACK
CLRFORE
CLRWHITE
CM
CM_HSI
CM_HSV
CM_RGB
CM_YIQ
COLORMODEL
COMP_ BACKGROUND
COMP_BESTFIT
COMP_FRAME
COMP_HIDE

Appendix B - Auto-Pro Keywords

Page 5-3

COMP_HUE
COMP_NUMFRAMES
COMP_RESET
COMP_SHOW
COMP_UPDATE
CONTRAST
CONV_DIRECT
CONV_MCOLOR
CONV_MEDIAN
CONV_PSEUDOCOLOR
CONV_SCALE
CONV_SHIFT
CONV_USER
Cos
CP_BLUE_GREEN
CP_BLUE_RED
CP_GREEN_BLUE
CP_GREEN_RED
CP_RED_BLUE
CP_RED_GREEN
CPROG
CUNDO_APPLY
CUNDO_CREATE
CUNDO_REDO
CUNDO_RELEASE
Currency
CURRENT_B_T
CURRENT_B_W
CURRENT_C_B
CURRENT_C_T
CURRENT_C_W
CURRENT_T_B
CURRENT_T_W
CURRENT_W_B
CURSORSIZE
CURVE

D
DB_BINARY
DB_CAPTION
DB_COPYCUSTOM
DB_FILE
DB_FIRST
DB_INT
DB_LAST
DB_LONG
DB_MEMO
DB_NEXT
DB_PREV
DB_STRING
DBASE_EXITING
DBASE_IMAGE_SELECTED
DBASE_LOAD_IMAGE
DBASE_SEARCHED_CASE
DBASE_STARTING
DC_AUTO
DC_AUTOMODE
DC_BLOCKROW1
DC_BREAK
DC_CELL
DC_COL
DC_COLWIDTH
DC_DATA
DC_FETCH

DC_LEFTCOL
DC_NUMBLOCK
DC_NUMCOL
DC_NUMROW
DC_NUMVAL
DC_RESET
DC_RESETLAST
DC_ROW
DC_SIGNIF
DC_STATS
DC_TOPLINE
DC_TYPE
DDE_CLOSE
DDE_EXEC
DDE_GET
DDE_OPEN
DDE_PUT
DDE_SET
Declare
DEGREE
Dim
DISTANCE_DIAGONAL
DISTANCE_EUCLIDEAN
DISTANCE_SQUARE
DLG_MENU_COORD
DLG_MENU_ID
DLG_MENU_NAME
Do
DOCINFO_GETPMODE
DOCINFO_INSTANCE
DOCIO_GENERIC
DOCIO_IPW
DOCIO_TIFF
DOCS_CASCADE
DOCS_OVERLAP
DOCS_TILE
DOCSEL_ACTIVE
DOCSEL_ALL
DOCSEL_NEXTID
DOCSEL_NONE
DOCSEL_PREVID
Double
DR_BEST
DR_FRANGE
DR_GAMMA
DR_INV
DR_RANGE
DRAW_ARROWCIRCLE
DRAW_CIRCLEARROW
DRAW_CIRCLEBOTH
DRAW_DIAMONDBOTH
DRAW_FILLCOLOR
DRAW_LARGEARROWBOT
H
DRAW_LARGEARROWLEFT
DRAW_LARGEARROWRIGH
T
DRAW_LINECOLOR
DRAW_LINEWIDTH
DRAW_PLAINLINE
DRAW_SMALLARROWBOTH
DRAW_SMALLARROWLEFT
DRAW_SMALLARROWRIGH
T

DRAW_THICKLINE
DRAW_THINLINE
DTR_ANGLEDOT
DTR_ANGLELINE
DTR_CUSTOM
DTR_ERRDIFF
DTR_FLATDOT
DTR_HORZLINE
DTR_THRESHOLD
DTR_THRESHOLDBLACK
DTR_THRESHOLDWHITE
DTR_VERTLINE

E
EDF_BEST_FOCUS
EDF_BOTTOMUP
EDF_COMPOSITE
EDF_CRITERIA
EDF_DEFAULT_FRAME
EDF_MAX_DEPTHCONTRAS
T
EDF_MAX_INTENSITY
EDF_MAX_LOCALCONTRAS
T
EDF_MIN_INTENSITY
EDF_NORMALIZE
EDF_NORMALIZE
EDF_OPO_CALIBRATED
EDF_ORDER
EDF_TOPDOWN
EDF_TOPO_MAP
Else
ElseIf
End
ENDOFMESSAGE
EQ_BELL
EQ_BESTFIT
EQ_EXPONENTIAL
EQ_LINEAR
EQ_LOGARITHMIC
EQ_WHITEBAL
Eqv
EXE-FUNC
Exit
Exp

F
FFT_HANNING
FFT_NEWFLOAT
FFT_NEWIMAGE
FFT_NOTCH
FFT_PHASE
FFT_PHASE32
FFT_SOURCE
FFT_SPECPHASE32
FFT_SPECTRUM
FFT_SPECTRUM32
FILE_BEGIN
FILE_CURRENT
FILE_END
FILE_MAP_ALL_ACCESS
FILE_MAP_COPY
FILE_MAP_READ
FILE_MAP_WRITE

Appendix B - Auto-Pro Keywords

Page 5-4

FILLCOLOR
FILLHUE
FILLPATTERN
FILLTEXTURE
FILLTINT
FLT_16NEIGHBOR
FLT_4NEIGHBOR
FLT_8NEIGHBOR
FLT_EDGE_HORZ
FLT_EDGE_THICK
FLT_EDGE_THIN
FLT_EDGE_VERT
FLT_EMBOSS_ABOVE
FLT_EMBOSS_DIAG
FLT_EMBOSS_LEFT
FLT_LINE_BOTH
FLT_LINE_HORZ
FLT_LINE_VERT
FLT_SCULPT_ABOVE
FLT_SCULPT_DIAG
FLT_SCULPT_LEFT
FLT_SCULPT_METAL
For
FRAME_ELLIPSE
FRAME_INVIEW
FRAME_IRREGULAR
FRAME_NONE
FRAME_RECTANGLE
FRAME_RESET
FreeDDElParam
FREEZE
FS_COMPARE
FS_COMPARE_STR
FS_SIGNATURE
FS_SIGNATURE_STR
FTOA_COMMA
FTOA_COMMA
FTOA_FEXP
FTOA_FEXP
FTOA_FORCE
FTOA_FORCE
FTOA_INT
FTOA_INT
FTOA_PSIGN
FTOA_PSIGN
FTOA_SIGNIFMASK
FTOA_SIGNIFMASK
FTOA_SIZEMASK
FTOA_SIZEMASK
FTOAFORMAT
FTOAFORMAT
FTOASIGNIF
FTOASIGNIF
FTOASIZE
FTOASIZE
FTP_DUMMY
Function
FUT_FRAMESADDED
FUT_FRAMESCUT
FUT_FRAMESMOD

G
GALLERY_MESSAGE
GAMMA

GET_VALUE
GETACTDOC
GETAPPDIR
GETAPPNAME
GETAPPVERSION
GETAPPWND
GETBOUNDS
GETCHANNELS
GETCURPOS
GETDOCINFO
GETDOCLST
GETDOCVRI
GETDOCWND
GETEDITPOINT
GETFEATVALUES
GETFLOAT
GETGRAPH
GETHBLOB
GETHIT
GETHWND
GETINDEX
GETINSTINFO
GETINT
GETLABEL
GETLNUMPTS
GETMEASVALUES
GETNAME
GETNUMCLASS
GETNUMDOC
GETNUMMEAS
GETNUMOBJ
GETNUMPTS
GETNUMRANGES
GETNUMSAMPLES
GETOSVERSION
GETPLUGSN
GETPOINTS
GETRANGE
GETRANGESTATS
GETSTATS
GETSTATUS
GETSTRING
GETTHRESH
GETTYPE
GETVALUES
GETX
GETY
GETZ
GO_ATTR_BRUSHCOLOR
GO_ATTR_CONNECT
GO_ATTR_FONTBOLD
GO_ATTR_FONTITALIC
GO_ATTR_FONTSIZE
GO_ATTR_FONTUNDERLIN
E
GO_ATTR_LINEEND
GO_ATTR_LINESTART
GO_ATTR_NUMPOINTS
GO_ATTR_PENCOLOR
GO_ATTR_PENSTYLE
GO_ATTR_PENWIDTH
GO_ATTR_POINTS
GO_ATTR_RECTSTYLE
GO_ATTR_TEXT

GO_ATTR_TEXTAUTOSIZE
GO_ATTR_TEXTCENTERED
GO_ATTR_TEXTCOLOR
GO_ATTR_TEXTLENGTH
GO_ATTR_TEXTWORDWRA
P
GO_ATTR_USEASDEFAULT
GO_ATTR_ZOOM
GO_LINEEND_CIRCLE
GO_LINEEND_LARGEARRO
W
GO_LINEEND_LARGEDIAM
OND
GO_LINEEND_LARGETICKM
ARK
GO_LINEEND_NOTHING
GO_LINEEND_SMALLARRO
W
GO_LINEEND_SMALLDIAMO
ND
GO_LINEEND_SMALLTICKM
ARK
GO_OBJ_ELLIPSE
GO_OBJ_INDEX
GO_OBJ_LINE
GO_OBJ_NUMBER
GO_OBJ_POLY
GO_OBJ_RECT
GO_OBJ_ROUNDRECT
GO_OBJ_TEXT
GO_PENSTYLE_DASH
GO_PENSTYLE_DASHDOT
GO_PENSTYLE_DASHDOTD
OT
GO_PENSTYLE_DOT
GO_PENSTYLE_SOLID
GO_RECTSTYLE_BORDER_
FILL
GO_RECTSTYLE_BORDER_
NOFILL
GO_RECTSTYLE_NOBORDE
R_FILL
GO_SEL_INDEX
GO_SEL_NUMBER
GoSub
GoTo
GRID
GRID_ATTR_BMARGIN
GRID_ATTR_CHECKERED
GRID_ATTR_COLOR
GRID_ATTR_COUNT
GRID_ATTR_DISPLAYAS
GRID_ATTR_FLAGRANDSE
ED
GRID_ATTR_FULLSIZE
GRID_ATTR_HLENGTH
GRID_ATTR_HSPACE
GRID_ATTR_LAYOUT
GRID_ATTR_LENGTH
GRID_ATTR_LMARGIN
GRID_ATTR_OBJECT
GRID_ATTR_PENWIDTH
GRID_ATTR_RMARGIN
GRID_ATTR_RSPACE

Appendix B - Auto-Pro Keywords

Page 5-5

GRID_ATTR_TMARGIN
GRID_ATTR_VALRANDSEE
D
GRID_ATTR_VLENGTH
GRID_ATTR_VSPACE
GRID_CALIBFLAG_IMAGE
GRID_CALIBFLAG_PIXEL
GRID_LATICE
GRID_LAYOUT_CONCENTRI
C
GRID_LAYOUT_ORTHOGON
AL
GRID_LAYOUT_RANDOM
GRID_LINES
GRID_OBJECT_CIRCLE
GRID_OBJECT_CYCLOID
GRID_OBJECT_LINE
GRID_OBJECT_LINESGM
GRID_OBJECT_POINT
GRID_POINT_CIRCLE_LRG
GRID_POINT_CIRCLE_SML
GRID_POINT_CROSS_LRG4
5
GRID_POINT_CROSS_LRG9
0
GRID_POINT_CROSS_SML4
5
GRID_POINT_CROSS_SML9
0
GRID_POINT_DIAMOND_LR
G
GRID_POINT_DIAMOND_SM
L
GRID_POINT_MED
GRID_POINT_RECT_LRG
GRID_POINT_RECT_SML
GRID_POINT_STAR8
GRID_POINT_THREEDOWN
GRID_POINT_THREEUP
GRID_POINTS

H
HAILMAXPOINTS
HAILMAXSEGMENTS
HAILMAXSEGMENTS
HDI_DRAGINIT
HDI_DRAGTOWINDOW
HDI_DROPFILE
HDI_RECEIVINGDRAG
HIL_WINDOWS
HIL_WINDOWS32
HILAPI
HilGlobalAlloc
HilGlobalFree
HilGlobalLock
HilGlobalUnlock
HilImClose
HilLocalAlloc
HilLocalFree
HilLocalLock
HilLocalRealloc
HilLocalUnlock
HSTM_DEFAULT
HSTM_RGBTOHSI

HSTM_RGBTOHSV
HSTM_RGBTORGB
HSTM_RGBTOYIQ
HUE_BLUE
HUE_CYAN
HUE_DEFAULT
HUE_GREEN
HUE_INTERACTIVE
HUE_MAGENTA
HUE_QUERY
HUE_RED
HUE_WHITE
HUE_YELLOW

I
ICAL
ICAL_DESTROY
ICAL_GETBLACK
ICAL_GETCLASS
ICAL_GETCUNAME
ICAL_GETFITMODE
ICAL_GETFLAGS
ICAL_GETHANDLE
ICAL_GETINDICENT
ICAL_GETINPUTMAX
ICAL_GETINPUTMIN
ICAL_GETNAME
ICAL_GETNEXT
ICAL_GETNUMPOINTS
ICAL_GETNUMSAMPLES
ICAL_GETPOINT
ICAL_GETPOINTS
ICAL_GETRESPONSE
ICAL_GETRESPONSEMAX
ICAL_GETRESPONSEMIN
ICAL_GETSYSTEM
ICAL_GETTYPE
ICAL_MONOTONOUS
ICAL_SETBLACK
ICAL_SETCLASS
ICAL_SETCUNAME
ICAL_SETFITMODE
ICAL_SETFLAGS
ICAL_SETINCIDENT
ICAL_SETINPUTMAX
ICAL_SETINPUTMIN
ICAL_SETNAME
ICAL_SETNUMSAMPLES
ICAL_SETPOINT
ICAL_SETPOINTS
ICAL_SETRESPONSE
ICAL_SETSYSTEM
ICAL_SETTYPE
ICALF_POSITIVE
ICALT_FREEFORM
ICALT_ONE2ONE
ICALT_OPTDEN
ICALT_RESPONSE
ICLU_DOUBLEIN
ICLU_FLOATOUT
IDM_INSERTFIRST
IDM_INSERTLAST
IDM_MACROFIRST
IDM_MACROLAST

IDT_GMTFILETIME
IDT_GMTSTR
IDT_LOCALFILETIME
IDT_LOCALSTR
If
IFF_MAXHANDLES
IFFBV_OS2_1
IFFBV_OS2_2M
IFFBV_OS2_2S
IFFBV_WIN_3
IFFBV_WIN_4
IFFCL_BILEVEL
IFFCL_CIELAB
IFFCL_CMYK
IFFCL_GRAY
IFFCL_PALETTE
IFFCL_RGB
IFFCL_RGBA
IFFCL_RGBAPLANAR
IFFCL_RGBPLANAR
IFFCL_YCC
IFFCMD_ARTISTNAME
IFFCMD_BMP
IFFCMD_BMP_VERSION
IFFCMD_BMPINVERTED
IFFCMD_BMPVERSION
IFFCMD_CMYKINFO
IFFCMD_COLORIMETRY
IFFCMD_DATETIME
IFFCMD_DELETE
IFFCMD_DESCRIPTION
IFFCMD_DOCUMENTNAME
IFFCMD_EPSF
IFFCMD_FLAT
IFFCMD_GETDATASIZE
IFFCMD_GETERROR
IFFCMD_GETIFFFLATD
IFFCMD_GETLINESIZE
IFFCMD_GETNUMIMAGES
IFFCMD_GIF
IFFCMD_GIFTRANSPARENT
IFFCMD_HCUT
IFFCMD_HFF
IFFCMD_IMAGESEEK
IFFCMD_IMG
IFFCMD_JPEG
IFFCMD_JPEGQ
IFFCMD_MSP
IFFCMD_PALETTE
IFFCMD_PCD
IFFCMD_PCDGETTRANSFO
RM
IFFCMD_PCDISKEYED
IFFCMD_PCDSETCLASS
IFFCMD_PCDSETKEY
IFFCMD_PCDSETTRANSFO
RM
IFFCMD_PCX
IFFCMD_RESOLUTION
IFFCMD_SETIFFFLATD
IFFCMD_SETPACKMODE
IFFCMD_SOFTWARENAME
IFFCMD_TGA
IFFCMD_TIFF

Appendix B - Auto-Pro Keywords

Page 5-6

IFFCMD_TIFFFLOAT
IFFCMD_TIFFOPTIONS
IFFCMD_TIFFTAG
IFFCMD_TIFFTAGDATA
IFFCMD_TILEFORMAT
IFFCMD_WPG
IFFCMD_YCCINFO
IFFCMD_YCCRGBCONVERT
IFFCOMP_CCITT1D
IFFCOMP_CCITTG3
IFFCOMP_CCITTG4
IFFCOMP_DEFAULT
IFFCOMP_JPEG
IFFCOMP_LZW
IFFCOMP_LZWHPRED
IFFCOMP_NONE
IFFCOMP_RLE
IFFERR_FILENOTFOUND
IFFERR_HANDLELIMIT
IFFERR_HEADER
IFFERR_IMAGE
IFFERR_INV_SIZE
IFFERR_IO_CLOSE
IFFERR_IO_OPEN
IFFERR_IO_READ
IFFERR_IO_SEEK
IFFERR_IO_WRITE
IFFERR_LAST_ERROR
IFFERR_LZW_DISABLED
IFFERR_MEMORY
IFFERR_NO_DES
IFFERR_NO_LIBRARY
IFFERR_NONE
IFFERR_NOTAVAILABLE
IFFERR_NOTSUPPORTED
IFFERR_PARAMETER
IFFERR_UNKNOWN_FF
IFFINF_BITSPERPLANE
IFFINF_CLASS
IFFINF_COMPRESSION
IFFINF_FILEFORMAT
IFFINF_HEIGHT
IFFINF_RESOLUTIONX
IFFINF_RESOLUTIONY
IFFINF_SEQUENCE
IFFINF_WIDTH
IFFIT_MASK
IFFIT_PRIMARY
IFFIT_THUMBNAIL
IFFLIB_APOLLO
IFFLIB_BMP
IFFLIB_EPS
IFFLIB_FLAT
IFFLIB_GIF
IFFLIB_HALOCUT
IFFLIB_HCUT
IFFLIB_IMG
IFFLIB_JPEG
IFFLIB_MSP
IFFLIB_PCD
IFFLIB_PCX
IFFLIB_PICT
IFFLIB_RAS
IFFLIB_TGA

IFFLIB_TIFF
IFFM_APPEND
IFFM_MEMORY
IFFM_READ
IFFM_READWRITE
IFFM_WRITE
IFFPM_LEFTJUSTIFIED
IFFPM_NORMALIZED
IFFPM_PACKED
IFFPM_RAW
IFFPM_UNPACKED
IFFSEQ_BOTTOMUP
IFFSEQ_INTERLACED
IFFSEQ_TOPDOWN
IFFTF_NONE
IFFTF_STRIPS
IFFTF_TILES
IMA_RD
IMA_RDNOCACHE
IMA_RDWR
IMC_BILEVEL
IMC_C_DIRECT
IMC_C_SCALE
IMC_C_SHIFT
IMC_CMYK
IMC_FLOAT
IMC_GRAY
IMC_GRAY12
IMC_GRAY16
IMC_M_DA
IMC_M_FDA
IMC_M_NOINIT
IMC_M_SHARED
IMC_PALETTE
IMC_RGB
IMC_RGB36
IMC_RGB48
IMCMD_CHANGEHEIGHT
IMCMD_DELETEFRAME
IMCMD_GETACTIVEFRAME
IMCMD_GETARTIST
IMCMD_GETBPP
IMCMD_GETBYTEHEIGHT
IMCMD_GETBYTEHEIGHTE
X
IMCMD_GETBYTEWIDTH
IMCMD_GETBYTEWIDTHEX
IMCMD_GETCLASS
IMCMD_GETDATE
IMCMD_GETDESC
IMCMD_GETDISPLAYRANG
E
IMCMD_GETDPI
IMCMD_GETDPM
IMCMD_GETERROR
IMCMD_GETEXPRESPONSE
IMCMD_GETEXPRESPONSE
ADDR
IMCMD_GETEXTENT
IMCMD_GETEXWRESPONS
E
IMCMD_GETFILEFORMAT
IMCMD_GETFLOATRANGE
IMCMD_GETFRAMEDATE

IMCMD_GETHISTCHANNEL
IMCMD_GETHISTSTATUS
IMCMD_GETLINEALLOCWID
TH
IMCMD_GETLUTADDR
IMCMD_GETLUTCOUNT
IMCMD_GETMAXINTENSITY
IMCMD_GETMODIFIED
IMCMD_GETNAME
IMCMD_GETNUMFRAMES
IMCMD_GETPALETTE
IMCMD_GETPSEUDOLUT
IMCMD_GETRESPONSE
IMCMD_GETSEQSELECTIO
N
IMCMD_GETSIZE
IMCMD_GETTITLE
IMCMD_I_GETACCESS
IMCMD_I_GETBYTEHEIGHT
IMCMD_I_GETBYTEHEIGHT
EX
IMCMD_I_GETBYTEWIDTH
IMCMD_I_GETBYTEWIDTHE
X
IMCMD_I_GETEXTENT
IMCMD_I_GETFRAME
IMCMD_I_GETHIST
IMCMD_I_GETMODIFIED
IMCMD_I_GETSIZE
IMCMD_I_SETACCESS
IMCMD_I_SETBESTDISPLAY
RANGE
IMCMD_I_SETMODIFIED
IMCMD_ISLILUT
IMCMD_LUTRESET
IMCMD_M_SIZE
IMCMD_REALIZELUTS
IMCMD_SETACTIVEFRAME
IMCMD_SETARTIST
IMCMD_SETBESTDISPLAYR
ANGE
IMCMD_SETDATE
IMCMD_SETDESC
IMCMD_SETDISPLAYRANG
E
IMCMD_SETDPI
IMCMD_SETDPM
IMCMD_SETFILEFORMAT
IMCMD_SETFLOATRANGE
IMCMD_SETFRAMEDATE
IMCMD_SETHISTCHANNEL
IMCMD_SETHISTSTATUS
IMCMD_SETMODIFIED
IMCMD_SETNAME
IMCMD_SETPALETTE
IMCMD_SETPSEUDOLUT
IMCMD_SETRESPONSE
IMCMD_SETSEQSELECTIO
N
IMCMD_SETTITLE
IME_CACHE_REALLOC
IME_CANCELLED
IME_CLIPPED
IME_CLOSE

Appendix B - Auto-Pro Keywords

Page 5-7

IME_DISK_OPEN
IME_DISK_READ
IME_DISK_WRITE
IME_EMPTY
IME_HANDLE_LIMIT
IME_HIFFL
IME_INV_CLASS
IME_INV_CMD
IME_INV_EXTENT
IME_INV_HANDLE
IME_INV_LINE_NO
IME_INV_PARAM
IME_INV_SIZE
IME_INV_TYPE
IME_MEM_ACCESS
IME_NO_MEMORY
IME_NO_PROT_KEY
IME_NONE
IME_NOT_SUPPORTED
IMGL_COPY
IMGL_NORMAL
IMM_AND
IMM_COPY
IMM_NAND
IMM_NOR
IMM_OR
Imp
IMPL_COPY
IMPL_NORMAL
IMT_DA
IMT_DISK
IMT_EXTMEMORY
IMT_MEMORY
INCHES
INF_ARTIST
INF_DATE
INF_DESCRIPTION
INF_DPIX
INF_DPIY
INF_FILENAME
INF_MAXRANGE
INF_NAME
INF_RANGE
INF_SUBJECT
INF_TITLE
INF_XPOSITION
INF_YPOSITION
INF_ZPOSITION
InStr
Int
Integer
INTF_FUNC
INVERT
IpAcqAverage
IpAcqControl
IpAcqDynIntSnap
IpAcqMultiSnap
IpAcqSelectDriver
IpAcqSettings
IpAcqShow
IpAcqSnap
IpAcqSeqIntSnap
IpAcqTimed
IpAcqTimedEx

IpAlignAdd
IpAlignApply
IpAlignCalculate
IpAlignFindPattern
IpAlignGet
IpAlignOpen
IpAlignRemove
IpAlignSave
IpAlignSetEx
IpAlignSetInt
IpAlignSetSearchPattern
IpAlignSetSingle
IpAlignShow
IpAffine
IpAFAAddChan
IpAFADelChan
IpAFADelChanStr
IpAFAGet
IpAFAGetStr
IpAFALoad
IpAFAMacroGet
IpAFAMacroSet
IpAFANew
IpAFASave
IpAFASaveAs
IpAFASetInt
IpAFASetStr
IpAFASetEx
IpAFASetSingle
IpAFAShow
IpAFASnap
IpAnActivateAll
IpAnActivateDefaultObj
IpAnActivateObjID
IpAnActivateObjXY
IpAnAddText
IpAnBurn
IpAnCreateObj
IpAnDeleteAll
IpAnDeleteObj
IpAnGet
IpAnGetFontName
IpAnGetStr
IpAnMove
IpAnotAttr
IpAnotBox
IpAnotEllipse
IpAnotLine
IpAnPolyAddPtArray
IpAnPolyAddPtString
IpAnSet
IpAnSetFontName
IpAnShowAnnot
IpAnText
IpAoiChangeName
IpAoiCreateBox
IpAoiCreateDonut
IpAoiCreateEllipse
IpAoiCreateIrregular
IpAoiGet
IpAoiManager
IpAoiMove
IpAoiMultAppend
IpAoiMultShow

IpAoiShow
IpAoiValidate
IpAppArrange
IpAppCloseAll
IpAppCtl
IpAppCtlText
IpAppExit
IpAppGet
IpAppGet2
IpAppGetStr
IpAppHide
IpAppMaximize
IpAppMenuSelect
IpAppMinimize
IpAppMove
IpAppRestore
IpAppRun
IpAppSelectDoc
IpAppSet
IpAppSize
IpAppUpdateDoc
IpAppWindow
IpAppWndPos
IpAppWndState
IpBayerInterpolate
IpBayerGetInt
IpBayerSetInt
IpBayerShow
IpBitAttr
IpBitSaveData
IpBitShow
IpBlbCount
IpBlbCreateMask
IpBlbData
IpBlbDelete
IpBlbEnableMeas
IpBlbFilter
IpBlbFromAoi
IpBlbGet
IpBlbGetStr
IpBlbHideObject
IpBlbLoadOutline
IpBlbLoadSetting
IpBlbMeasure
IpBlbMultiRanges
IpBlbRange
IpBlbRemoveHoles
IpBlbSaveClasses
IpBlbSaveData
IpBlbSaveOutline
IpBlbSavePopDensities
IpBlbSaveSetting
IpBlbSetAttr
IpBlbSetFilterRange
IpBlbSetRange
IpBlbSetRangeEx
IpBlbShow
IpBlbShowAutoClass
IpBlbShowCluster
IpBlbShowData
IpBlbShowHistogram
IpBlbShowObjectWindow
IpBlbShowPopDens
IpBlbShowScattergram

Appendix B - Auto-Pro Keywords

Page 5-8

IpBlbShowSingleClass
IpBlbShowStatistics
IpBlbSmoothObjects
IpBlbSplitObjects
IpBlbUpdate
IPC_CANCEL_MACRO
IPC_EXEC
IPC_MACRO_KEY
IPC_MESSAGE
IPC_PLAY
IPC_PLAY_MACRO
IPC_PLAY2
IPC_RECORD
IPC_SIZECLASSIFIERS
IPC_SIZEICAL
IPC_START_RECORD
IPC_STOP_MACRO
IPC_STOP_MACROSET
IPC_STOP_RECORD
IpCalGet
IpCalLoad
IpCalSave
IpCalSaveAll
IpCalSaveEx
IpCapArea
IpCapFile
IpCapHotKey
IpCapWindow
IPCERR_APPINACTIVE
IPCERR_BUSY
IPCERR_DLLNOTFOUND
IPCERR_EMPTY
IPCERR_FUNC
IPCERR_FUNCARG
IPCERR_FUNCNOTFOUND
IPCERR_INVARG
IPCERR_INVCOMMAND
IPCERR_MEMORY
IPCERR_NODOC
IPCERR_NOTASET
IPCERR_NONE
IPCERR_NOTFOUND
IPCFUNC
IpClprClipboard
IpClprCreateDerivativeEdge
IpClprCreateMeas
IpClprCreatePatternMatchEdge
IpClprCreateSampler
IpClprDeleteEdge
IpClprDeleteMeas
IpClprDeleteSampler
IpClprDetGetInt
IpClprDetGetSng
IpClprEditSampler
IpClprGet
IpClprGetData
IpClprGetDataEx
IpClpGetIntEx
IpClprGetStr
IpClprGetSngEx
IpClprSave
IpClprSelectEdge
IpClprSelectSampler
IpClprSet

IpClprSetStr
IpClprSettings
IpClprShow
IpClprToggleMarker
IpClprTool
IpCmChannelExtract
IpCmChannelMerge
IpCmChannelMerge3
IpCmpAdd
IpCmpDel
IpCmpGet
IpCmpNew
IpCmpSet
IpCmpShow
IpCmmCorrectColors
IpCmmGet
IpCmmSelectCameraProfile
IpCmmSetInt
IpCmmSetStr
IpCmTransform
IpColcForw
IpColocGetDocument
IpColcGetForw
IpColcGetInv
IpColcInv
IpColcShow
IpCoLocForward
IpCoLocGetForward
IpCoLocGetInverse
IpCoLocInverse
IpCoLocShow
IPCSETUP1
IPCSETUP10
IPCSETUP2
IPCSETUP3
IPCSETUP4
IPCSETUP5
IPCSETUP6
IPCSETUP7
IPCSETUP8
IPCSETUP9
IPCX_RECORD
IPCX_RECORDASK
IPCX_RECORDLINE
IpDbAddAppRecord
IpDbAddField
IpDbClose
IpDbCreateAppItem
IpDbDeleteAppItem
IpDbFind
IpDbFindStr
IpDbGetActive
IpDbGetAppID
IpDbGetAppItemID
IpDbGetAppRecords
IpDbGoto
IpDbIsRunning
IpDbLoadView
IpDbNewFolder
IpDbOpen
IpDbOpenFolder
IpDbPrint
IpDbRead
IpDbReadAppItem

IpDbReadNum
IpDbReadStr
IpDbRegisterApp
IpDbSearch
IpDbSearchStr
IpDbSetAttr
IpDbShowAppSearch
IpDbStart
IpDbStop
IpDbUnregisterApp
IpDbViewAll
IpDbViewFolder
IpDbWrite
IpDbWriteAppItem
IpDbWriteNum
IpDbWriteStr
IpDcAdd
IpDcAddCol
IpDcAddSng
IpDcAddStr
IpDcDeleteCol
IpDcGet
IpDcGetStr
IpDcSave
IpDcSaveData
IpDcSelect
IpDcSet
IpDcShow
IpDcUnSelect
IpDcUpdate
IpDCnvCalculateSA
IpDCnvDeconvolve
IpDCnvGet
IpDCnvGetStr
IpDCnvResultsShow
IpDCnvSet
IpCDnvSettings
IpDCnvSetStr
IpDCnvSetSng
IpDCnvShow
IpDde
IpDemoShow
IpDistDelete
IpDistGetLong
IpDistGetStr
IpDistGetSng
IpDistSetLong
IpDistSetStr
IpDistShow
IpDistTag
IpDistTool
IpDocClick
IpDocClose
IpDocCloseEx
IpDocCloseVri
IpDocFind
IpDocGet
IpDocGetArea
IpDocGetAreaSize
IpDocGetLine
IpDocGetPropDate
IpDocGetPropDbl
IpDocGetPropStr
IpDocGetPosition

Appendix B - Auto-Pro Keywords

Page 5-9

IpDocGetStr
IpDocMaximize
IpDocMinimize
IpDocMove
IpDocOpenAoi
IpDocOpenVri
IPDOCPOS
IpDocPutArea
IpDocPutLine
IpDocRestore
IpDocSetPosition
IpDocSetPropDate
IpDocSetPropDbl
IpDocSetPropStr
IpDocSize
IpDraw
IpDrawClear
IpDrawClearDoc
IpDrawGet
IpDrawSet
IpDrawText
IpDrGet
IpDrSet
IpDrShow
IpDsGet
IpDsGetStr
IpDsShow
IpDyeAdd
IpDyeDelete
IpDyeEdit
IpDyeGet
IpDyeGetStr
IpDyeSelect
IpDyeSetStr
IpEDFAdd
IpEDFCreate
IpEDFGet
IpEDFNew
IpEDFRemove
IpEDFSet
IpEDFShow
IpEDFTopoMap
IpFftForward
IpFftHiPass
IpFftInverse
IpFftLoad
IpFftLoPass
IpFftSave
IpFftShow
IpFftSpikeBoost
IpFftSpikeCut
IpFftTag
IpFlt3DApplytoBuffer
IpFlt3DApplytoFrames
IpFlt3DBranchEnd
IpFlt3DConv
IpFlt3DData
IpFlt3DDistance
IpFlt3DGet
IpFlt3DKernel
IpFlt3DMorph
IpFlt3DMorphKernel
IpFlt3DPrune
IpFlt3DRank

IpFlt3DReduce
IpFlt3DSet
IpFlt3DShow
IpFlt3DThin
IpFlt3dVectGet
IpFlt3dVectGetData
IpFlt3DVectorize
IpFlt3DWatershed
IpFltBranchEnd
IpFltClose
IpFltConvolveKernel
IpFltDespeckle
IpFltDilate
IpFltDistance
IpFltErode
IpFltExtractBkgnd
IpFltFlatten
IpFltGauss
IpFltHiPass
IpFltLaplacian
IpFltLocHistEq
IpFltLoPass
IpFltMedian
IpFltOpen
IpFltPhase
IpFltPrune
IpFltRank
IpFltReduce
IpFltRoberts
IpFltRstrDilate
IpFltRstrDilateShow
IpFltSharpen
IpFltShow
IpFltSobel
IpFltThin
IpFltThinEx
IpFltUserDilate
IpFltUserErode
IpFltVariance
IpFltWatershed
IpFltWatershedEx
IpFsGet
IpFsGetStr
IpFsShow
IpFTPOpen
IpFTPSave
IpGalAdd
IpGalChangeDescription
IpGalClose
IpGalDelete
IpGalImageOpen
IpGalNew
IpGalOpen
IpGalOpenPhotoCD
IpGalRemove
IpGalSetActive
IpGalShow
IpGalSort
IpGalTag
IpGalUpdate
IpGetLine
IpGridApply
IpGridCreateMask
IpGridSelect

IpGridShow
IpHstCreate
IpHstDestroy
IpHstEqualize
IpHstGet
IpHstMaximize
IpHstMinimize
IpHstMove
IpHstRestore
IpHstSave
IpHstScale
IpHstSelect
IpHstSetAttr
IpHstSize
IpHstUpdate
IpICalCalibValues
IpICalCreate
IpICalDestroy
IpICalDestroyEx
IpICalGetLong
IpICalGetSng
IpICalGetStr
IpICalGetSystem
IpICalLinearize
IpICalLoad
IpICalMove
IpICalReset
IpICalSelect
IpICalSetLong
IpICalSetName
IpICalSetOptDens
IpICalSetPoints
IpICalSetSamples
IpICalSetSng
IpICalSetStr
IpICalSetSystem
IpICalSetSystemByName
IpICalSetUnitName
IpICalShow
IpICalShowFormat
IpIOvrApply
IpIOvrGet
IpIOvrSet
IpIOvrSetStr
IpIOvrShow
IpIniFile
IpIniFileStr
IpIsGet
IpIsGetStr
IpIsShow
IpLensAdd
IpLensDelete
IpLensEdit
IpLensGetLong
IpLensGetSng
IpLensGetStr
IpLensSelet
IpLensSetStr
IpListPts/IpMorePts
IpLiveEDFSetInt
IpLiveEDFGet
IpLiveTilingSetInt
IpLFltApply
IpLFltShow

Appendix B - Auto-Pro Keywords

Page 5-10

IpListPts
IpLFltApply
IpLFltShow
IpLutApply
IpLutBinarize
IpLutData
IpLutLoad
IpLutReset
IpLutSave
IpLutSetAttr
IpLutSetControl
IpLutShow
IpMacroLoad
IpMacroPause
IpMacroRun
IpMacroStop
IpMacroWait
IpMacroProgGet
IpMacroProgGetStr
IpMacroProgSetInt
IpMacroProgSetStr
IpMacroProgShow
IpMail
IpMeasAdd
IpMeasAddMeasure
IpMeasAttr
IpMeasAttrStr
IpMeasDelete
IpMeasDelMeasure
IpMeasGet
IpMeasGetHit
IpMeasGetStr
IpMeasLoad
IpMeasLoadOutline
IpMeasMove
IpMeasRestore
IpMeasSave
IpMeasSaveData
IpMeasSaveOutline
IpMeasShow
IpMeasSize
IpMeasTag
IpMeasTool
IpMeasUpdate
IpMmonGet
IpMmonSet
IpMmonShow
IpMorePts
IpMosaicCreate
IpMosaicGet
IpMosaicSet
IpOpBkgndCorrect
IpOpBkgndSubtract
IpOpImageArithmetics
IpOpImageLogic
IpOpNumberArithmetics
IpOpNumberLogic
IpOpNumberRgb
IpOpShow
IpOutput
IpOutputClear
IpOutputSave
IpOutputSet
IpOutputShow

IpPalSetGrayBrush
IpPalSetPaletteBrush
IpPalSetPaletteColor
IpPalSetRGBBrush
IpPalShow
IpPcDefineColorSpread
IpPcDyeTint
IpPcLoad
IpPcSave
IpPcSaveData
IpPcSetColor
IpPcSetColorSpread
IpPcSetDivisions
IpPcSetRange
IpPcShow
IpPcTint
IpPlFilter
IpPlImport
IpPlotCreate
IpPlotData
IpPlotDestroy
IpPlotRange
IpPlotSet
IpPlotShow
IpPlotUpdate
IpPlShow
IpPortIOGetInt
IpPortIOOpenConfig
IpPortIOSaveConfig
IpPortIOSetInt
IpPortIOShow
IpPortIORead
IpPortIOWrite
IpProfCreate
IpProfDestroy
IpProfGet
IpProfLineMove
IpProfMaximize
IpProfMinimize
IpProfMove
IpProfRestore
IpProfSave
IpProfSelect
IpProfSetAttr
IpProfSize
IpProfUpdate
IpPrtHalftone
IpPrtPage
IpPrtScreen
IpPrtSize
IpRegister
IpRegShow
IpRendAnimation
IpRendAnimationFile
IpRendConvertCoord
IpRendConvertRotation
IpRendElem
IpRendElemGet
IpRendElemSet
IpRendElemSetStr
IpRendLoad
IpRendManualMeasurements
File
IpRendMeasGraphSet

IpRendMMeas
IpRendMMeasGetStr
IpRendMMeasSet
IpRendMMeasSetStr
IpRendMove
IpRendReload
IpRendSaveData
IpRendPaletteFile
IpRendSet
IpRendSettingsFile
IpRendSize
IpRendShow
IpRendVMeas
IpRendVMeasGetStr
IpRendVMeasHist
IpRendVMeasHistSet
IpRendVMeasSet
IpRendVMeasSetStr
IpRptClose
IpRptNew
IpRptOpen
IpRptPrint
IpRptSave
IpRptShow
IpSCalCalibValues
IpSCalCreate
IpSCalDestroy
IpSCalDestroyEx
IpSCalGetLong
IpSCalGetSng
IpSCalGetStr
IpSCalLoad
IpSCalMove
IpSCalReset
IpSCalSave
IpSCalSelect
IpSCalSetAngle
IpSCalSetAspect
IpSCalSetLong
IpSCalSetName
IpSCalSetOrigin
IpSCalSetUnit
IpSCalSetUnitName
IpSCalShow
IpScanSelect
IpScanShow
IpScopeAcquire
IpScopeComponent Present
IpScopeControl
IpScopeDocGet
IpScopeEnumSettings
IpScopeGetCount
IpScopeGetPosition
IpScopeRead
IpScopeSettings
IpScopeSetPosition
IpScopeShow
IpScopeWrite
IpSegCreateMask
IpSegLoad
IpSegDelete
IpSegGetRange
IpSegMerge
IpSegNew

Appendix B - Auto-Pro Keywords

Page 5-11

IpSegPreview
IpSegRename
IpSegReset
IpSegSave
IpSegSelect
IpSegSelectArea
IpSegSetAttr
IpSegSetRange
IpSegShow
IpSeqAverage
IpSeqDifference
IpSeqExtractFrames
IpSeqGCreate
IpSeqGet
IpSeqGGet
IpSeqGSet
IpSeqGShow
IpSeqGUpdate
IpSeqMerge
IpSeqMergeDoc
IpSeqOpen
IpSeqPlay
IpSeqReslice
IpSeqRunningAvg
IpSeqSave
IpSeqSet
IpSeqShow
IpSmAdd
IpSmAddFrame
IpSmBackgroundCorr
IpSmBackgroundCorrShow
IpSmDelete
IpSmDespeckle
IpSmDespeckleShow
IpSmExtract
IpSmGet
IpSmGetStr
IpSmInfo
IpSmNavigator
IpSmNew
IpSmNormalize
IpSmNormalizeShow
IpSmOpen
IpSmPlay
IpSmRemoveFrame
IpSmRemove Image
IpSmSave
IpSmSet
IpSmSetStr
IpSmShow
IpSortAttr
IpSortObjects
IpSortShow
IpStAutoName
IpStGetFloat
IpStGetInt
IpStGetName
IpStGetString
IpStSearchDir
IpStSortedList
IpStageAbsZ
IpStageAbsZEx
IpStageAcq
IpStageAcqFrame

IpStageAddListPoint
IpStageAddListPointEx
IpStageControl
IpStageCreateList
IpStageDeleteList
IpStageDeletePoint
IpStageDocGet
IpStageDocGetStr
IpStageField
IpStageFocusLimits
IpStageGet
IpStageGetAbsPoint
IpStageGetAbsPointEx
IpStageGetAbsPosition
IpStageGetAbsPositionEx
IpStageGetListLength
IpStageGetListLocked
IpStageGetListModified
IpStageGetListName
IpStageGetNumLists
IpStageGoToListPos
IpStageModifyListPoint
IpStageModifyListPointEx
IpStagePlane
IpStageSampleGroupbyName
IpStageSampleGroupbyNum
IpStageSamplePattern
byName
IpStageSamplePatternByNum
IpStageSetListLocked
IpStageSetListModified
IpStageSetListName
IpStageScanPatternByName
IpStageScanPatternbyNum
IpStageSetArea
IpStageShow
IpStageShowTab
IpStageSettings
IpStageSortList
IpStageStepXY
IpStageStepZ
IpStageWell
IpStageXY
IpStageXYRead
IpStageXYWrite
IpStageZ
IpStageZRead
IpStageZWrite
IpSurfAutoRefresh
IpSurfGet
IpSurfOutput
IpSurfSet
IpSurfShow
IpTagAddClass
IpTagAttr
IpTagDelete
IpTagDeleteClass
IpTagGet
IpTagLoadEnv
IpTagLoadPoints
IpTagPt
IpTagSaveData
IpTagSaveEnv
IpTagSavePoints

IpTagShow
IpTagUpdate
IpTemplateMode
IpTextBurn
IpTextFont
IpTextSetAttr
IpTextShow
IpTileAdd
IpTileApply
IpTileCalculate
IpTileGet
IpTileOpen
IpTileRemove
IpTileSave
IpTileSetEx
IpTileSetInt
IpTileSetSingle
IpTileShow
IpToolbarGetStr
IpToolbarSelect
IpToolbarShow
IpTraceAttr
IpTraceDo
IpTraceShow
IpTrackBar
IpTrackFile
IpTrack Meas
IpTrackMeasGetStr
IpTrackMeasSet
IpTrackMeasSetStr
IpTrackMove
IpTrackOptionsFile
IpTrackSaveData
IpTrackShow
IpTrackSize
IpWsChangeDescription
IpWsChangeInfo
IpWsConvertFile
IpWsConvertImage
IpWsConvertToBilevel
IpWsConvertToFloat
IpWsConvertToGray
IpWsConvertToGray12
IpWsConvertToGray16
IpWsConvertToGrayEx
IpWsConvertToPaletteMColor
IpWsConvertToPaletteMedian
IpWsConvertToRGB
IpWsConvertToRGB36
IpWsConvertToRGB48
IpWsConvertToRGBEx
IpWsCopy
IpWsCopyFrames
IpWsCreate
IpWsCreateEx
IpWsCreateFromClipboard
IpWsCreateFromVri
IpWsCutFrames
IpWsDeleteFrames
IpWsDuplicate
IpWsFill
IpWsFillPattern
IpWsGray12To8
IpWsGray16To8

Appendix B - Auto-Pro Keywords

Page 5-12

IpWsLoad
IpWsLoadNumber
IpWsLoadPreview
IpWsLoadSetRes
IpWsMove
IpWsOrient
IpWsOverlay
IpWsOverlayEx
IpWsPan
IpWsPaste
IpWsPasteEx
IpWsPasteFrames
IpWsRedo
IpWsReload
IpWsRotate
IpWsRulerShow
IpWsRulerType
IpWsSave
IpWsSaveAs
IpWsSaveEx
IpWsScale
IpWsSelectFrames
IpWsStretchLut
IpWsSubSampleFrames
IpWsTestStrips
IpWsTestStrips2
IpWsTestStripsHalftone
IpWsUndo
IpWsZoom
Is
IS_COMPARE
IS_COMPARE_STR
IS_SIGNATURE
IS_SIGNATURE_STR
ISMULTICHANNEL
ISTRUECOLOR
ISZ_STR

L
Len
Let
LF_BANDPASS
LF_EDGEMN
LF_EDGEPL
LF_HIPASS
LF_LOPASS
Like
LINEGEOMETRY
LINETYPE
LOAD_PROMPT
LOAD_SMALLEST
LOCEQ_BELL
LOCEQ_BESTFIT
LOCEQ_EXP
LOCEQ_LINEAR
LOCEQ_LOG
LOCEQ_STDDEV
LOCH_BELL
LOCH_BESTFIT
LOCH_EXP
LOCH_LI
LOCH_LOG
LOCH_STDDEV
Log

Long
Loop
Lut
LUT_4TONES
LUT_8TONES
LUT_ALL
LUT_BRIGHTNESS
LUT_CONTRAST
LUT_FREEFORM
LUT_GAMMA
LUT_HISHAD

M
MA_AUTOGRID
MA_CAPTION
MA_COLUMNS
MA_FONT
MA_FONTSIZE
MA_FOOTER
MA_IMAGECLASS
MA_IMAGEHEIGHT
MA_IMAGESIZE
MA_IMAGEWIDTH
MA_PAGENUMBERS
MA_ROWS
MA_SPACING
MA_TITLE
MAC_DATETIME
MAC_DESCRIPTION
MAC_FILENAME
MAC_FRAMENUMBER
MAC_IMAGENAME
MAC_NONE
MACRO_FUNC
MACRO_NAME_LEN
MAIL_DUMMY
MASK_BACKGROUND
MASK_BILEVELINPLACE
MASK_BILEVELNEW
MASK_COLORNEW
MASK_FOREGROUND
MAX_APP_KEY
MAX_IMAGE_WIDTH
MAX_MACRO_ARG
MAX_MACRO_TEXT
MAX_MACRO_TEXT
MAX_NEWWSFILE_LEN
MAX_OUTPUT_STRING
MAX_RC_STRING
MAX_TASKS
MAXCALNAME
MAXDISPPATH
MCM_PLUGIN
MDATA_ANGLE
MDATA_AREA
MDATA_AVGDIST
MDATA_CTRDIST
MDATA_END
MDATA_ENDY
MDATA_LEN
MDATA_MAXDIST
MDATA_MINDIST
MDATA_PERPDIST
MDATA_POS

MDATA_POSY
MDATA_RADIUS
MDATA_START
MDATA_STARTY
MEAS_ALL
MEAS_ANGLE
MEAS_ANGLE180
MEAS_AREA
MEAS_BFARC
MEAS_BFCIRCLE
MEAS_BFLINE
MEAS_CIRCLE
MEAS_CLICK
MEAS_CTHICK
MEAS_DISPBFPTS
MEAS_DISPCOLOR
MEAS_DIST
MEAS_HIDE
MEAS_HTHICK
MEAS_LABELCOLOR
MEAS_LENGTH
MEAS_MAXARCPTS
MEAS_MAXCIRCLEPTS
MEAS_MAXLINEPTS
MEAS_MEASCOLOR
MEAS_NEWANGLE
MEAS_PASSFAILTYPE
MEAS_POINT
MEAS_PROMPTS
MEAS_RECT
MEAS_REPEAT
MEAS_SHOW
MEAS_SHOWADVANCED
MEAS_SHOWBASIC
MEAS_SHOWLAYOUT
MEAS_STATS
MEAS_TAG
MEAS_THICK
MEAS_THICKMODE
MEAS_TRACE
MEAS_UPDATE
MEAS_VTHICK
MENU_COORD
MENU_DLL
MENU_FUNC
MENU_ID
MENU_NAME
MIF_BITMAP
MIF_COLUMN
MIF_COMNAME
MIF_DLL
MIF_FLAGS
MIF_FUNCID
MIF_HELP
MIF_HELPFILE
MIF_MACRO
MIF_MENUID
MIF_SCRIPT
MIF_TYPE
MIPCCALL
MIPCEXIT
MIS_PRINTER
MIS_PRINTERQTRSIZE
MIS_USER

Appendix B - Auto-Pro Keywords

Page 5-13

MLOAD_INTERACTIVE
MODELESS_INIT
MORPHO_11x11OCTAGON
MORPHO_1x3COLUMN
MORPHO_2x2SQUARE
MORPHO_3x1ROW
MORPHO_3x3CROSS
MORPHO_5x5OCTAGON
MORPHO_7x7OCTAGON
MORPHO_CUSTOM
MPF_MINMAX
MPF_NONE
MPF_TOLERANCES
MS_DEF2
MS_DEF3
MS_EXCLAM
MS_MODAL
MS_OKCAN
MS_QUEST
MS_STOP
MS_YESNO
MS_YESNOCAN

N
New
Next
NONAME
NOSYSTEM
Not
Null
NULLAOI

O
On
ON_CL_AOICHANGED
ON_CL_APPCLOSING
ON_CL_APPSHUTDOWN
ON_CL_CLIENTCLOSE
ON_CL_FRAMECHANGED
ON_CL_IMAGECHANGED
ON_CL_LUTCHANGED
ON_CL_NEWCLIENT
ON_CL_PLUGINMESSAGE
ON_CL_PRINTOVERLAY
ON_CL_SERVERCLOSE
ON_CL_SERVERCLOSING
ON_CL_WSDOCFILEIO
OP_EQUAL
OP_GE
OP_GT
OP_LE
OP_LIKE
OP_LT
OP_NOTLIKE
OPA_ACC
OPA_ADD
OPA_AVG
OPA_DIFF
OPA_DIV
OPA_EXP
OPA_INV
OPA_LOG
OPA_MAX
OPA_MIN

OPA_MULT
OPA_SET
OPA_SQR
OPA_SUB
OPA_X2
OPA_X2Y
OPL_AND
OPL_COPY
OPL_NAND
OPL_NOR
OPL_NOT
OPL_OR
OPL_XOR
Option
Or
OR_LEFTRIGHT
OR_ROTATE180
OR_ROTATE270
OR_ROTATE90
OR_TRANSPOSE
OR_UPDOWN
ORIGIN

P
P_GRAPH
P_IMAGE
P_TABLE
PackDDElParam
PCLR_ERRDIFF
PCLR_ERRDIFFFAST
PCLR_LOOKUP
PDT_DFLOAT
PDT_FLOAT
PDT_INT16
PDT_INT32
PDT_WORD16
PDT_WORD32
PIXELS
PLUGM_ACTIVATEAOIBUTT
ON
PLUGM_ALLOCPALETTEUN
DO
PLUGM_ALLOCUNDO
PLUGM_AOIBUTTON
PLUGM_AOIMOVE
PLUGM_APPENDWSPOPUP
MENU
PLUGM_BALLOONHELP
PLUGM_BCGUPDATE
PLUGM_CALIBCHANGED
PLUGM_CANCELPASTE
PLUGM_CHECKPLUG
PLUGM_CLIENTTOVIR
PLUGM_CLOSEMODELESS
PLUGM_CLOSETWAIN
PLUGM_CLOSEUNDO
PLUGM_CLOSING
PLUGM_CONVERTBMPTOV
RI
PLUGM_CONVERTVRITOBM
P
PLUGM_CREATECLIENT
PLUGM_CREATEWS
PLUGM_CSEGCHANGED

PLUGM_DESTROYCLIENT
PLUGM_DRAGFILE
PLUGM_DROPEFFECT
PLUGM_FILEGET
PLUGM_FILEGETMULTISEL
ECT
PLUGM_FILEGETNOTRACK
PLUGM_FILEIMPORT
PLUGM_FILEIMPORTNOTRA
CK
PLUGM_FILELOAD
PLUGM_FILELOADNOTRAC
K
PLUGM_FILEPUT
PLUGM_FILEPUTNOTRACK
PLUGM_FRAMESETTYPE
PLUGM_GET332PALETTE
PLUGM_GETACTIVEVRI
PLUGM_GETACTIVEWND
PLUGM_GETAOI
PLUGM_GETAPPKEY
PLUGM_GETAPPNAME
PLUGM_GETAPPTRACKPR
OC
PLUGM_GETBACKCOLOR
PLUGM_GETDOCINFO
PLUGM_GETEDITORTOOLB
AR
PLUGM_GETFORECOLOR
PLUGM_GETFRAME
PLUGM_GETFRAMEWINDO
W
PLUGM_GETHWNDFROMID
PLUGM_GETHWNDVRI
PLUGM_GETIDFROMDLL
PLUGM_GETIDFROMHWND
PLUGM_GETIDFROMNAME
PLUGM_GETININAME
PLUGM_GETLIBNAME
PLUGM_GETMACROCOUNT
PLUGM_GETMACRONAME
PLUGM_GETMDITYPE
PLUGM_GETMENUITEMFIEL
D
PLUGM_GETNEWWSNAME
PLUGM_GETPRINTINFO
PLUGM_GETPROGRAMPAT
H
PLUGM_GETSCRIPTNAME
PLUGM_GETTIMEORFRAME
PREF
PLUGM_GETTOTALFRAMES
PLUGM_GETTRACKFRAME
PLUGM_GETUNDOHANDLE
PLUGM_GETVIEWAREA
PLUGM_GETVIEWPOS
PLUGM_GETWSCLIENTARE
A
PLUGM_GETWSLIST
PLUGM_GETZOOMFACTOR
PLUGM_HWNDWSNAME
PLUGM_ICONIC
PLUGM_IMAGECHANGED
PLUGM_ISPLAYINGMACRO

Appendix B - Auto-Pro Keywords

Page 5-14

PLUGM_ISRECORDINGMAC
RO
PLUGM_ISTEMPLATEMODE
PLUGM_LOADIPCPLUGIN
PLUGM_LUTCHANGED
PLUGM_MCCREATEFROMV
RI
PLUGM_MODIFYFRAME
PLUGM_PASTE
PLUGM_PHYTOVIR
PLUGM_PLUGINMESSAGE
PLUGM_REGISTERCLIENT
PLUGM_REGISTERCLIENTU
NDO
PLUGM_REGISTERFRAMEU
NDO
PLUGM_REGISTERMODELE
SS
PLUGM_RUNMACRO
PLUGM_SCANSCAL
PLUGM_SCREENTOVIR
PLUGM_SEQAPPLYCHANG
ED
PLUGM_SEQFRAMECHANG
ED
PLUGM_SEQUENCECHANG
ED
PLUGM_SEQUENCELOAD
PLUGM_SEQUENCESAVE
PLUGM_SERVERMESSAGE
PLUGM_SETANDGETAOI
PLUGM_SETAOI
PLUGM_SETAOIDIRTY
PLUGM_SETBACKCOLOR
PLUGM_SETFORECOLOR
PLUGM_SETMULTIFRAMEE
XTENTS
PLUGM_SETPLAYINGMACR
O
PLUGM_SETPRINTINFO
PLUGM_SETRECORDINGM
ACRO
PLUGM_SETZOOMFACTOR
PLUGM_SHAREVRI
PLUGM_STATUSTEXT
PLUGM_STATUSTEXT2
PLUGM_STATUSTEXT3
PLUGM_SWITCHVRI
PLUGM_TRACKPROC
PLUGM_VIRTOCLIENT
PLUGM_VIRTOPHY
PLUGM_VRIFROMBITMAP
PLUGM_VRIFROMDIB
PLUGM_VRITOCLIPBOARD
PLUGM_WSCREATEFROMFI
LE
PLUGM_WSCREATEFROMV
RI
PLUGRES_GETBITMAP
PLUGRES_GETCHECKSUM
PLUGRES_GETNAME
PLUGRES_GETSERIAL
PLUGSHARE_CLOSEVRI
PLUGSHARE_GETAREA

PLUGSHARE_GETLINE
PLUGSHARE_OPENAOIVRI
PLUGSHARE_OPENVRI
PLUGSHARE_PUTAREA
PLUGSHARE_PUTLINE
PLUGX_ACTIVEFRAME
PLUGX_ACTIVEHWND
PLUGX_ACTIVEHWND
PLUGX_ACTIVEVRI
PLUGX_ACTIVEVRI
PLUGX_ACTIVEWS
PLUGX_CREATEWS
PLUGX_CREATEWS
PREVIEW_NONE
Print
Private
PROFTYPE_CIRCLE
PROFTYPE_FREEFORM
PROFTYPE_LINE
PRT_ACTUAL
PRT_DISTORT
PRT_FIT
Pts

R
RA_BOTTOM
RA_BOTTOMLEFT
RA_BOTTOMRIGHT
RA_CENTER
RA_LEFT
RA_RIGHT
RA_TOP
RA_TOPLEFT
RA_TOPRIGHT
RECTANGLE
Redim
REDUCE_16NEIGHBOR
REDUCE_4NEIGHBOR
REDUCE_8NEIGHBOR
REFERENCE
REGSAM
Rem
RES_FUNC
ret
Return
RGE_AUTO
RGE_FIXED
RGE_FIXEDMAX
RGE_FIXEDMIN
RPT_DUMMY
RUN_AUTOCLOSE
RUN_MAXIMIZED
RUN_MINIMIZED
RUN_MODAL
RUN_NORMAL

S
S_APPEND
S_CLIPBOARD
S_DATA
S_DATA1
S_DATA2
S_DATABASE
S_DDE

S_FILE
S_GRAPH
S_HEADER
S_LEGEND
S_MEAS
S_NEW
S_OUTPUT
S_PRINT_GRAPH
S_PRINT_TABLE
S_PRINTER
S_RANGE
S_RECORD
S_STATS
S_TABLE
S_X_AXIS
S_Y_AXIS
SCAL
SCAL_DESTROY
SCAL_GETANGLEOFF
SCAL_GETAREA
SCAL_GETCUNAME
SCAL_GETCUPERPIX
SCAL_GETHANDLE
SCAL_GETNAME
SCAL_GETNEXT
SCAL_GETORIGIN
SCAL_GETPIXPERCU
SCAL_GETSYSTEM
SCAL_SETANGLEOFF
SCAL_SETCUNAME
SCAL_SETCUPERPIX
SCAL_SETNAME
SCAL_SETORIGIN
SCAL_SETPIXPERCU
SCAL_SETSYSTEM
SECTION_ALL_ACCESS
SECTION_EXTEND_SIZE
SECTION_MAP_EXECUTE
SECTION_MAP_READ
SECTION_MAP_WRITE
SECTION_QUERY
SEG_COLORCUBE
SEG_HISTOGRAM
SEG_SELADD
SEG_SELNEW
SEG_SELSUBTRACT
SEGCLR_BLUE
SEGCLR_GREEN
SEGCLR_RED
SEGMETHOD
SEQ_ACTIVEFRAME
SEQ_APPLY
SEQ_END
SEQ_FFOR
SEQ_FFRA
SEQ_FOR
SEQ_FRAMETIME
SEQ_FREV
SEQ_LFRA
SEQ_NEXT
SEQ_NUMFRAMES
SEQ_PLAYAUTOREV
SEQ_PLAYTOEND
SEQ_PLAYTYPE

Appendix B - Auto-Pro Keywords

Page 5-15

SEQ_PLAYUPDATE
SEQ_PLAYWRAP
SEQ_PREV
SEQ_REV
SEQ_SKIP
SEQ_START
SEQ_STOP
SEQG_ISGALLERY
SEQG_ISTRACKED
SEQG_TRACKENABLE
SET_VALUE
SETCURSEL
SETFLOAT
SETHWNDMESSAGE
SETINT
SETNOTIFY
SETPARENT
SETSTRING
SETTABS
SHIFT_X
SHIFT_Y
SHIFT_Z
Sin
Single
SORT_AUTO
SORT_COLOR
SORT_INDEX
SORT_LABELS
SORT_MEAS
SORT_ROTATE
SP_AMBIENT_REFLECTANC
E
SP_COLORIZED_FROM
SP_COLORIZED_FROM_CO
LOR
SP_COLORIZED_TO
SP_COLORIZED_TO_COLO
R
SP_DEFAULT
SP_DIFFUSE_REFLECTANC
E
SP_GLOSS
SP_LIGHT_COLOR
SP_LIGHT_ELEVATION
SP_LIGHT_ROTATION
SP_MATERIAL
SP_SHADOW_DEPTH
SP_SPECULAR_REFLECTA
NCE
SP_STYLE_DRAWAXES
SP_STYLE_DRAWEDGES
SP_STYLE_TEXTURED
SP_STYLE_TYPE
SP_STYLE_WIREFRAME_S
PAN
SP_STYLE_ZSCALE
SP_SURFACE_COLOR_SPI
N
SP_SURFACE_COLOR_SPR
EAD
SP_TEXTURE_ID
SP_VIEW_ELEVATION
SP_VIEW_ROTATION
SPO_CLIPBOARD

SPO_NEW
SPO_NEW_WITH_ISCALE
SPO_PRINTER
SPS_SHADED
SPS_UNSHADED
SPS_WIREFRAME
Sqr
STANDARD_RIGHTS_REQUI
RED
START_MDI
Static
STATISTICS
step
Stop
String
Sub

T
TAG_ACTIVECLASS
TAG_MEAS_AREA
TAG_MEAS_BLUE
TAG_MEAS_CLASS
TAG_MEAS_GREEN
TAG_MEAS_INTENSITY
TAG_MEAS_RADIUS
TAG_MEAS_RED
TAG_MEAS_XPOS
TAG_MEAS_YPOS
TAG_VIEW_AREA
TAG_VIEW_CLASSSTATS
TAG_VIEW_COUNTS
TAG_VIEW_LABEL
TAG_VIEW_MARKER
TAG_VIEW_POINTS
Tan
TBCLOSE
TBOPEN
TBUPDATE
Then
THICKAVG
THICKHORZ
THICKNORMAL
THICKSTDDEV
THICKVERT
THNM_ERODEENDS
THNM_NORMAL
THNM_ULTIMATE
THRESHOLD
To
TR_AUTO
TR_CLOSE
TR_DELETE
TR_ERASER
TR_IMAGE
TR_MODE
TR_NEXT
TR_OPEN
TR_PEN
TR_PROC
TR_SET_RANGE
TR_SHOW
TR_TEXT
TR_UPDATE
TRACKFUNC

TranslateGFlags
TranslateLFlags
TXT_BOLD
TXT_DROPSHADOW
TXT_ENCLOSED
TXT_ITALIC
TXT_SPACING
TXT_STRIKEOUT
TXT_UNDERLINE
Type

U
UNIT
Until
USEAOI

V
Val
Variant
vbNullChar
VRI_COPY
VRI_NODELETE
VRI_SHARE

W
Wend
WFX_CLEAR_EMBEDDING
WFX_FRAME
WFX_IMAGECHANGED
WFX_INVALIDATE
WFX_LOAD_FILE
WFX_LUTCHANGED
WFX_RUN_MACRO
While
WIN32_LEAN_AND_MEAN
WS_MAX_COUNT
WST_ENABLED
WST_MAXIMIZED
WST_MINIMIZED
WST_NORMAL
WST_VISIBLE

X
XAXIS
Xor

Y
YAXIS

Z
ZAXIS

Appendix C - ANSI Characters

Page 6-1

Appendix C - ANSI Characters
0 37 % 74 J 111 o 148 185 ¹
1 38 & 75 K 112 p 149 186 º
2 39 ' 76 L 113 q 150 187 »
3 40 (77 M 114 r 151 188 ¼
4 41) 78 N 115 s 152 189 ½
5 42 * 79 O 116 t 153 190 ¾
6 43 + 80 P 117 u 154 191 ¿
7 44 81 Q 118 v 155 192 À
8 bksp 45 - 82 R 119 w 156 193 Á
9 tab 46 . 83 S 120 x 157 194 Â

10 LF 47 / 84 T 121 y 158 195 Ã
11 48 0 85 U 122 z 159 196 Ä
12 49 1 86 V 123 { 160 197 Å
13 CR 50 2 87 W 124 161 ¡ 198 Æ
14 51 3 88 X 125 } 162 ¢ 199 Ç
15 52 4 89 Y 126 ~ 163 £ 200 È
16 53 5 90 Z 127 164 † 201 É
17 54 6 91 [128 165 ¥ 202 Ê
18 55 7 92 \ 129 166 ¦ 203 Ë
19 56 8 93] 130 167 § 204 Ì
20 57 9 94 ^ 131 168 ¨ 205 Í
21 58 : 95 _ 132 169 © 206 Î
22 59 ; 96 ` 133 170 ª 207 Ï
23 60 < 97 a 134 171 « 208 Ð
24 61 = 98 b 135 172 ¬ 209 Ñ
25 62 > 99 c 136 173 - 210 Ò
26 63 ? 100 d 137 174 ® 211 Ó
27 64 @ 101 e 138 175 ¯ 212 Ô
28 65 A 102 f 139 176 ° 213 Õ
29 66 B 103 g 140 177 ± 214 Ö
30 67 C 104 h 141 178 ² 215 ×
31 68 D 105 i 142 179 ³ 216 Ø
32 69 E 106 j 143 180 ´ 217 Ù
33 ! 70 F 107 k 144 181 µ 218 Ú
34 " 71 G 108 l 145 ‘ 182 ¶ 219 Û
35 # 72 H 109 m 146 ’ 183 · 220 Ü
36 $ 73 I 110 n 147 184 ¸ 221 Ý

 Nonsupported Characters

Appendix C - ANSI Characters

Page 6-2

222 Þ 228 ä 234 ê 240 ð 246 ö 252 ü
223 ß 229 å 235 ë 241 ñ 247 ÷ 253 ý
224 à 230 æ 236 ì 242 ò 248 ø 254 þ
225 á 231 ç 237 í 243 ó 249 ù 255 ÿ
226 â 232 è 238 î 244 ô 250 ú
227 ã 233 é 239 ï 245 õ 251 û

 Nonsupported Characters

Appendix D - Data Types

Page 7-1

Appendix D - Data Types

IPBasic Data Types

String The data type used to hold character data (e.g., letters, digits and punctuation).
Strings may be variable or fixed length, and are defined as such during
declaration.

 Internally, a string's storage requirements are the length of the string plus four
bytes. The four bytes are used to store the string's length. They occupy the first
four bytes of the string in memory (C programmers, note that this differs from
the way in which strings are stored by C).

 Strings may contain up to 65,000 characters. IPBasic string data is interpreted
according to the ANSI character set (see Appendix C - ANSI Characters).

Integer A data type used to hold nonfractional numeric values (integers), ranging from -
32,768 to +32,767. An Integer is stored as a 16-bit number, occupying 2 bytes
of storage.

Long A data type used to hold large, nonfractional numeric values (integers), ranging
from -2,147,483,648 to +2,147,483,647. A Long value is stored as a 32-bit
signed number, occupying 4 bytes of storage.

Single A data type used to hold numeric values that include fractional values, ranging
from -3.402823E+38 to -1.401298E-45 (for negative numbers) and
+1.401298E-45 to +3.402823E+38 (for positive numbers). Single data types
represent single-precision, floating-point values. A Single value is stored in
three parts: the sign, the exponent and the mantissa. It requires 4 bytes of
storage.

Float Identical to Single

Appendix D - Data Types

Page 7-2

Auto-Pro API Data Types

RECT The RECT user-defined type is used to hold two, x,y-coordinate pairs. This
data type is usually used for variables that define a rectangular area within an
image. It is defined in IPBasic, as follows:

Type RECT
 left As Long
 top As Long
 right As Long
 bottom As Long
End Type

POINTAPI The POINTAPI user-defined type is used to hold a pair of x,y coordinates. It

is defined in IPBasic, as follows:
Type POINTAPI
 x As Long
 y As Long
End Type

IPDOCINFO The IPDOCINFO user-defined type is used to hold image information

obtained by the IpDocGet function. It is defined in IPBasic, as follows:
Type IPDOCINFO
 Width As Integer
 Height As Integer
 Class As Integer
 Bpp As Integer
 Extent As RECT
End Type

IPDOCPOS The IPDOCPOS user-defined type is used to hold position
 information obtained by the IpDocGetPosition function.
 It is defined in IPBasic, as follows:

Type IPDOCPOS
 IsKnown As Integer
 Position As Single
End Type

Appendix D - Data Types

Page 7-3

C Data Type Equivalents
The Auto-Pro Function Reference describes its function parameters according to IPBasic
data types. The table below describes their C equivalents.

IPBasic
TYPE

C
TYPE

NOTES

String LPSTR See String description, above, for comments
about the way a string is internally represented
by IPBasic.

Integer short In this manual, parameters that take a “pointer”
to an Integer variable are also listed as type,
Integer. You will need to refer to the
parameter's description to determine whether the
required C data type is short or LPSHORT.

Long long In this manual, parameters that take a “pointer”
to a Long variable are also listed as type, Long.
You will need to refer to the parameter's
description to determine whether the required C
data type is long or LPLONG.

Single float In this manual, parameters that take a “pointer”
to a Single variable are also listed as type,
Single. You will need to refer to the parameter's
description to determine whether the required C
data type is float or LPFLOAT.

POINTAPI LPPOINT See structure definition in ipc.h

RECT LPRECT See structure definition in ipc.h

IPDOCINFO LPDOCINFO See structure definition in ipc.h

IPDOCPOS LPDOCPOS See structure definition in ipc.h

Appendix D - Data Types

Page 7-4

Appendix E - Shortcut Key Assignments

Page 8-1

Appendix E - Shortcut Key Assignments
The following table shows the names of the shortcut key combinations supported by Auto-
Pro. Shortcut key names must be typed exactly as shown below; case is significant.

KEY ALONE +CTRL +SHIFT +CTRL+SHIFT

F1

F2 F2 <c>F2 <s>F2 <c><s>F2

F3 F3 <c>F3 <s>F3 <c><s>F3

F4 F4 <c>F4 <s>F4 <c><s>F4

F5 F5 <c>F5 <s>F5 <c><s>F5

F6 F6 <c>F6 <s>F6 <c><s>F6

F7 F7 <c>F7 <s>F7 <c><s>F7

F8 F8 <c>F8 <s>F8 <c><s>F8

F9 F9 <c>F9 <s>F9 <c><s>F9

F10

F11 F11 <c>F11 <s>F11 <c><s>F11

F12 F12 <c>F12 <s>F12 <c><s>F12

A <c>A <c><s>A

B <c>B <c><s>B

C <c>C <c><s>C

D <c>D <c><s>D

E <c>E <c><s>E

F <c>F <c><s>F

G <c>G <c><s>G

H <c>H <c><s>H

I <c>I <c><s>I
 continued on next page

 Nonsupported key combinations

Appendix E - Shortcut Key Assignments

Page 8-2

KEY ALONE +CTRL +SHIFT +CTRL+SHIFT

J <c>J <c><s>J

K <c>K <c><s>K

L <c>L <c><s>L

M <c>M <c><s>M

N <c>N <c><s>N

O <c>O <c><s>O

P <c>P <c><s>P

Q <c>Q <c><s>Q

R <c>R <c><s>R

S <c>S <c><s>S

T <c>T <c><s>T

U <c>U <c><s>U

V <c>V <c><s>V

W <c>W <c><s>W

X <c>X <c><s>X

Y <c>Y <c><s>Y

Z <c>Z <c><s>Z

0 <c>0 <c><s>0

1 <c>1 <c><s>1

2 <c>2 <c><s>2

3 <c>3 <c><s>3

4 <c>4 <c><s>4

5 <c>5 <c><s>5

6 <c>6 <c><s>6

7 <c>7 <c><s>7

8 <c>8 <c><s>8

9 <c>9 <c><s>9

 Nonsupported key combinations

Appendix F – Error Messages

Page 9-1

 Appendix F – Error Messages

Error Code Error Message Description

0 IPCERR_NONE No error calling the function. A positive
return value also indicates successful
completion, and usually is returning a
document ID or other "handle" to something
the function created.

-1 IPCERR_APPINACTIVE Image-Pro is not running. This is also a
default return value that is used by older
code, so it may just indicate that the function
failed.

-2 IPCERR_NOTFOUND Missing item, data structure, etc.

-3 IPCERR_DLLNOTFOUND The function could not be executed because
Image-Pro couldn't find DLL that
implements the function. This might occur if
a feature uses an Auto-Pro function that is
supported by an optional plug-in (e.g. Scope-
Pro).

-4 IPCERR_FUNCNOTFOUND The function could not be executed because
Image-Pro couldn't find the function in the
DLL. This could be result of an installation
error (a newer plug-in calling another plug-in
that is older and not the expected version).
This error code is also used sometimes to
indicate that some crucial prerequisite for the
function was not met, e.g. older functions
that require the feature's dialog to be
displayed before the Auto-Pro functions will
work.

-5 IPCERR_INVCOMMAND Not applicable to the current image/situation

i.e. The requested function, command or
attribute is not applicable to the current
image/situation. This might be something
like trying to do color channel operations on
a grayscale image.

Appendix F – Error Messages

Page 9-2

Error Code Error Message Description

-6 IPCERR_NODOC For most functions, this return value
indicates that the function requires an image
but there is no active workspace (none are
open).

-7 IPCERR_INVARG Invalid command arguments. One of the
parameters was out of range, or incorrect for
the active image.

-8 IPCERR_MEMORY Insufficient memory

-9 IPCERR_BUSY Image-Pro is busy executing another
function. This should not occur very often
since when running a macro script, each
Auto-Pro function is run to completion
before the next line of the script is run.

-10 IPCERR_EMPTY The requested information is not present.
The type of object that the function works
with is not present on the active image, e.g.
cannot edit spatial calibration information
because the image is not calibrated, or cannot
return set information if the image is not part
of a set.

-11 IPCERR_LIMIT An argument was out of range, but the
function may have been executed within the
valid limits.

-12 IPCERR_CANCELLED Operation cancelled by user.

-13 IPCERR_NOTASET Not really an error, but the file cannot be
opened as a set, and has been opended as a
single image workspace.

-1000 IPCERR_FUNC This error code may indicate an invalid
command argument, or it may indicate that
an optional component that supports the
Auto-Pro function was not installed.

Index

Index-1

Index
A
Acquire Command

Acquire, 2-14
Capturing Multiple Images, 2-10
MultiSnap, 2-10
Select Driver, 2-11
Set Options, 2-3
Settings, 2-12
Show Dialog, 2-12
Timed Acquire, 2-15
Video Average, 2-3

Add
Image to Image, 2-456
Number to Image, 2-460, 2-464

Addition, 1-21
Align Images, 2-47, 2-48
And, 1-23, 1-24
Angle Offset, 2-585
Angle Tool, 2-448, 2-449
Annotate Command

Activate Object ID, 2-57
Activate Object XY, 2-58
Add Point Array, 2-66
Add Point String, 2-67
Add Text, 2-58
Attributes, 2-62, 2-68, 2-72
Box, 2-72
Burn, 2-59
Burn, 2-666
Create Object, 2-59
Default Object, 2-57
Delete Object, 2-61
Ellipse, 2-73
Font, 2-666
Font Name, 2-65, 2-70
Get Text Attributes, 2-667
Line, 2-73
Move Object, 2-65
Set Text Attributes, 2-667
Show Text, 2-667
Text, 2-71

Annotation
Delete, 2-60
Show, 2-70

Annotation Overlay
Show, 2-71

ANSI Character Codes, 6-1
AOI

Delete, 2-80
Ellipse, 2-75
Ellipse, 2-75
Freeform, 2-75
Get Data From, 2-77
Load and Save, 2-80
Manager, 2-80
Move, 2-82
Open For Read/Write, 2-273
Rectangular, 2-74
Rename, 2-74
Show, 2-83
Show Muliple, 2-82
Update Definition Of, 2-83

Append
Multiple AOIs, 2-82

Application Window, 2-101
Arrange, 2-84
Control Border, 2-91
Exit, 2-86
Maximize, 2-92
Menu Select, 2-92
Minimize, 2-94
Move, 2-94
Position, 2-101
Restore, 2-94
Run Program, 2-95
Size, 2-98
State, 2-102

Apply Alignment, 2-48
Apply LUTs, 2-407
Apply Tiling, 2-668
Area Tool, 2-448
Arithmetic Operations, 2-456, 2-460, 2-464
Arithmetic Operators, 1-21, 1-24

Precedence, 1-21
Arrays, 1-9
Arrays, Passing, 1-19
Aspect Ratio, 2-585
Assignment Operator, 1-21
Auto‐Classification, 2-144
Auto-Pro Functions, 1-1, 1-8

And Visual Basic, 1-7, 1-35
Array Parameters, 1-9
Data Types, 7-2
Parameters, 1-8
Summary, 4-1

Index

Index-2

Type Parameters, 1-9
Average

Of Image and Number, 2-460, 2-464
Of Two Images, 2-456

Averaging Acquired Frames, 2-3

B
Background Color Selection, 2-468, 2-469
Background Correction Command, 2-454, 2-455
Best Fit Arc Tool, 2-448
Best Fit Circle Tool, 2-448
Best Fit Line Tool, 2-448
Bitmap Analysis Command

Calibration, 2-103
Close, 2-105
Sample Size, 2-103
Save Data, 2-104
Setting Options, 2-103
Show, 2-105
Table Legends, 2-103

Black Level, 2-375
Branch End Filter, 2-324
Branching, 1-28, 1-29
Buttons, Creating In Message Box, 1-11, 2-416,

2-423

C
Calculate Alignment, 2-48
Calculate Tiling, 2-668
Calibration

Getting, 2-152
Linearizing Intensity, 2-371
Loading, 2-154
Saving, 2-154, 2-155

Calibration Values
Intensity Calibration, 2-366
Spatial Calibration, 2-578

Caliper Tool
Copy Sampling Tool to Clipboard, 2-175
Create Derivative Edge, 2-176
Create Measurement, 2-177
Create Pattern Match Edge, 2-178
Create Sampling Tool, 2-179
Delete Edge Detector, 2-179
Delete Measurement, 2-180
Delete Sampling Tool, 2-180
Edit Sampling Tool, 2-182
Get Attributes, 2-183
Get Data, 2-185, 2-187, 2-188, 2-190

Get Points, 2-188
Get String Attributes, 2-189
Load/Save Settings, 2-194
Save, 2-190
Select Edge Detector, 2-191
Select Sampling Tool, 2-191
Set Attributes, 2-191
Set String Attributes, 2-193, 2-405
Show, 2-194
Toggle Markers On/Off, 2-195

Call, 1-16
camera color profile, 2-200, 2-202
Change Palette Color, 2-469
Circle Tool, 2-448
Classification

Auto‐Classification, 2-144
Histogram, 2-146
Saving, 2-134
Scattergram, 2-148
Single Variable Classification, 2-148

Clearing Macro Output, 2-466
Click Image, 2-253
Close

Database File, 2-344
Close All Command, 2-84
Closing

AOI Manager Window, 2-80
Arithmetic Operations Window, 2-465
Bitmap Analysis Window, 2-105
Color Map, 2-415
Color Segmentation Window, 2-601
Count/Size Window, 2-144
Database Window, 2-347
Document Vri, 2-255
Filtering Window, 2-339
Histogram Window, 2-352
Image Window, 2-254
Image‐Pro, 2-86
Intensity Calibration Window, 2-379
Line Profile Window, 2-492
Macro Output Window, 2-468
Measurements Window, 2-444
Palette Window, 2-470
Pseudo‐Color Window, 2-475
Registration Window, 2-510

Closing an Image Window, 2-254
Closing Filter, 2-325
Cluster Analysis, 2-145
Codes

Index

Index-3

For ANSI Characters, 6-1
For Shortcut Keys, 8-1

Co‐Localization, 2-218, 2-220, 2-221
Co‐Localization Command

Get Document, 2-219
Color Coordinates command

Show, 2-217
Color Calibration command

Add, 2-211
Convert, 2-212
Correct, 2-212
Create, 2-212
Get, 2-212
Get RGB values, 2-215
Load, 2-215
New, 2-215
Save, 2-215
Set, 2-216
Show, 2-217

Color Channel command
Extract, 2-217

Color Composite command
Add, 2-204
Add Tint, 2-205
Add Tint Position, 2-206
Get, 2-207
New, 2-209
New Tint, 2-209
Set, 2-210
Show, 2-211

Color Composite command Delete:, 2-206
Color Conversion Command, 2-350
Color Management command

Show, 2-203
Color Map, 2-413, 2-414, 2-415
Color Range File

Loading, 2-594
Saving, 2-597

Color Segmentation Command
Delete Color Ranges, 2-593
Make Mask, 2-592
Merge Color Ranges, 2-595
New Color Ranges, 2-595
Preview, 2-596
Rename Color Ranges, 2-597
Reset, 2-597
Select Colors, 2-598, 2-599
Set Range, 2-601
Show Window, 2-601

Color Transform Command, 2-203
Merge 3 Channels, 2-199

Comments, 1-5, 1-15
Compatibility With Visual Basic, 1-1
Concatenation, 1-21
Configure page, 2-491
Constants, 1-17, 1-19
Convert AOI to Object, 2-116
Convert File Format, 2-694
Convert Image File Format, 2-695
Convert To Command

To Bilevel, 2-697
To Floating Point, 2-698
To Gray Scale, 2-698

From 12‐Bit, 2-708
To Gray Scale 12, 2-698
To Gray Scale 16, 2-698
To Gray Scale 8, 2-708
To Gray Scale Ex, 2-699
To MColor Palette, 2-699
To Median Palette, 2-700
To RGB, 2-700

Copy Command, 2-701
Copy Frames Command, 2-701
Correct Background, 2-454
Count Gray Spots Tool, 2-448
Count/Size Command

Auto‐Classification, 2-144
Classification, 2-148
Close, 2-144
Cluster Analysis, 2-145
Count, 2-105
Create Mask, 2-106
Delete Count, 2-113
Environment Files, 2-137
Filter Objects, 2-116
Get Count/Size Information, 2-117
Get Measurement Values, 2-106, 2-113
Measure, 2-133
Object Window, 2-147
Population Density, 2-136, 2-147
Range, 2-134
Remove Holes, 2-134
Saving Data, 2-134
Scattergram, 2-148
Select Ranges, 2-133
Setting Criteria, 2-142
Setting Intensity, 2-143
Setting Options, 2-138

Index

Index-4

Show, 2-144
Statistics, 2-150
View Data, 2-146
View Histogram, 2-146

Counting Loop Iterations, 1-25
CPROG, 2-274, 2-275
Create

Database, 2-346
Histogram, 2-351
Intensity Calibration, 2-366
Line Profile, 2-491
New Image, 2-702
New Image From Clipboard, 2-703
New Image From Vri, 2-704
New Image Sequence, 2-702
Progress Bar, 2-675
Spatial Calibration, 2-579

Create Mosaic, 2-451
Creating A Macro, 1-7
Curved Thickness Tool, 2-449
Cut Command, 2-705
Cut Frames Command, 2-705

D
Data Collector Command, 2-232, 2-234
Data Collector Tool

Add Data Column, 2-230
Add Data String, 2-231
Add Single Data, 2-231
Delete Data Column, 2-232
Save Data, 2-235
Select Data Items, 2-236
Set Options, 2-236
Show, 2-237
UnSelect Data Items, 2-237
Update Data, 2-238

Data to Image Tool, 2-448
Data Types, 1-17, 7-1, 7-2

Auto‐Pro API Defined, 7-2
C Equivalents, 7-3
User Defined, 1-20

Data, Getting From User, 2-647, 2-648, 2-649
Database

Add Images, 2-343
Change Description, 2-343
Close Database File, 2-344
Create New, 2-346
Delete Image, 2-345
Load Image, 2-345

Open Database File, 2-346
Remove Image, 2-346
Select, 2-347
Show Window, 2-347
Sort, 2-348
Tagging/Untagging Images, 2-348

DDE to Excel, 2-249
Decision Structures, 1-29
Declaration of Variables, 1-18
DEFAULT.IPM, 1-3
Define Pseudo‐Color Spread, 2-470
Delaying Macro Execution, 2-426
Delete

AOIs, 2-80
Count, 2-113
Database File, 2-345
Database Image, 2-346
Intensity Calibration, 2-367
Macro Output Window, 2-466
Measurements, 2-433
Spatial Calibration, 2-579

Delete Annotation, 2-60
Delete Color Ranges, 2-593
Delete Command, 2-706
Delete Dye, 2-292
Edit Dye, 2-292
Delete Frames Command, 2-706
Delimiters, 1-14
Demostration Macros, 2-253
Description, in Macro, 1-5
Despeckle Filter, 2-327
Digital Signal Command, 2-395
Dilation Filter, 2-327
Dim, 1-18
Directory Search, 2-650, 2-652
Display Range Command, 2-285, 2-286, 2-288

Show Dialog, 2-288
Distance Filter, 2-328
Distance Measurement Tool, 2-448
Divide

Image by Image, 2-456
Image by Number, 2-460, 2-464

Division, 1-21, 1-22
Integer Division, 1-21, 1-22

Do Until, 1-26
Do While, 1-26
Do...Loop, 1-26, 1-27
Do...Loop Until, 1-26
Do...Loop While, 1-26

Index

Index-5

Donut AOI, Creating, 2-75
Drawing, 2-288, 2-289, 2-290

Text, 2-290
Duplicate Command, 2-706
Dynamic Data Exchange, 2-249

E
Edit Dye List, 2-292
Edit Lens, 2-396
Edit Lens List, 2-396
Elliptical AOI, Creating, 2-75
Environment File

Loading, 2-133
Saving, 2-137

Equality, 1-22
Equalize Command, 2-353
Eqv, 1-23, 1-24
Erosion Filter, 2-329
Error Messages, 1-29, 9-1
Example Program

Visual Basic, 1-36
Exclusive Or, 1-23
Exit Image‐Pro, 2-86
Exponentiation, 1-21
Expressions, 1-20
Extended Depth of Field, 2-295, 2-296, 2-297, 2-

298, 2-299, 2-300, 2-301
Test Strips, 2-300

Extended Thinning Filter, 2-340
Extract Background Filter, 2-330
Extract Channel Command, 2-197

F
F4, 2-91
FFT Command

File Load, 2-304
File Save, 2-306
File Tag, 2-309
Forward, 2-301
HiPass, 2-302
Inverse, 2-303
LoPass, 2-304
Show, 2-306
Spike Boost, 2-307
Spike Cut, 2-308

File Format Conversion, 2-694
File Name Processing, 1-12

Creating File Names, 2-646
Directory Search, 2-650

Open File Dialog Box, 2-649
Sort List, 2-652

File SignatureCommand, 2-342
Fill Command, 2-706

Pattern Selection, 2-707
Filter Command

Branch and End Points, 2-324
Close, 2-325
Despeckle, 2-327
Dilate, 2-327
Distance, 2-328
Erode, 2-329
Extract Background, 2-330
Flatten Background, 2-331
Gauss, 2-331
HiPass, 2-332
Laplacian, 2-332
Local Equalize, 2-332
LoPass, 2-333
Median, 2-334
Open, 2-335
Other, 2-326
Phase, 2-336
Prune, 2-336
Rank, 2-336
Reduce, 2-337
Restricted Dilation, 2-337
Roberts, 2-337
Sharpen, 2-338
Show Restricted Dilation, 2-338
Show Window, 2-339
Sobel, 2-339
Thinning, 2-339, 2-340
User Dilate, 2-340
User Erode, 2-340
Variance, 2-341
Watershed, 2-341

Filters
Large Spectral, 2-407
Large Spectral, 2-406

Finding an Image Window, 2-255, 2-256
Flatten Background Filter, 2-331
Flip Image, 2-713
Float Data Type, 7-1, 7-3
Flow Control, 1-25
For...Next, 1-26, 1-27
Foreground Color Selection, 2-468, 2-469
Forward FFT, 2-301
Freeform AOI, Creating, 2-75

Index

Index-6

Freeform Intensity Calibration, 2-375, 2-379
Functions, 1-15, 1-16

G
Gauss

Spatial Filter, 2-331
Get

AOI Data, 2-77, 2-79
Application Data, 2-87
Block Of Pixel Values, 2-260, 2-262
Calibration File, 2-152
Count/Size Handle, 2-117
Count/Size Information, 2-117
Count/Size Measurement Values, 2-106, 2-

113
Count/Size Object Number, 2-117
Cursor Position, 2-253
Data From An Image, 1-13
Demo Macro, 2-252
Drawing, 2-289
File Name From User, 2-649
Floating-Point From User, 1-12, 2-647
Histogram Information, 2-354
Histogram Size, 2-354
Histogram Statistics, 2-354
Histogram Values, 2-354
Integer From User, 1-12, 2-648
Line Of Pixel Values, 2-263
Line Points, 2-349
Line Profile Information, 2-492
Line Profile Size, 2-492
Line Profile Statistics, 2-492
Line Profile Values, 2-492
Macro Settings, 2-380, 2-393
Measurements Data, 2-433
Measurements Statistics, 2-433
Position Information, 2-269
Property Information, 2-265, 2-266, 2-268
String Data, 2-91, 2-131, 2-270, 2-441
String From User, 1-12, 2-649
Tool Type, 2-433

Get Data From Application, 2-87
Get File Signature, 2-342
Get Image Signature, 2-394
Get String Data From Application, 2-91
Get String Data From Count/Size, 2-131
Get String Data From Image, 2-270
Get String Data From Measurements, 2-441
Get Workflow Toolbar, 2-673

Get/Set
LUT File, 2-409

Global, 1-18
Greater Than, 1-22
Greater Than or Equal To, 1-22
Grid Mask Command

Apply, 2-350
Attributes, 2-351
Create, 2-351
Show Dialog, 2-351

H
Handle

To Count/Size Structure, 2-117
Hide Border, 2-91
HiPass

FFT Filter, 2-302
Spatial Filter, 2-332

Histogram Command, 2-351
Close Window, 2-352
Equalize, 2-353
Get Histogram Data, 2-354
Maximize Window, 2-358
Minimize Window, 2-358
Move Window, 2-359
Restore Window, 2-359
Saving, 2-360
Scale, 2-362
Select Window, 2-363
Setting Options, 2-363
Update, 2-366
Window Size, 2-365

Histogram of Count/Size Data, 2-146
Horizontal Thickness Tool, 2-449

I
If...Then...Else, 1-29
If...Then...Else, 1-29
If...Then...ElseIf...End If, 1-29
Image File

Loading, 2-709, 2-710, 2-711, 2-712
Saving, 2-718, 2-719

Image File Format Conversion, 2-695
Image SignatureCommand, 2-394, 2-395
Image Window

Close All, 2-84
Closing, 2-254
Control, 2-85
Control Text, 2-86

Index

Index-7

Disable Painting, 2-99
Finding, 2-255, 2-256
Maximize, 2-271
Minimize, 2-271
Move, 2-271
Paint, 2-99
Restore, 2-279
Select, 2-96
Size, 2-285

Imp, 1-23, 1-24
Implication, 1-23
Incident Level, 2-375
Inclusive Or, 1-23
Info Command, 2-692, 2-693
Initializing Macro Settings, 2-380, 2-393
Input From User, Getting, 1-12, 2-647, 2-648, 2-

649
Inserting A Pause In A Macro, 2-426
Integer Data Type, 7-1, 7-3
Integer Division, 1-21, 1-22
Intensity Calibration

Calibration Values, 2-366
Create Set, 2-366
Default Values, 2-373
Delete Set, 2-367
Freeform Curve, 2-375, 2-379
Linearize Values, 2-371
Load Set, 2-372
Move Window, 2-373
Name, 2-375
Number of Samples, 2-376
Optical Density Calibration, 2-375
Select Set, 2-374
Show Window, 2-379
Standard Optical Density, 2-379
System, 2-370, 2-377, 2-378
Unit Name, 2-379

Internet Access Command
Mail, 2-426
Open, 2-342
Save, 2-343

Interrupting Macro Execution, 1-11, 2-416, 2-
423, 2-426

Inverse FFT, 2-303
IpAcqAverage, 2-3, 4-1
IpAcqControl, 2-3, 4-1
IpAcqDynIntSnap, 2-9, 4-1
IpAcqMultiSnap, 2-10, 4-1
IpAcqSelectDriver, 2-11, 4-1

IpAcqSeqIntSnap, 2-17, 4-1
IpAcqSettings, 2-12, 4-1
IpAcqShow, 2-12, 4-1
IpAcqSnap, 2-14, 4-1
IpAcqTimed, 2-15, 4-1
IpAcqTimedEx, 2-16, 4-1
IpAFAAddChan, 2-18, 4-1, 5-7
IpAFADelChan, 2-19, 4-1, 5-7
IpAFADelChanStr, 2-19, 4-1, 5-7
IpAFAGet, 2-20, 4-1, 5-7
IpAFAGetStr, 2-27, 4-1, 5-7
IpAFALoad, 2-29, 4-1, 5-7
IpAFAMacroGet, 2-29, 4-1, 5-7
IpAFAMacroSet, 2-30, 4-1, 5-7
IpAFANew, 2-30, 4-1, 5-7
IpAFASave, 2-31, 4-1, 5-7
IpAFASaveAs, 2-31, 4-1, 5-7
IpAFASetEx, 2-32, 4-1, 5-7
IpAFASetInt, 2-33, 4-1, 5-7
IpAFASetSingle, 2-41, 4-1, 5-7
IpAFASetStr, 2-43, 4-1, 5-7
IpAFAShow, 2-45, 4-1, 5-7
IpAFASnap, 2-46, 4-1, 5-7
IpAffine, 2-47, 4-1
IpAlignAdd, 2-48, 4-1
IpAlignApply, 2-48, 4-1
IpAlignCalculate, 2-48, 4-1
IpAlignFindPattern, 2-48, 4-1
IpAlignGet, 2-51, 4-1
IpAlignOpen, 2-53, 4-1
IpAlignRemove, 2-53, 4-1
IpAlignSave, 2-54, 4-1
IpAlignSetEx, 2-54, 4-1
IpAlignSetInt, 2-54, 4-1
IpAlignSetSeachPattern, 2-55
IpAlignSetSearchPattern, 4-1
IpAlignSetSingle, 2-55, 4-1
IpAlignShow, 2-55, 4-1
IpAnActivateAll, 4-4
IpAnActivateDefaultObj, 2-57, 4-4
IpAnActivateObjId, 4-4
IpAnActivateObjID, 2-57
IpAnActivateObjXY, 2-58, 4-4
IpAnAddText, 2-58, 4-4
IpAnBurn, 2-59, 4-4
IpAnCreateObj, 2-59, 4-4
IpAnDeleteAll, 2-60, 4-4
IpAnDeleteObj, 2-61, 4-4
IpAnGet, 2-62, 4-4

Index

Index-8

IpAnGetFontName, 2-65, 4-4
IpAnMove, 2-65, 4-4
IpAnotAttr, 2-72, 4-4
IpAnotBox, 2-72, 4-4
IpAnotEllipse, 2-73, 4-4
IpAnotLine, 2-73, 4-5
IpAnPolyAddPtArray, 2-66, 4-4
IpAnPolyAddPtString, 2-67, 4-4
IpAnSet, 2-68, 4-4
IpAnSetFontName, 2-70, 4-4
IpAnShow, 2-70
IpAnShowAnnot, 2-71, 4-4
IpAnText, 2-71, 4-4
IpAoiChangeName, 2-74, 4-1
IpAoiCreateBox, 2-74, 4-1
IpAoiCreateDonut, 2-75, 4-1
IpAoiCreateEllipse, 2-75
IpAoiCreateIrregular, 2-75, 4-1
IpAoiGet, 2-77, 4-1
IpAoiGetStr, 2-79, 4-1
IpAoiManager, 2-80, 4-1
IpAoiMove, 2-82, 4-1
IpAoiMultAppend, 2-82, 4-1
IpAoiMultShow, 2-82, 4-1
ipAoiPoints, 2-76
IpAoiShow, 2-83, 4-1
IpAoiValidate, 2-83, 4-1
IpAppArrange, 2-84, 4-1
IpAppCloseAll, 2-84, 4-1
IpAppCtl, 2-85, 4-1
IpAppCtlText, 2-86, 4-1
IpAppExit, 2-86, 4-1
IpAppGet, 2-87, 4-1
IpAppGetStr, 2-91, 4-1
IpAppHide, 2-91, 4-1
IpAppMaximize, 2-92, 4-1
IpAppMenuSelect, 2-92, 4-1
IpAppMinimize, 2-94, 4-1
IpAppMove, 2-94, 4-1
IpAppRestore, 2-94, 4-1
IpAppRun, 2-95, 4-1
IpAppSelectDoc, 2-96, 4-1
IpAppSet, 2-97, 4-1
IpAppSize, 2-98, 4-1
IpAppUpdateDoc, 2-99, 4-1
IpAppWindow, 2-101, 4-1
IpAppWndPos, 2-101, 4-1
IpAppWndState, 2-102, 4-1
IPBasic, 1-1, 1-3, 1-14

And Visual Basic, 1-1, 1-14, 1-37
Branching, 1-28
Comments, 1-15
Compatibility Issues, 1-31
Constants, 1-17, 1-19
Data Types, 1-17, 7-1
Decision Structures, 1-29
DimFunction, 1-33
Expressions, 1-20
Functions, 1-15
Image Updates, 1-34
IpAppGet, 1-33
IpDocGet, 1-33
Loop Structures, 1-25
Operators, 1-20
Option Explicit, 1-34
Print Function, 1-31
RTrim$ Function, 1-31
Statements, 1-14
Str$ Function, 1-32
Subroutines, 1-15
User-Defined Data Types, 1-20
Variables, 1-17

IPBasic Editor, 1-30
IpBitAttr, 2-103, 4-2
IpBitSaveData, 2-104, 4-2
IpBitShow, 2-105, 4-2
IpBlbCount, 2-105, 4-3
IpBlbCreatemask, 2-106
IpBlbCreateMask, 4-3
IpBlbData, 2-106, 4-3
IpBlbData (alternative version), 2-113
IpBlbDelete, 2-113, 4-3
IpBlbEnableMeas, 4-3
IpBlbFilter, 2-116, 4-3
IpBlbFromAOI, 2-116, 4-3
IpBlbGet, 1-13, 2-117, 4-3
IpBlbGetStr, 4-3
IpBlbHideObject, 2-131, 4-3
IpBlbHitTest, 2-132, 4-3
IpBlbLoadOutline, 2-132, 4-3
IpBlbLoadSetting, 2-133, 4-3
IpBlbMeasure, 2-133, 4-3
IpBlbMultiRanges, 2-133, 4-3
IpBlbRange, 2-134, 4-3
IpBlbRemoveHoles, 2-134, 4-3
IpBlbSaveClasses, 2-134, 4-3
IpBlbSaveData, 2-134, 4-3
IpBlbSaveOutline, 2-136, 4-3

Index

Index-9

IpBlbSavePopDensities, 2-136, 4-3
IpBlbSaveSetting, 2-137, 4-3
IpBlbSaveStatistics, 4-3
IpBlbSetAttr, 2-138, 4-3
IpBlbSetFilterRange, 2-142, 4-3
IpBlbSetRange, 2-143, 4-3
IpBlbSetRangeEx, 2-143, 4-3
IpBlbShow, 2-144, 4-3
IpBlbShowAutoClass, 2-144, 4-3
IpBlbShowCluster, 2-145, 4-3
IpBlbShowData, 2-146, 4-3
IpBlbShowHistogram, 2-146, 4-3
IpBlbShowObjectWindow, 2-147, 4-3
IpBlbShowPopDens, 2-147, 4-3
IpBlbShowScattergram, 2-148, 4-3
IpBlbShowSingleClass, 2-148, 4-3
IpBlbShowStatistics, 2-150, 4-3
IpBlbSmoothObjects, 2-150, 4-3
IpBlbSplitObjects, 2-151, 4-3
IpBlbUpdate, 2-151, 4-3
IpCalGet, 2-152, 4-2
IpCalLoad, 2-154, 4-2
IpCalSave, 2-154, 4-2
IpCalSaveAll, 2-154, 4-2
IpCalSaveEx, 2-155, 4-2
IpCapArea, 2-155, 4-7
IpCapFile, 2-156, 4-7
IpCapHotKey, 2-157, 4-7
IpCapWindow, 2-159, 4-7
IpCDnvSettings, 4-3, 5-8
IPCERR_APPINACTIVE, 9-1
IPCERR_BUSY, 9-2
IPCERR_CANCELLED, 9-2
IPCERR_DLLNOTFOUND, 9-1
IPCERR_EMPTY, 9-2
IPCERR_FUNCNOTFOUND, 9-1
IPCERR_INVARG, 9-2
IPCERR_INVCOMMAND, 5-8, 9-1
IPCERR_LIMIT, 9-2
IPCERR_MEMORY, 9-2
IPCERR_NODOC, 9-2
IPCERR_NONE, 9-1
IPCERR_NOTFOUND, 9-1
IpChrt2DCreate, 2-159, 4-2
IpChrt2DGet, 2-160, 4-2
IpChrt2DGraphtoClipboard, 4-2
IpChrt2DGraphToClipboard, 2-161
IpChrt2DMove, 2-161, 4-2
IpChrt2DSet, 2-162, 4-2

IpChrt2DSetArr, 2-172, 4-2
IpChrt2DSetStr, 2-172, 4-2
IpChrt2DShow, 2-174, 4-2
IpChrt2DSize, 2-175, 4-2
IpChrt2DUpdate, 2-175
IpClprClipboard, 2-175, 4-2
IpClprCreateDerivativeEdge, 2-176, 4-2
IpClprCreateMeas, 2-177, 4-2
IpClprCreatePatternMatchEdge, 2-178, 4-2
IpClprCreateSampler, 2-179, 4-2
IpClprDeleteEdge, 2-179, 4-2
IpClprDeleteMeas, 2-180, 4-2
IpClprDeleteSampler, 2-180, 4-2
IpClprDetGetInt, 2-180, 4-2
IpClprDetGetSng, 2-181, 4-2
IpClprEditSampler, 2-182, 4-2
IpClprGet, 2-183, 4-2
IpClprGetData, 2-185, 4-2
IpClprGetDataEx, 4-2
IpClprGetIntEx, 2-187, 4-2
IpClprGetPoints, 2-188
IpClprGetSngEx, 2-188, 4-2
IpClprGetStr, 2-189, 4-2
IpClprGetStrEx, 2-190
IpClprSave, 2-190, 4-2
IpClprSelectEdge, 2-191, 4-2
IpClprSelectSampler, 2-191, 4-2
IpClprSet, 2-191, 4-2
IpClprSetIntEx, 2-193
IpClprSetStr, 2-193, 4-2
IpClprSettings, 2-194, 4-2
IpClprShow, 2-194, 4-2
IpClprToggleMarker, 2-195, 4-2
IpClprTool, 4-2
IpCmChannelExtract, 2-197, 4-3
IpCmChannelMerge, 2-198, 4-3
IpCmChannelMerge3, 2-199, 4-3
IpCmmCorrectColors, 2-199, 4-3
IpCmmGet, 2-200, 4-3
IpCmmSelectCamera, 4-3
IpCmmSetInt, 2-201, 4-3
IpCmmSetStr, 2-202, 4-3
IpCmmShow, 2-203, 4-3
IpCmpAdd, 2-204, 4-2
IpCmpAddEx, 2-204, 4-2
IpCmpAddTint, 2-205, 4-2
IpCmpAddTintPos, 2-206, 4-2
IpCmpDel, 2-206, 4-2
IpCmpGet, 2-207, 4-2

Index

Index-10

IpCmpNew, 2-209, 4-2
IpCmpNewTint, 2-209, 4-2
IpCmpSet, 2-210, 4-2
IpCmpShow, 2-211, 4-2
IpCmTransform, 2-203, 4-3
IpColCalAdd, 2-211, 4-2
IpColCalConvert, 2-212, 4-2
IpColCalCorrect, 2-212, 4-2
IpColCalCreate, 2-212, 4-2
IpColCalGet, 2-212, 4-2
IpColCalGetRGB, 2-215, 4-2
IpColCalLoad, 2-215, 4-2
IpColCalNew, 2-215, 4-2
IpColCalSave, 2-215, 4-2
IpColCalSet, 2-216, 4-2
IpColCalShow, 2-217, 4-2
IpColExtract, 2-217, 4-2
IpCoLocForward, 2-218, 4-3
IpCoLocGetDocument, 2-219, 4-3
IpCoLocGetForward, 2-220, 4-3
IpCoLocGetInverse, 2-220, 4-3
IpCoLocInverse, 2-221, 4-3
IpCoLocShow, 2-221, 4-3
IpColShow, 2-217, 4-2
IpDbAddField, 2-221, 4-4
IpDbFind, 2-222, 4-4
IpDbGoto, 2-223
IpDbGoTo, 4-4
IpDbLoadView, 2-223, 4-4
IpDbNewFolder, 2-223
IpDbOpenFolder, 2-224, 4-4
IpDbPrint, 2-224, 4-4
IpDbReadStr, 2-225, 4-4
IpDbSearch, 2-227, 4-4
IpDbSetAttr, 2-227, 4-4
IpDbViewAll, 2-228, 4-4
IpDbViewFolder, 2-228, 4-4
IpDbWrite, 4-4
IpDbWriteStr, 2-229
IpDcAddCol, 2-230, 4-3
IpDcAddSng, 2-231, 4-3
IpDcAddStr, 2-231, 4-3
IpDcCreateChart, 4-3
IpDcDeleteCol, 2-232, 4-3
IpDcGet, 2-232, 4-3
IpDcGetStr, 4-3
IpDcGetStr, 2-234
IpDcMeasList, 4-3
IpDCnvCalculateSA, 2-238, 4-3, 5-8

IpDCnvDeconvolve, 2-238, 4-3, 5-8
IpDCnvGet, 2-239, 4-3, 5-8
IpDCnvGetStr, 2-243, 4-3, 5-8
IpDCnvResultsShow, 2-249, 4-3, 5-8
IpDCnvSet, 2-243, 4-3, 5-8
IpDCnvSetSng, 2-247, 4-3, 5-8
IpDCnvSetStr, 2-249, 4-3, 5-8
IpDCnvSettings, 2-247
IpDCnvShow, 2-249, 4-3
IpDcSaveData, 2-235, 4-3
IpDcSelect, 2-236, 4-3
IpDcSet, 2-236, 4-3
IpDcSetStr, 4-3
IpDcSetVarName, 4-3
IpDcShow, 2-237, 4-3
IpDcUnSelect, 2-237, 4-3
IpDcUpdate, 2-238, 4-3
IpDde, 2-249, 4-4
IpDemoGetStr, 2-252, 4-3
IpDemoSetStr, 2-252, 4-3
IpDemoShow, 2-253, 4-3, 4-5
IpDistDelete, 4-6, 5-8
IpDistGetLong, 4-6, 5-8
IpDistGetSng, 4-6, 5-8
IpDistGetStr, 4-6, 5-8
IpDistSetLong, 4-6, 5-8
IpDistSetStr, 4-6, 5-8
IpDistShow, 4-6, 5-8
IpDistTag, 4-6, 5-8
IpDistTool, 4-6, 5-8
IpDocClick, 2-253, 4-5
IpDocClose, 2-254, 4-5
IpDocCloseEx, 2-254, 4-5
IpDocCloseVri, 2-255, 4-5
IpDocFind, 2-255, 2-256, 4-5
IpDocGet, 1-13, 2-256, 4-5
IpDocGetArea, 1-13, 2-260, 4-5
IpDocGetAreaSize, 2-262, 4-5
IpDocGetLine, 2-263, 4-5
IpDocGetPosition, 2-269, 4-5
IpDocGetPropDate, 2-265, 4-5, 4-7
IpDocGetPropDbl, 2-266, 4-5, 4-7
IpDocGetPropLong, 2-267, 4-7
IpDocGetPropStr, 2-268, 4-5, 4-7
IpDocGetStr, 2-270, 4-5
IPDOCINFO Data Type, 2-259, 7-3
IpDocMaximize, 2-271, 4-5
IpDocMinimize, 2-271, 4-5
IpDocMove, 2-271, 4-5

Index

Index-11

IpDocOpenAoi, 2-273, 4-5
IpDocOpenVri, 2-274, 4-5
IpDocPutArea, 2-275, 4-5
IpDocPutLine, 2-277, 4-5
IpDocRestore, 2-279, 4-5
IpDocSetPosition, 2-283, 4-5
IpDocSetPropDate, 2-280, 4-5, 4-7
IpDocSetPropDbl, 2-281, 4-5, 4-7
IpDocSetPropLong, 2-281, 4-7
IpDocSetPropStr, 2-283, 4-5, 4-7
IpDocSize, 2-285, 4-5
IpDraw, 2-288, 4-5
IpDrawClear, 2-288, 4-5
IpDrawClearDoc, 2-289, 4-5
IpDrawGet, 2-289, 4-5
IpDrawSet, 2-290, 4-5
IpDrawText, 2-290, 4-5
IpDrGet, 4-3
IpDrGet, 2-285
IpDrSet, 2-286, 4-3
IpDrShow, 2-288, 4-3
IpDyeAdd, 2-291, 4-3
IpDyeAddTint, 2-291
IpDyeApply, 2-292
IpDyeDelete, 2-292, 4-3
IpDyeEdit, 2-292
IpDyeEdit, 4-3
IpDyeGet, 2-293, 4-3
IpDyeGetStr, 2-293, 4-3
IpDyeSelect, 2-294, 4-3
IpDyeSetStr, 2-294, 4-3
IpEDFAdd, 2-295, 4-4
IpEDFCreate, 2-295, 4-4
IpEDFGet, 2-296, 4-4
IpEDFGetConf, 2-297, 4-4
IpEDFNew, 2-297, 2-298, 4-4
IpEDFRemove, 2-298, 4-4
IpEDFSet, 2-299, 4-4
IpEDFShow, 2-300, 4-4
IpEDFTestStrips, 2-300
IpEDFTopoMap, 2-301, 4-4
IpFftForward, 2-301, 4-4
IpFftHiPass, 2-302, 4-4
IpFftInverse, 2-303, 4-4
IpFftLoad, 2-304, 4-4
IpFftLoPass, 2-304, 4-4
IpFftSave, 2-306, 4-4
IpFftShow, 2-306, 4-4
IpFftSpikeBoost, 2-307, 4-4

IpFftSpikeCut, 2-308, 4-4
IpFftTag, 2-309, 4-4
IpFlt3DApplytoBuffer, 2-309, 4-1, 5-9
IpFlt3DApplytoFrames, 2-310, 4-1, 5-9
IpFlt3DBranchEnd, 2-312, 4-1, 5-9
IpFlt3DConv, 2-313, 4-1, 5-9
IpFlt3DData, 4-1, 5-9
IpFlt3DDistance, 2-315, 4-1, 5-9
IpFlt3DGet, 2-315, 4-1, 5-9
IpFlt3DKernel, 2-315, 4-1, 5-9
IpFlt3DMorph, 2-316, 4-1, 5-9
IpFlt3DMorphKernel, 2-316, 4-1, 5-9
IpFlt3DPrune, 2-317, 4-1, 5-9
IpFlt3DRank, 2-317, 4-1, 5-9
IpFlt3DReduce, 2-318, 4-1, 5-9
IpFlt3DSet, 2-318, 4-1, 5-9
IpFlt3DShow, 2-318, 4-1, 5-9
IpFlt3DThin, 2-319, 4-1, 5-9
IpFlt3dVectGet, 4-1, 5-9
IpFlt3DVectGet, 2-319
IpFlt3dVectGetData, 4-1, 5-9
IpFlt3DVectGetData, 2-321
IpFlt3DVectorize, 2-323, 4-1, 5-9
IpFlt3DWatershed, 2-323, 4-1, 5-9
IpFltBranchEnd, 2-324, 4-4
IpFltClose, 2-325, 4-4
IpFltConvolveKernel, 2-326, 4-4
IpFltDespeckle, 2-327, 4-4
IpFltDilate, 2-327, 4-4
IpFltDistance, 2-328, 4-4
IpFltErode, 2-329, 4-4
IpFltExtractBkgnd, 2-330, 4-4
IpFltFlatten, 2-331, 4-4
IpFltGauss, 2-331, 4-4
IpFltHiPass, 2-332, 4-4
IpFltLaplacian, 2-332, 4-4
IpFltLocHistEq, 2-332, 4-4
IpFltLoPass, 2-333, 4-4
IpFltMedian, 2-334, 4-4
IpFltOpen, 2-335, 4-4
IpFltPhase, 2-336, 4-4
IpFltPrune, 2-336, 4-4
IpFltRank, 2-336, 4-4
IpFltReduce, 2-337, 4-4
IpFltRoberts, 2-337, 4-4
IpFltRstrDilate, 2-337, 4-4
IpFltRstrDilateShow, 2-338, 4-4
IpFltSharpen, 2-338, 4-4
IpFltShow, 2-339, 4-4

Index

Index-12

IpFltSobel, 2-339, 4-4
IpFltThin, 2-339, 4-4
IpFltThinEx, 2-340, 4-4
IpFltUserDilate, 2-340, 4-4
IpFltUserErode, 2-340, 4-4
IpFltVariance, 2-341, 4-4
IpFltWatershed, 2-341, 4-4
IpFltWatershedEx, 2-341, 4-4
IpFsGet, 2-342, 4-4
IpFsGetStr, 2-342, 4-4
IpFTPOpen, 2-342, 4-5
IpFTPSave, 2-343, 4-5
IpGalAdd, 2-343, 4-4
IpGalChangeDescription, 2-343, 4-4
IpGalClose, 2-344, 4-4
IpGalDelete, 2-345, 4-4
IpGalImageOpen, 2-345, 4-4
IpGalNew, 2-346
IpGalOpen, 2-346, 4-4
IpGalRemove, 2-346, 4-4
IpGalSetActive, 2-347, 4-4
IpGalShow, 2-347, 4-4
IpGalSort, 2-348, 4-4
IpGalTag, 2-348, 4-4
IpGalUpdate, 2-349, 4-4
IpGetConvertColor, 2-350, 4-2
IpGetLine, 2-349, 4-5
IpGridApply, 2-350, 4-4
IpGridCreateMask, 2-351, 4-4
IpGridSelect, 2-351, 4-4
IpGridShow, 2-351, 4-4
IpHstCreate, 2-351, 4-4
IpHstDestroy, 2-352, 4-4
IpHstEqualize, 2-353, 4-4
IpHstGet, 1-13, 2-354, 4-4
IpHstMaximize, 2-358, 4-4
IpHstMinimize, 2-358, 4-4
IpHstMove, 2-359, 4-4
IpHstRestore, 2-359, 4-4
IpHstSave, 2-360, 4-4
IpHstScale, 2-362, 4-4
IpHstSelect, 2-363, 4-4
IpHstSetAttr, 2-363, 4-4
IpHstSize, 2-365, 4-4
IpHstUpdate, 2-366, 4-4
IpICalCalibValues, 2-366, 4-2
IpICalCreate, 2-366, 4-2
IpICalDestroy, 2-367, 4-2
IpICalDestroyEx, 2-367, 4-2

IpICalGetLong, 2-368, 4-2
IpICalGetSng, 2-369, 4-2
IpICalGetStr, 2-370, 4-2
IpICalGetSystem, 4-2
IpICalGetSytem, 2-370
IpICalLinearize, 2-371, 4-2
IpICalLoad, 2-372, 4-2
IpICalMove, 2-373, 4-2
IpICalReset, 2-373, 4-2
IpICalSave, 2-373, 4-2
IpICalSelect, 2-374, 4-2
IpICalSetLong, 2-374, 4-2
IpICalSetName, 2-375, 4-2
IpICalSetOptDens, 2-375, 4-2
IpICalSetPoints, 2-375, 4-2
IpICalSetSamples, 2-376, 4-2
IpICalSetSng, 2-376, 4-2
IpICalSetStr, 2-377, 4-2
IpICalSetSystem, 4-2
IpICalSetSystemByName, 4-2
IpICalSetSytem, 2-377
IpICalSetSytemByName, 2-378
IpICalSetUnitName, 2-379, 4-2
IpICalShow, 2-379, 4-2
IpICalShowFormat, 2-379, 4-2
IpIniFile, 2-380, 4-5
IpIniFileStr, 2-393, 4-5
IpIOvrApply, 2-381
IpIOvrGet, 2-382
IpIOvrSet, 2-387
IpIOvrShow, 2-392
IpIsGet, 2-394, 4-5
IpIsGetStr, 2-394, 2-395, 4-5
IpIsShow, 2-395, 4-5
IpLensAdd, 2-396, 4-5
IpLensDelete, 2-396, 4-5
IpLensEdit, 2-396, 4-5
IpLensGetLong, 2-397, 4-5
IpLensGetSng, 2-397, 4-5
IpLensGetStr, 2-397, 4-5
IpLensSelect, 2-398, 4-5
IpLensSetStr, 2-398, 4-5
IpLFltApply, 4-5
IpLFltShow, 4-5
IpListPts, 2-398
IpLiveEDFGet, 4-5
IpLiveEDFSetInt, 2-400, 4-5
IpLiveTileSetInt, 2-403
IpLiveTilingSetInt, 4-5

Index

Index-13

IpLocalZoomSetPos, 2-405
IpLocZoomMove, 2-404, 4-5
IpLocZoomSet, 4-5
IpLocZoomSetPos, 4-5
IpLocZoomSetStr, 2-405
IpLocZoomShow, 2-405, 4-5
IpLocZoomSize, 2-405, 4-5
IpLFltApply, 2-406
IpLFltShow, 2-407
IpLstPts, 4-1
IpLutApply, 2-407, 4-1
IpLutBinarize, 2-408, 4-1
IpLutData, 2-409, 4-2
IpLutLoad, 2-411, 4-2
IpLutReset, 2-411, 4-2
IpLutSave, 2-412, 4-2
IpLutSetAttr, 2-413, 4-2
IpLutSetControl, 2-414, 4-2
IpLutShow, 2-415, 4-2
IPMACRO.INI File, 2-380, 2-393
IpMacroLoad, 2-416, 4-5
IpMacroPause, 2-416, 4-5
IpMacroProgGet, 2-418
IpMacroProgGetStr, 2-419, 4-5
IpMacroProgSet, 4-5
IpMacroProgSetInt, 2-420, 4-5
IpMacroProgSetStr, 2-420, 4-5
IpMacroProgShow, 2-422, 4-5
IpMacroRun, 2-423, 4-5
IpMacroStop, 1-11, 2-423, 4-5
IpMacroWait, 2-426, 4-5
IpMail, 2-426, 4-5
IpMeasAdd, 2-427, 4-5
IpMeasAddMeasure, 2-429, 4-5
IpMeasAttr, 2-430, 4-5
IpMeasAttrStr, 2-432, 4-5
IpMeasDelete, 2-433, 4-5
IpMeasDelMeasure, 2-432, 4-5
IpMeasGet, 2-433, 4-5
IpMeasGetHit, 4-6
IpMeasGetStr, 2-441, 4-6
IpMeasLoad, 2-441, 4-6
IpMeasLoadOutline, 2-441, 4-6
IpMeasMove, 2-442, 4-6
IpMeasRestore, 2-442, 4-6
IpMeasSave, 2-443, 4-6
IpMeasSaveData, 2-443, 4-6
IpMeasSaveOutline, 2-444, 4-6
IpMeasShow, 2-444, 4-6

IpMeasSize, 4-6
IpMeasTag, 2-446, 4-6
IpMeasTool, 2-447, 4-6
IpMeasUpdate, 2-449, 4-6
IpMmonGet, 2-449, 4-6
IpMmonSet, 2-450, 4-6
IpMmonSetInt, 2-450
IpMmonShow, 2-450, 4-6
IpMorePts, 2-398, 2-450, 4-1
IpMosaicCreate, 2-451, 4-6
IpMosaicGet, 2-452, 4-6
IpMosaicSet, 2-453, 4-6
IpMosaicShow, 2-454, 4-6
IpOpBkgndCorrect, 2-454, 4-1
IpOpBkgndSubtract, 2-455, 4-1
IpOpImageArithmetics, 2-456, 4-6
IpOpImageLogic, 2-458, 4-6
IpOpNumberArithmetics, 2-460, 4-6
IpOpNumberLogic, 2-462, 4-6
IpOpNumberRgb, 2-464, 4-6
IpOpShow, 2-465, 4-6
IpOutput, 1-14, 2-466, 4-6
IpOutputClear, 2-466, 4-6
IpOutputSave, 2-467, 4-6
IpOutputSet, 2-467, 4-6
IpOutputShow, 2-468, 4-6
IpPalSetGrayBrush, 2-468, 4-6
IpPalSetPaletteBrush, 2-468, 4-6
IpPalSetPaletteColor, 2-469, 4-6
IpPalSetRGBBrush, 2-469, 4-6
IpPalShow, 2-470, 4-6
IpPcDefineColorSpread, 2-470, 4-6
IpPcDyeTint, 2-471, 4-6
IpPcLoad, 2-471, 4-6
IpPcSave, 2-472, 4-6
IpPcSaveData, 2-472, 4-6
IpPcSetColor, 2-472, 4-6
IpPcSetColorSpread, 2-474, 4-6
IpPcSetDivisions, 2-474, 4-6
IpPcSetRange, 2-474, 4-6
IpPcShow, 2-475, 4-6
IpPcTint, 2-475, 4-6
IpPlFilter, 2-476, 4-7
IpPlImport, 2-477, 4-7
IpPlotCreate, 2-477, 4-5
IpPlotData, 2-478, 4-5
IpPlotDestroy, 2-478, 4-5
IpPlotRange, 2-478, 4-5
IpPlotSet, 2-479, 4-5

Index

Index-14

IpPlotShow, 2-480, 4-5
IpPlotUpdate, 2-481, 4-5
IpPlShow, 2-477, 4-7
IpPortIOControl, 2-482
IpPortIOGetInt, 2-483, 4-6, 5-10
IpPortIOOpenConfig, 2-488, 4-6, 5-10
IpPortIORead, 2-488, 4-6
IpPortIOSaveConfig, 2-489, 4-6, 5-10
IpPortIOSetInt, 2-489, 4-6, 5-10
IpPortIOShow, 4-6, 5-10
IpPortIOShowConfig, 2-491
IpPortIOWrite, 2-491, 4-6
IpProfCreate, 2-491, 4-5
IpProfDestroy, 2-492, 4-5
IpProfGet, 1-13, 2-492, 4-5
IpProfLineMove, 2-496, 4-5
IpProfMaximize, 2-497, 4-5
IpProfMinimize, 2-497, 4-5
IpProfMove, 2-497, 4-5
IpProfRestore, 2-498, 4-5
IpProfSave, 2-498, 4-5
IpProfSelect, 2-500, 4-5
IpProfSetAttr, 2-501, 4-5
IpProfSetFreeForm, 2-503, 4-5
IpProfSize, 2-504, 4-5
IpProfUpdate, 2-504, 4-5
IpPrtHalftone, 2-504, 4-6
IpPrtPage, 2-505, 4-6
IpPrtScreen, 2-506, 4-6
IpPrtSize, 2-507, 4-6
ipRect, 2-74, 2-75
IpRegister, 2-509, 4-6
IpRegShow, 2-510, 4-6
IpRendAnimation, 2-511, 4-6, 5-10
IpRendAnimationFile, 2-512, 4-6, 5-10
IpRendConvertCoord, 2-513, 4-6, 5-10
IpRendConvertRotation, 2-514, 4-6, 5-10
IpRendElem, 2-516, 4-6, 5-10
IpRendElemGet, 2-528, 4-6, 5-10
IpRendElemSet, 2-529, 4-6, 5-10
IpRendElemSetStr, 2-539, 4-6, 5-10
IpRendLoad, 2-542, 4-6, 5-10
IpRendManualMeasurementsFile, 2-542, 4-6, 5-

10
IpRendMeasGraphSet, 2-543, 4-6, 5-10
IpRendMMeas, 2-545, 4-6, 5-10
IpRendMMeasGetStr, 2-550, 4-6, 5-10
IpRendMMeasSet, 2-551, 4-6, 5-10
IpRendMMeasSetStr, 2-554, 4-6, 5-10

IpRendMove, 2-555, 4-6, 5-10
IpRendPaletteFile, 2-556, 4-6, 5-10
IpRendReload, 2-556, 4-6, 5-10
IpRendSaveData, 2-540, 4-6, 5-10
IpRendSet, 2-556, 4-6, 5-10
IpRendSettingsFile, 2-561, 4-6, 5-10
IpRendShow, 2-563, 4-6, 5-10
IpRendSize, 2-562, 4-6, 5-10
IpRendVMeas, 2-564, 4-6, 5-10
IpRendVMeasGetStr, 2-569, 4-6, 5-10
IpRendVMeasHist, 2-570, 4-6, 5-10
IpRendVMeasHistSet, 2-571, 4-6, 5-10
IpRendVMeasSet, 2-572, 4-6, 5-10
IpRendVMeasSetStr, 2-576, 4-6, 5-10
IpRptClose, 4-6
IpRptNew, 2-577, 4-6
IpRptOpen, 2-577, 4-6
IpRptPrint, 2-577, 4-6
IpRptSave, 2-578, 4-6
IpRptShow, 2-578, 4-6
IpSCalCalibValues, 2-578, 4-2
IpSCalCreate, 2-579, 4-2
IpSCalDestroy, 2-579, 4-2
IpSCalDestroyEx, 2-579, 4-2
IpSCalGetLong, 2-580, 4-2
IpSCalGetSng, 2-582, 4-2
IpSCalGetStr, 2-583, 4-2
IpSCalLoad, 2-583, 4-2
IpSCalMove, 2-584, 4-2
IpSCalReset, 2-584, 4-2
IpSCalSave, 2-584, 4-2
IpSCalSelect, 2-585, 4-2
IpSCalSetAngle, 2-585, 4-2
IpSCalSetAspect, 2-585, 4-2
IpSCalSetLong, 2-586, 4-2
IpSCalSetName, 2-588, 4-2
IpSCalSetOrigin, 2-589, 4-2
IpSCalSetSng, 2-587, 4-2
IpSCalSetStr, 2-588, 4-2
IpSCalSetUnit, 2-589, 4-2
IpSCalSetUnitName, 2-589, 4-2
IpSCalShow, 2-589, 4-2
IpSCalShowEx, 2-590
IpScanSelect, 2-591, 4-7
IpScanShow, 2-591, 4-7
IpSegCreateMask, 2-592, 4-2
IpSegDelete, 2-593, 4-2, 5-10
IpSegLoad, 2-594, 4-2, 5-10
IpSegMerge, 2-595, 4-2, 5-10

Index

Index-15

IpSegNew, 2-595, 4-3, 5-10
IpSegPreview, 2-596, 4-3, 5-10
IpSegRename, 2-597, 4-3, 5-10
IpSegReset, 2-597, 4-3, 5-10
IpSegSave, 2-597, 4-3, 5-10
IpSegSelect, 2-598, 4-3, 5-10
IpSegSelectArea, 2-598, 4-3, 5-10
IpSegSetAttr, 2-599, 4-3, 5-10
IpSegSetRange, 2-601, 4-3, 5-10
IpSegShow, 2-601, 4-3, 5-10
IpSeqAverage, 2-602, 4-7
IpSeqDifference, 2-602, 4-7
IpSeqDifferenceEx, 2-603, 4-7
IpSeqExtractFrames, 2-603, 4-7
IpSeqGCreate, 2-613, 4-7
IpSeqGet, 2-604, 4-7
IpSeqGGet, 2-613, 4-7
IpSeqGSet, 2-614, 4-7
IpSeqGShow, 2-614, 4-7
IpSeqGUpdate, 2-614, 4-7
IpSeqMerge, 2-606, 4-7
IpSeqMergeDoc, 4-7
IpSeqOpen, 2-606, 4-7
IpSeqOpenEx, 2-607
IpSeqOptions, 2-607
IpSeqPlay, 2-608, 4-7
IpSeqReslice, 4-7
IpSeqRunningAve, 2-609
IpSeqRunningAvg, 4-7
IpSeqReslice, 2-609
IpSeqSave, 2-610, 4-7
IpSeqSet, 2-611, 4-7
IpSeqShow, 2-613, 4-7
IpSmAdd, 2-615, 4-7
IpSmAddFrame, 2-618, 4-7
IpSmBackgroundCorr, 2-620, 4-7
IpSmBackgroundCorrShow, 2-620, 4-7
IpSmDelete, 2-621, 4-7
IpSmDespeckle, 2-621, 4-7
IpSmDespeckleShow, 2-622, 4-7
IpSmExtract, 2-622, 4-7
IpSmGet, 2-623, 4-7
IpSmGetStr, 2-631, 4-7
IpSmInfo, 2-633, 4-7
IpSmNew, 2-633, 4-7
IpSmNormalize, 2-633, 4-7
IpSmNormalizeShow, 2-634, 4-7
IpSmOpen, 2-634, 4-7
IpSmPlay, 2-634, 4-7

IpSmRemove Image, 4-7
IpSmRemoveFrame, 4-7
IpSmSave, 4-7
IpSmSet, 4-7
IpSmSetEx, 2-642, 4-7
IpSmSetStr, 2-643, 4-7
IpSmShow, 2-644, 4-7
IpSmShowNav, 2-644, 4-7
IpSnap, 2-644, 4-1
IpSortAttr, 2-645, 4-7
IpSortObjects, 2-645, 4-7
IpSortShow, 2-645, 4-7
IpStAutoName, 1-12, 2-646, 4-4
IpStGetFloat, 2-647, 4-8
IpStGetInt, 2-648, 4-8
IpStGetName, 1-12, 2-649, 4-4, 4-8
IpStGetString, 2-649, 4-8
IpStSearchDir, 1-12, 2-650, 4-4, 4-8
IpStSortedList, 2-652, 4-4
IpSurfAutoRefresh, 2-655, 4-7
IpSurfGet, 2-656, 4-7
IpSurfOutput, 2-657, 4-7
IpSurfSet, 2-657, 4-7
IpSurfShow, 2-658, 4-7
IpTagAddClass, 2-658, 4-5
IpTagAttr, 2-659, 4-5
IpTagDelete, 2-660, 4-5
IpTagDeleteClass, 2-661, 4-5
IpTagGet, 2-661, 4-5
IpTagLoadEnv, 2-662, 4-5
IpTagLoadPoints, 2-662, 4-5
IpTagPt, 2-663, 4-5
IpTagSaveData, 2-663, 4-5
IpTagSaveEnv, 2-664, 4-5
IpTagSavePoints, 2-664, 4-5
IpTagShow, 2-664, 4-5
IpTagUpdate, 2-665, 4-5
IpTemplateMode, 1-10, 2-665, 4-7
IpTextBurn, 2-666, 4-5
IpTextFont, 2-666, 4-5
IpTextGetAttr, 2-667, 4-5
IpTextSetAttr, 2-667, 4-5
IpTextShow, 2-668, 4-5
IpTileAdd, 2-668, 4-7
IpTileApply, 2-668, 4-7
IpTileCalculate, 2-668, 4-7
IpTileGet, 2-669, 4-7
IpTileOpen, 2-671, 4-7
IpTileRemove, 2-671, 4-7

Index

Index-16

IpTileSave, 2-671, 4-7
IpTileSetEx, 2-672, 4-7
IpTileSetInt, 2-672, 4-7
IpTileSetSingle, 2-672, 4-7
IpTileShow, 2-673
IpToolbarGetStr, 2-673, 4-8
IpToolbarSelect, 2-673, 4-8
IpToolbarShow, 2-674, 4-8
IpTraceAttr, 2-674, 4-7
IpTraceDo, 2-674, 4-7
IpTraceShow, 2-675, 4-7
IpTrackBar, 2-675, 4-1
IpTrackFile, 2-676, 4-7
IpTrackMeas, 2-677, 4-7
IpTrackMeasGetStr, 2-681
IpTrackMeasSet, 2-681, 4-7
IpTrackMeasSetStr, 2-688, 4-7
IpTrackMove, 2-688, 4-7
IpTrackOptionsFile, 2-689, 4-7
IpTrackSaveData, 2-689, 4-7
IpTrackShow, 2-690, 4-7
IpTrackSize, 2-690, 4-7
IpTrim, 2-691, 4-1, 4-5
IpView3DCopy, 4-1
IpView3DCreate, 4-1
IpView3DCreateAnimation, 4-1
IpView3DLoad, 4-1
IpView3DMove, 4-1
IpView3DReload, 4-1
IpView3DSet, 4-1
IpView3DSetCamera, 4-1
IpView3DShow, 4-1
IpView3DSize, 4-1
IPWIN32.MNU, 2-93
IpWsChangeDescription, 2-692, 4-5
IpWsChangeInfo, 2-693, 4-5
IpWsConvertFile, 2-694, 4-1
IpWsConvertImage, 2-695, 4-3
IpWsConvertToBilevel, 2-697, 4-3
IpWsConvertToFloat, 2-698, 4-3
IpWsConvertToGray, 2-698, 4-3
IpWsConvertToGray12, 2-698, 4-3
IpWsConvertToGray16, 2-698
IpWsConvertToGrayEx, 2-699, 4-3
IpWsConvertToPaletteMColor, 2-699, 4-3
IpWsConvertToPaletteMedian, 2-700, 4-3
IpWsConvertToRGB, 2-700, 4-3
IpWsCopy, 2-701, 4-2
IpWsCopyFrames, 2-701, 4-2, 4-7

IpWsCreate, 2-702, 4-6
IpWsCreateEx, 2-702, 4-6
IpWsCreateFromClipboard, 2-703, 4-6
IpWsCreateFromVri, 2-704, 4-5, 4-6
IpWsCutFrames, 2-705, 4-2, 4-7
IpWsDeleteFrames, 2-706, 4-2, 4-7
IpWsDuplicate, 2-706, 4-3
IpWsFill, 2-706, 4-4
IpWsFillPattern, 2-707, 4-4
IpWsGray12To8, 2-708, 4-3
IpWsGray16To8, 2-708
IpWsLoad, 2-709, 4-6
IpWsLoadNumber, 2-710, 4-6
IpWsLoadPreview, 2-711, 4-6
IpWsLoadSetRes, 2-712, 4-6
IpWsMove, 2-712, 4-7
IpWsOrient, 2-713, 4-7
IpWsOverlay, 2-714, 4-4
IpWsOverlayEx, 2-715, 4-4
IpWsPan, 2-715, 4-7
IpWsPaste, 2-716, 4-2
IpWsPasteEx, 2-716, 4-2
IpWsPasteFrames, 2-717, 4-2, 4-7
IpWsRedo, 2-717, 4-8
IpWsReload, 2-717, 4-6
IpWsRotate, 2-717, 4-7
IpWsSave, 2-718, 4-7
IpWsSaveAs, 2-718, 4-7
IpWsSaveEx, 2-719, 4-7
IpWsScale, 2-720, 4-7
IpWsSelectFrames, 2-720, 4-7
IpWsStretchLut, 2-721
IpWsSubSampleFrames, 2-722, 4-7
IpWsTestStrips, 2-722, 4-7
IpWsTestStrips2, 2-724, 4-7
IpWsTestStripsHalftone, 2-726, 4-7
IpWsUndo, 2-728, 4-8
IpWsZoom, 2-728, 4-8
item, 2-94

K
Keywords, 5-1
Kodak Photo CD

Opening Image From, 2-709

L
Laplacian Filter, 2-332
Large Spectral Filters, 2-406
Large Spectral Filters, 2-407

Index

Index-17

Length Tool, 2-448
Less Than, 1-22
Less Than or Equal To, 1-22
Line Profile Command, 2-491

Close Window, 2-492
Get Profile Data, 2-492
Maximize Window, 2-497
Minimize Window, 2-497
Move Window, 2-497
Positioning The Line, 2-496
Restore Window, 2-498
Saving, 2-498
Select Options, 2-501, 2-503, 2-504
Select Window, 2-500
Update, 2-504
Window Size, 2-503, 2-504

Linearize Intensity Calibration, 2-371
Live EDF and Tiling Commands, 4-5
LiveEDFGet, 2-403
Load

AOIs, 2-80
Calibration File, 2-154
Color Range File, 2-594
Database Image, 2-345
Environment File, 2-133
FFT File, 2-304
Image File, 2-709, 2-712
Intensity Calibration, 2-372
LUT File, 2-411
Outline File, 2-132, 2-441
Pseudo‐Color File, 2-471
Script File, 2-416
Spatial Calibration, 2-583

Load Measurements File, 2-441
Local Equalization Filter, 2-332
Logic Operations, 2-458, 2-462
Logical Equivalence, 1-23
Logical Operators, 1-23, 1-24, 1-25

Precedence, 1-24
Long Data Type, 7-1, 7-3
Look‐Up Table

Apply, 2-407
Get, 2-409
Load, 2-411
Reset, 2-411
Save, 2-412

Loops, 1-25
Nesting, 1-28

LoPass

FFT Filter, 2-304
Spatial Filter, 2-333

LPPOINT Data Type, 7-3
LPRECT Data Type, 7-3
LPSTR Data Type, 7-3
LUT

Apply, 2-407
Changing, 2-413, 2-414
Loading, 2-411
Reset, 2-411
Saving, 2-412
Set/Get, 2-409

M
Macro Command, 1-3, 1-7
Macro Output Window

Clearing, 2-466
Printing To, 2-466
Saving Data From, 2-467
Setting, 2-467

Macro Progress Bar, 2-418, 2-419, 2-420, 2-422
Macros, 1-3

Add Channel, 2-18
And Subroutines, 1-15
Calling from Outside Program, 2-423
Create New Settings File, 2-30
Creating, 1-7
Delete Channel, 2-19
Delete Channel by name, 2-19
Description Comment, 1-5
Error Messages, 1-29
Example Of, 1-5
File Name Processing, 1-12
Get, 2-29
Get String Value of Attribute, 2-27
Get Value of Attribute, 2-20
Getting Data From, 1-13
How to Playback, 1-3, 1-7
How to Record, 1-3
Initialization File, 2-380, 2-393
Interrupting, 1-11, 2-416, 2-423
Issuing Messages, 1-11, 1-12, 2-416, 2-423
Load settings file, 2-29
Loading, 2-416
Naming, 1-5
Pausing Temporarily, 2-426
Printing Data From, 1-14, 2-466
Running, 2-423
Save Settings File, 2-31

Index

Index-18

Save Settings UnderNew Name, 2-31
Set, 2-30
Set Floating Point Values, 2-41
Set Integer Values, 2-33
Set String Values, 2-43
Set Values, 2-32
Shortcut Key, 1-5
Show or Hide Dialog Tabs, 2-45
Snap Images, 2-46
Template Mode, 1-10, 2-665
Unrecordable Actions, 1-13

Make Mask, 2-592
Manual Overview, 1-2
Manual Tagging, 2-659

Add Class, 2-658
Delete Class, 2-661
Delete Markers, 2-660
Get Market Information, 2-661
Load Settings, 2-662
Mark Points, 2-663
Save Data, 2-663
Save Markers, 2-664
Save Settings, 2-664
Show Markers, 2-662
Show Window, 2-664
Update, 2-665

Maximize
Histogram Window, 2-358
Image Window, 2-271
Image‐Pro Window, 2-92
Line Profile Window, 2-497

Maximum
Between Two Images, 2-456
Of Image and Number, 2-460, 2-464

Measurement Tool
Update Data, 2-449

Measurements Command
Add, 2-427, 2-429
Delete, 2-432
Get Data, 2-433
Move Window, 2-442
Restore Window, 2-442
Save, 2-443
Save Data, 2-443
Save Outlines, 2-444
Selecting Measurements, 2-446
Selecting Tools, 2-447
Setting Options, 2-430, 2-432
Show Window, 2-444

Median Filter, 2-334
Memory Manager, 2-449, 2-450
Menu Select, 2-92
Merge Channel Command, 2-198
Merge Color Ranges, 2-595
Minimize

Histogram Window, 2-358
Image Window, 2-271
Image‐Pro Window, 2-94
Line Profile Window, 2-497

Minimum
Between Two Images, 2-456
Of Image and Number, 2-460, 2-464

Mod, 1-21
Modal Messages, 1-11, 2-416, 2-423
Modeless Messages, 1-11, 2-416, 2-423
Modulo Arithmetic, 1-21, 1-22
Mosaic Command

Attributes, 2-452, 2-453
Create, 2-451

Move
AOI, 2-81
Histogram Window, 2-359
Image Window, 2-271
Image‐Pro Window, 2-94
Intensity Calibration Window, 2-373
Line Profile Window, 2-497
Measurements Window, 2-442
Spatial Calibration Window, 2-584

Multiple File Processing, 1-12
Multiple Image Files, 2-712
Multiplication, 1-21
Multiply

Image by Image, 2-456
Number by Image, 2-460, 2-464

N
Name

Intensity Calibration, 2-375
Spatial Calibration, 2-588

Negation, 1-21, 1-22
Nested Loops, 1-28
New Command, 2-702, 2-703
New in version 4.0, 1-30
New in version 6.2, 1-2
New Sequence Command, 2-702
Nonequality, 1-22
Not, 1-23, 1-24

Index

Index-19

O
Object Window, 2-147
On...Error…GoTo, 1-29
On…Errror…GoTo, 1-29
On…Errror…Resume…Next, 1-29, 1-30
Open

Database File, 2-346
Database Image, 2-345
Image File, 2-649, 2-709, 2-710, 2-711
Vri, 2-274

Opening Filter, 2-335
Operations Command, 2-456, 2-458, 2-460, 2-

462
For RGB Images, 2-464
Show Window, 2-465

Operators
Arithmetic, 1-21
Assignment, 1-21
Logical, 1-23, 1-24
Precedence, 1-24
Relational, 1-22
String Concatenation, 1-21

Or, 1-23, 1-24
Origin, Of Spatial Scale, 2-589
Other, Filtering Command, 2-326
Outlines, Object

Loading, 2-132, 2-441
Saving, 2-136, 2-444

Output Window Command
Clearing Data, 2-466
Printing To, 1-14, 2-466
Saving Data From, 2-467
Setting Data, 2-467
Show Window, 2-468

Overlay Command
Erase, 2-288, 2-289
IpDraw, 2-288
IpDrawClearDoc, 2-289
IpDrawGet, 2-289
IpDrawSet, 2-290
IpDrawText, 2-290
IpGetLine, 2-349
IpPlotCreate, 2-477
IpPlotData, 2-478
IpPlotDestroy, 2-478
IpPlotRange, 2-478
IpPlotSet, 2-479
IpPlotShow, 2-480
IpPlotUpdate, 2-481

Overlay Image, 2-714, 2-715

P
Paint Image Window

Disabling, 2-99
Palette

Change Color, 2-469
Select Color, 2-468, 2-469
Show Window, 2-470

Panning Image, 2-712
Parameters, 1-8

And Template Mode, 1-10
Passed As Variables, 1-9

Passing an Array to Auto-Pro, 1-19
Paste Command, 2-716
Paste Frames Command, 2-717
Pausing Macro Execution, 2-426
Phase Filter, 2-336
Pitch Tool, 2-448
Playing Back a Macro, 1-3, 1-7
POINT Data Type, 7-3
Point Tool, 2-448
POINTAPI Data Type, 7-2, 7-3

Converting From String, 2-398, 2-450
Population Density, 2-147

Saving, 2-136
Precedence of Operators, 1-21, 1-22, 1-24
Preview

Color Segmentation, 2-596
Image File, 2-711

Preview tab, 2-45
Print, 1-14
Print Command, 2-505

Halftone Options, 2-504
Scaling, 2-504
Size And Position, 2-507

Print Screen Command, 2-506
Printing To The Macro Output Window, 1-14, 2-

466
progbutton, 2-93
progitem, 2-93
Progress Bar, Creating & Updating, 2-675
Prompting User For Cursor Position, 2-253
Prompting User For Data, 2-647, 2-648, 2-649
Prompting User For File Name, 2-649
Prune Filter, 2-336
Pseudo‐Color

Apply Palette, 2-475
Color Assignment, 2-472

Index

Index-20

Defining the Color Spread, 2-470
Intensity Range Selection, 2-474
Interval Division, 2-474
Loading, 2-471
Reset Palette, 2-475
Saving, 2-472
Saving Data, 2-472
Set Color Spread, 2-474

Put
Block of Data To Image, 2-275
Line of Data To Image, 2-277

R
Rank Filter, 2-336
Reading

Directly From An AOI, 2-273
Directly From An Image, 2-265, 2-266, 2-268,

2-269, 2-274, 2-280, 2-281, 2-283
Record Macro Command, 1-3
Recording a Macro, 1-3
RECT Data Type, 7-2, 7-3
Rectangle Tool, 2-448
Rectangular AOI, Creating, 2-74
Redo Command, 2-717
Reduce Filter, 2-337
Refresh

AOI Definition, 2-83
Bitmap Analysis Window, 2-105
Count/Size Environment, 2-151
Database File, 2-349
Histogram Window, 2-366
Line Profile, 2-504

Registration Command, 2-509
Show Window, 2-510

Relational Operators, 1-22, 1-25
Precedence, 1-22

Reload Command, 2-717
Reload Macro Command, 1-7
Rem, 1-15
Remove Alignment, 2-53
Remove Database Image, 2-346
Remove Tiling, 2-671
Rename Color Ranges, 2-597
Report Generator Command

IpRptNew, 2-577
IpRptOpen, 2-577
IpRptPrint, 2-577
IpRptSave, 2-578
IpRptShow, 2-578

Reserved Words, 5-1
Reset

Color List, 2-597
Intensity Calibration, 2-373
LUT, 2-411
Pseudo‐Color Palette, 2-475
Spatial Calibration, 2-584

Resize Command, 2-720
Restore

Histogram Window, 2-359
Image Window, 2-279
Image‐Pro Window, 2-94
Line Profile Window, 2-498
Measurements Window, 2-442

Restricted Dilation Filter, 2-337, 2-338
Return Code, 1-36
Roberts Filter, 2-337
Rotate Command

Fixed Angle Rotations, 2-713
Free Angle Rotation, 2-717

Run External Program, 2-95
Run Macro Command, 1-3, 1-7
Run-Time Errors, 1-29

S
Save

AOIs, 2-80
Bitmap Analysis Data, 2-104
Calibration Files, 2-154, 2-155
Classification Data, 2-134
Color Range File, 2-597
Count/Size Data, 2-134
Environment Files, 2-137
FFT Files, 2-306
Histogram Data, 2-360
Image File

Save, 2-718
Save As, 2-718, 2-719

Line Profile, 2-498
LUT Files, 2-412
Macro Output, 2-467
Macro Settings To IPMACRO.INI, 2-380, 2-393
Measurements, 2-443
Outline Files, 2-136, 2-444
Population Density, 2-136
Pseudo‐Color Datat, 2-472
Pseudo‐Color File, 2-472

Save Measurements File, 2-443
Scanning, 2-591

Index

Index-21

Selecting A TWAIN Source, 2-591
Scattergram, 2-148
Scope, Of Variables, 1-17
Screen Capture, 2-155, 2-159

Setting Options, 2-156, 2-157
Script Files, 1-3

Allowed Contents, 1-15
Example Of, 1-4
Loading, 2-416

Scrolling Image, 2-715
Select Dye, 2-398
Select Dye, 2-294
Select Workflow Toolbar, 2-673
Selecting

A TWAIN Source Device, 2-591
Database, 2-347
Database Images, 2-348
Histogram Window, 2-363
Image Window, 2-96
Intensity Calibration, 2-374
Line Profile Window, 2-500
Measurement Tools, 2-447
Measurements, 2-446
Spatial Calibration, 2-585

Sequence Command
Average of Frames, 2-602
Difference of Frames, 2-602, 2-603
Extract Frames, 2-603
Get, 2-604
Merge, 2-606
Open, 2-606, 2-607
Options, 2-607
Play, 2-608
Save, 2-610
Set, 2-611
Show/Hide, 2-613

Sequence Gallery Command
Create, 2-613
Set, 2-613, 2-614
Show/Hide, 2-614
Update, 2-614

Set
Demo Macro, 2-252
Position Information, 2-283
Property Information, 2-280, 2-281, 2-283

Setting the Macro Output, 2-467
SetWindowPos, 1-38
Sharpening Filter, 2-338
Short Data Type, 7-3

Shortcut Key, 1-5, 1-7, 8-1
Show

Annotation, 2-70
Annotation Overlay, 2-71
AOI, 2-83
AOI Manager Window, 2-80
Arithmetic Operations Window, 2-465
Bitmap Analysis Window, 2-105
Border, 2-91
Color Map Window, 2-415
Color Segmentation Window, 2-601
Count/Size Data, 2-146
Count/Size Window, 2-144
Database Window, 2-347
Filtering Window, 2-339
Intensity Calibration Window, 2-379
Macro Output Window, 2-468
Macro Progress Bar, 2-422
Measurements Window, 2-444
Multiple AOIs, 2-82
Object Window, 2-147
Palette Window, 2-470
Registration Window, 2-510
Scan Window, 2-591
Spatial Calibration Window, 2-589, 2-590

Show FFT, 2-306
Show Map Command, 2-413, 2-414
Show/Hide Object

Count/Size Window, 2-131
Show/Hide Workflow Toolbar, 2-674
Single Data Type, 7-1, 7-3
Single Variable Classification, 2-148
Size

Histogram Window, 2-365
Image Window, 2-285
Image‐Pro Window, 2-98
Line Profile Window, 2-503, 2-504

Slowing Macro Execution, 2-426
Smooth Objects, 2-150
Sobel Filter, 2-339
Sort Database Images, 2-348
Sort List, 2-652
Sort Objects Command, 2-645

Attributes, 2-645
Show Dialog, 2-645

Spatial Calibration
Angle Offset, 2-585
Aspect Ratio, 2-585
Calibration Values, 2-578

Index

Index-22

Create Set, 2-579
Default Values, 2-584
Delete Set, 2-579
Load Set, 2-583
Move Window, 2-584
Name, 2-588
Origin, 2-589
Select Set, 2-585
Unit Name, 2-589

Spike Boost, 2-307
Spike Cut, 2-308
Split Objects, 2-151
Standard Optical Density, 2-379
Static, 1-18
Statistics

Count/Size, 2-117, 2-134, 2-150
Histogram, 2-354, 2-360, 2-363
Line Profile, 2-492, 2-498, 2-501
Measurements, 2-430, 2-432, 2-433

String Data Type, 7-1, 7-3
String Variables

Saving To IPMACRO.INI, 2-393
Strings

Concatenation, 1-21
Converting To A List Of Points, 2-398, 2-450

Subroutines, 1-15
Subtract

Background, 2-455
Image, 2-456
Image from Image, 2-456
Number from Image, 2-460, 2-464

Subtraction, 1-21, 1-22
Summary of Auto‐Pro Functions, 4-1
Surface Plot Command

Attributes, 2-656, 2-657
AutoRefresh, 2-655
Output, 2-657
Show Dialog, 2-658

SW_SHOWMINIMIZED, 1-38
SW_SHOWNORMAL, 1-38
Syntax

Auto‐Pro Functions, 2-1
IPBasic Commands, 3-1

System
Intensity Calibration, 2-370, 2-377, 2-378

T
Tag

FFT Files, 2-309

Tagging
Database Images, 2-348
Measurements, 2-446

Template Mode, 1-10, 2-665
Test Strips Command

Creating BCG Strips, 2-722, 2-724
Creating Halftone Strips, 2-726

Testing a Condition, 1-25
Thickness Tool, 2-448
Thinning Filter, 2-339
Third‐Party Plug‐ins

Filters, 2-476
Import, 2-477
Show, 2-477

Threshhold Command, 2-408
Tile Images, 2-668
time points, 2-23, 2-24, 2-37
Timed Acquire Command, 2-15
Trace Objects Command

Show Trace Tool, 2-675
Trace, 2-674
Trace Atributes, 2-674

Trace Tool, 2-448
Tracking Bar, 2-675
Transpose Image, 2-713
TWAIN Source, Selecting, 2-591
Type Parameters, 1-9

U
Unconditional Branching, 1-29
Undo Command, 2-728
Unit Name

Intensity Calibration, 2-379
Spatial Calibration, 2-589

Untagging
Database Images, 2-348
Measurements, 2-446

Update
AOI Definition, 2-83
Bitmap Analysis Window, 2-105
Count/Size Environment, 2-151
Database File, 2-349
Histogram Window, 2-366
Image Window, 2-99
Line Profile, 2-504
Progress Bar, 2-675

User Dilate Filter, 2-340
User Erode Filter, 2-340
User Input

Index

Index-23

Cursor Position, 2-253
Data Values, 1-12, 2-647, 2-648, 2-649
File Names, 2-649
Via Message Box, 1-11
Via Message Box, 2-416
Via Message Box, 2-423
Via Template Mode, 1-10, 2-665

User-Defined Data Types, 1-20, 7-2

V
Validate AOI, 2-83
Variables, 1-17

Declaring, 1-18
Naming, 1-17
Saving To IPMACRO.INI, 2-380
Scope, 1-17
Types, 1-17

Variance Filter, 2-341
Vertical Thickness Tool, 2-449
Video Average, 2-3
Visual Basic, 1-1, 1-7

Example Program, 1-36
Using With Auto-Pro, 1-35

Visual C++
Data Types, 7-3

Vri
Closing, 2-255
Create Image From, 2-704
Opening, 2-274

W
Watershed Filter, 2-341
Watershed Filter ‐ Extended, 2-341
While...Wend, 1-26, 1-27
Windows API, 1-38
WinExec, 1-38
Writing

Directly To An AOI, 2-273
Directly To An Image, 2-274, 2-275, 2-277

X
Xor, 1-23, 1-24

Z
Zoom Command, 2-728

	Cover, Copyright, License, TOC
	Introduction
	Syntax Reference
	Appendices
	Index

